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For air-quality assessments in most major urban centers, air pollutants are monitored using
continuous samplers. Sometimes data are not collected due to equipment failure or during
equipment calibration. In this paper, we predict daily air pollutant concentrations (PM10 and
SO2) from the Yenibosna and Umraniye air pollution measurement stations in Istanbul for
times at which pollution data was not recorded. We predicted these pollutant concentrations
using the CNN model with meteorological parameters, estimating missing daily pollutant
concentrations for two data sets from 2002 to 2003. These data sets had 50 and 20% of data
missing. The results of the CNN model predictions are compared with the results of a multi-
variate linear regression (LR). Results show that the correlation between predicted and
observed data was higher for all pollutants using the CNN model (0.54–0.87). The CNN model
predicted SO2 concentrations better than PM10 concentrations. Another interesting result is
that winter concentrations of all pollutants were predicted better than summer concentrations.
Experiments showed that accurate predictions of missing air pollutant concentrations are
possible using the new approach contained in the CNN model. We therefore proposed a new
approach to model air-pollution monitoring problem using CNN.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The main sources of air pollution in Istanbul are the
combustion of poor quality coal, increased traffic load and
industrial activities. In the last two decades, many scientists
have focused on the air pollution problems of Istanbul-Turkey
(Erturk, 1986; Tayanç, 2000; Saral and Ertürk 2003; Sahin,
2005; Im et al., 2008, Hanedar et al., 2011). During the winter,
sulfur dioxide (SO2) and particulate matter (PM) are the
major air pollutants affecting regional air quality. Missing
data, which may be due to insufficient sampling and errors in
measurements or problems with data acquisition, presents a
problem that is frequently encountered in environmental
research. Regardless of the reasons for missing data, discon-
tinuities in data pose a significant obstacle to time-series

prediction schemes, which generally require continuous data
as a condition for their implementation.

The substitution of mean values for missing data is com-
monly suggested, and is still used in many statistical software
packages (Junninen et al., 2004). A slightly better approach
is to impute the missing elements from an ANOVA model
or similar statistical method. Another approach to the problem
is to use a simplistic interpolation method, such as assuming
the season's average concentration at the time of day for
which data are missing, or to linearly interpolate between
values of the previous and following to obtain continuous data
sets. Neither of thesemethods is ideal, because themeteorology
on the missing day may have been significantly different
from the days on which the interpolation is based, leading to
unrealistic predictions (Dirks et al., 2002). Clearly, a comple-
mentary method is required.

There are many deterministic and stochastic approaches
to modeling the concentrations of air pollutants. The well-
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known machine-learning approach is Artificial Neural Net-
works (ANN). That is concerned with the design and
development of algorithms that allow computers to empir-
ically learn the behavior of data sets. Machine learning
approaches have been used and applied to the correction of
bias for various environmental problems and weather
prediction since 1990. Neural networks are suitable for
the application of these areas due to their ability to model
non-linear mechanism. A recent paper by Manzato (2007)
and Fernandez-Ferrero et al. (2009) studied different statis-
tical downscaling methods applied to different numerical
weather forecasting. These paper results have shown the
ANNs proved to be a powerful statistical method, but special
care must be used to prevent over fitting.

Inmany studies, ANNs are applied to predict SO2 and PM10

concentrations (Boznar et al., 1993;Mok and Tam, 1998; Saral
and Ertürk, 2003; Chelani et al., 2002; Onat et al., 2004; Sahin
et al., 2005, Yildirim and Bayramoğlu, 2006). Gardner and
Dorling (1998) have published a comprehensive review
of studies using an ANN approach for environmental air
pollution modeling. Kukkonen et al. (2003) have studied five
neural network (NN) models, a linear statistical model and
a deterministic modeling system for the prediction of
urban NO2 and PM10 concentrations. Sahin et al. (2004)
used a multi-layer neural network model to predict daily
CO concentrations, using meteorological variables, in the
European side of Istanbul, Turkey. Kurt et al. (2008) also
developed an online air pollution forecasting system in
Istanbul using NN. Another NN model developed by Saral
and Ertürk (2003) was also used to predict regional SO2

concentrations. Junninen et al. (2004) applied regression-
based imputation, nearest neighbor interpolation, a self
organizing map, a multi-layer perceptron model and hybrid
methods to simulate missing air quality data. Nagendra and
Khare (2006) studied the usefulness of NNs in understanding
the relationship between traffic parameters and NO2 concen-
trations. Recently, several researchers used NN techniques to
predict airborne PM concentrations: e.g. Ordieres et al. (2005)
Hooyberghs et al. (2005), Perez and Reyes (2006) and Slini
et al. (2006). These days, some scientist use machine learning
approaches to modeling the satellite data (Lary et al., 2009;
Gupta and Christopher, 2009). All of these studies reported
that ANN could be used to develop efficient air-quality
analysis and forward-looking predictionmodels. But in ANNs,
the training process becomes increasingly complex and
requires longer time durations as the number of weighting
coefficients of the ANN rise into the millions due to the
complexity of the environmental study.

To reduce the number of weighting coefficients, Chua and
Yang (1988) introduced another machine learning approach,
Cellular Neural Network (CNN) in 1988. Because each cell of
the CNN is represented by a separate analog processor, and
because each cell is locally interconnected to its neighbors
by matrix A and gets a feedback from them by matrix B,
this configuration results in a very high-speed tool for
parallel dynamic processing of 2-D structures (Cimagalli,
1993; Guzelis and Karamahmut, 1994; Ucan et al., 2001;
Grassi and Grieco, 2002). CNN approaches have been applied
to air pollution modeling by a number of researchers, with
excellent results (Sahin, 2005; Ozcan et al., 2007; Thai and
Cat, 2008).

In this study, we have applied a CNN approach to the
problem of predicting the daily mean missing concentrations
of PM10 and SO2 pollutants in the Yenibosna and Umraniye-
Istanbul regions of Turkey. This paper is organized as follows:
In Sections 2.1 and 2.2 the Cellular Neural Network (CNN)
and Multiple Linear Regression (LR) modeling techniques are
defined. In order to evaluate model prediction, statistical
performance indices are explained in Section 2.3. The study
area and database are explained in Section 2.4. Model
construction is described in Section 2.5. In Section 3.1, PM10

and SO2 pollution in Istanbul is explained and in Section 3.2,
the CNN is tested on real data and the results are presented
and compared to LR technique. In Section 4, the results of the
study are evaluated.

2. Materials and methods

2.1. Architecture of CNN

Most neural networks fall into two main classes: (1)
memoryless neural networks and (2) dynamical neural
networks. As in Hopfield Networks and CNNs, dynamical
neural networks are usually designed as dynamic systems in
which the inputs are set to constant values and the path
approach to a stable equilibrium point depends upon the
initial state. A CNN is composed of large-scale nonlinear
analog circuits which process signals in real time (Chua and
Yang, 1988). The basic unit of a CNN is called a cell, and these
units communicate with each other directly only through
their nearest neighbors. Adjacent cells can therefore interact
directly with each other. Cells not directly connected together
affect each other indirectly because of the propagation
effects of the continuous real-time dynamics of the CNN.
The structure of a two-dimensional (2-D) 3×3 CNN is shown
in Fig. 1.

The Cellular Neural Network used in this study consisted
of M rows and N columns (M×N). In this structure, the
ith line and jth column are designated cell (i,j) and denoted
by C(i,j). A typical example of a cell is shown in Fig. 2. In Fig. 2,
uij, yij and xij correspond to the input, the output and the state
variable of the cell, respectively. The node voltage vxij of C(i,j)
is defined as the state of the cell whose initial condition
is assumed to have a magnitude less than of equal to 1. Each
cell contains one independent current source, one linear-

C(1,2) C(1,3) C(1,1) 

C(2,1) C(2,2) C(2,3) 

C(3,3) C(3,1) C(3,2) 

C(i,j)

Fig. 1. A 2-D cellular neural network of size 3×3. Links between the cells
(ellipse) indicate interactions between the linked cells.
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capacitor C, two linear resistors Rx and Ry and linear voltage
controlled current sources (Ixy(i,j:k,l)), which are coupled
to its neighbor cells via the controlling input voltage and
the feedback from the output voltage of each neighboring
cell C(k,l). The constant coefficients A(i,j;k,l) and B(i,j;k,l) are
known as the cloning templates, and these are the parameters
linking cell C(i,j) to its neighbor C(k,l). The equivalent
block diagram of a CNN cell is shown in Fig. 3. The first-
order nonlinear equation defining the dynamic of a CNN can
be derived as follows (Arena et al., 1997; Hadad and
Piroozmand, 2007; Thai and Cat, 2008):

The r-neighborhood of a cell C(i,j) in a cellular neural
network is defined by:

Nr i; jð Þ= C k; lð Þ Amax Ak−i A; l−j A≤ r; 1≤ i≤M ; 1≤ j≤Nð g:f
ð1Þ

A general form of the cell dynamical equations may be
written as follows:

C
dvxij tð Þ

dt
= − 1

R
vxij tð Þ + ∑

C k;lð Þ∈Nr i;jð Þ
A i; j; k; lð Þvykl tð Þ

+ ∑
C k;lð Þ∈Nr i;jð Þ

B i; j; k; lð Þvukl + I:

ð2Þ

In the CNN system, (A,B,I) are the local connective
weighting values of each cell C(i,j) to its neighbors. Each
cell of the CNN is represented by a separate analog processor,
and each cell is locally interconnected to its neighbors by
matrix A and gets a feedback from them by matrix B. This
configuration results in a very high-speed tool for parallel
dynamic processing of 2-D structures

A =
a�1;�1 a�1;0 a�1;1
a0;�1 a0;0 a0;1
a1;�1 a1;0 a1;1

2
4

3
5; B =

b�1;�1 b�1;0 b�1;1
b0;�1 b0;0 b0;1
b1;�1 b1;0 b1;1

2
4

3
5; I: ð3Þ

The output is related to the state by the nonlinear
equation. Characteristic of the output function vyi,j=f(vxi,j)
is as follows:

vyij tð Þ= 1
2

vxij tð Þ + 1
��� ���− vxij tð Þ−1

��� ���� �
vyij =

−1 when vxijb−1
vxij when−1 bvxijb1
1 when vxij N 1

:

8<
:

ð4Þ

The network behavior of a CNN depends on the initial
state of the cells, namely the bias I, and the weighting values
of the A and B matrices, which are associated with the
connections inside the well-defined neighborhood of each
cell. CNNs are arrays of locally and regularly interconnected
neurons or cells whose global functionalities are defined by a
small number of parameters (A, B and I) that specify the
operation of the component cells as well as the connection
weights between them. The CNN can also be considered
as a nonlinear convolution with the template. Since their
introduction in 1988 by Chua, CNNs have attracted a lot
of attention. Not only do these systems have a number of
attractive properties from a theoretical point of view, but
they also have many well-known applications such as image
processing, motion detection, pattern recognition and simu-
lation. Albora et al. (2001) applied this contemporary
approach to the separation of regional and residual magnetic
anomalies on synthetic and real data. Hadad and Piroozmand
(2007) applied the CNN to modeling and solving the nuclear
reactor dynamic equations. Here, we have predicted air
pollution parameters using a CNN approach. To evaluate the
prediction results of the CNN, statistical performance indices
have been calculated as described in Section 2.3.

2.2. Multiple linear regression model

Linear regression (LR)models have beenused as a reference
for comparison with the neural network models in several

Fig. 2. A classical CNN cell scheme.

Fig. 3. Equivalent block diagram of a CNN cell.
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studies (Nunnari et al., 2004; Grivas and Chaloulakou, 2006,
Agirre-Basurko et al., 2006). This model is one of the most
cost-effective approaches for time series analysis, and many
authors have been inspired to apply this technique, after
appropriate modifications, in developing pollutant fore-
casting models.

The general form of a multiple linear regression is:

Yi = βo + β1Xi1 + β2Xi2 + :::::::::: + βpXip + εi ð5Þ

where, for a set of i observations, Yi is the predictand variable,
β0 is a coefficient, β1,β2,…..,βp are the coefficients of the
independent variables (predictors) Xi1,.......,Xip and εi is the
residual error.

The hypotheses required to apply multiple linear re-
gressions are: (i) the predictor variables must be indepen-
dent, and (ii) the residual errors εi must be independent and
they must be normally distributed, with mean 0 and constant
variance σ2 (Agirre-Basurko et al., 2006).

The observations {Xi1,Xi2,....,Xip,Yi}i=1, 2,...., n form the
calibration set and are helpful in estimating the fitting param-
eters β1,β2,…..,βp. The least-squares method is the usual
technique used to estimate the parameters. Hence the
equation for the predicted value is:

Ŷ i = bo + b1Xi1 + b2Xi2 + :::::::::: + bpXip ð6Þ

where, bi is the estimate of each βi parameters and Ŷ i is the
predicted value.

The goal of the regression analysis is to determine the
values of the parameters of the regression equation and
then to quantify the goodness of the fit with respect to the
dependent variable Y.

2.3. Statistical performance indices

In this study, in order to objectively evaluate model
prediction, five statistical performance indices were com-
puted: the correlation coefficient (r), and the index of agree-
ment (d), the mean bias error (Bias), the mean absolute
error (MAE) and the root mean squared error (RMSE). These
indices are based on the deviations between predicted and
original observation values. RMSE summarizes the difference
between the observed and the imputed concentrations and
was used to quantify the average error of model. Moreover,
the MAE and RMSE were included in the comparison
as more sensitive measures of residual error. Bias is the
degree of correspondence between the mean prediction and
the mean observation. Lower values of Bias are optimal,
while bias values b0 indicate under-forecasting. Evaluation
can also be undertaken by considering measures of agree-
ment, such as the Pearson product moment correlation
coefficient (r). The index of agreement is a bounded, relative
measure that is capable of measuring the degree to which
predictions are error-free. The denominator accounts for the
model's deviation from the mean of the observations as well
as the observation deviation from their mean. In a good
model d and r should approach to 1 (Nunnari et al., 2004;

Kukkonen et al., 2003). All these indices are formulated as
follows;

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

∑
N

i=1
Oi−Tið Þ2

∑
N

i=1
Oi−Ô

� �2

vuuuuuut ð7Þ

d = 1−
∑
N

i=1
Pi−Oið Þ2

∑
N

i=1
Pi−O
�� �� + Oi−O

�� ��� �2
ð8Þ

Bias =
1
N

∑
N

i=1
Oi−Pið Þ ð9Þ

MAE =
1
N

∑
N

i=1
Oi−Tij j ð10Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i=1
Oi−Tið Þ2

s
ð11Þ

where, Oi and Pi are the observed and predicted pollution
values, respectively, in i=1., 2., …, N days, ˆO is the mean of
the observed times series and N is the total number of
observations. In addition, the standard deviations (σ) of the
predicted time series (P) have been calculated.

2.4. The study area and database

The study area is the metropolitan city of Istanbul which is
located at 41°Nand 29°E. TheBosphorus separates Istanbul into
two parts, the European and the Asian sides. The total area of
both parts of the city is approximately 5700 km2. More than
12 million people are living in Istanbul and more than 40% of
Turkey's heavy industry is located in the city. For this reason, air
pollution problems are of prime importance in Istanbul. The
Greater Istanbul Metropolitan Municipality's, Directorate of
Environmental Protection (GIMM-DEP) has conducted air
pollution measurement at 10 observation stations located at
various key topographic points around the city since 1992. In
this study, the daily SO2 and PM10 concentration data were
measured at two stations located in Yenibosna and Umraniye,
and daily meteorological data were measured at two stations
located in Florya and Goztepe as shown in Fig. 4. We have
categorized the sampling sites using the criteria proposed by
the European Environmental (EU) Agency (EU) and shown in
Table 1 (Dingenen et al., 2004). Table 1 shows the specific
pollution sources near the air quality monitoring stations.
Among these criteria are the distance of the stations from large
pollution sources such as cities, power plants and major
motorways, and the traffic volume.

In this study, daily SO2 and PM10 data were collected by
GIMM-DEP and measured using AF 21 M and MP 101 M
sensors, respectively (Environmental Inc.) We evaluated data
measured during 2002 and 2003. The 1460 data points for
each air pollutant for the Yenibosna and Umraniye AQMS
during this period. To predict the missing air pollutant
concentration data, we used daily meteorological data

317Ü.A. Şahin et al. / Atmospheric Research 101 (2011) 314–326
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provided by the General Directorate of the Turkish State
Meteorological Services (GDTSMS) in Istanbul. We used the
Meteorological Stations located at Florya on the European
side and Goztepe on the Asian side. The meteorological
parameters used to predict the missing air pollutant concen-
trations in this study, as well as their notations and daily
statistical evaluation during 2002–2003 are shown in Table 2.

2.5. Building the models

We estimated the daily missing concentrations of PM10

and SO2 parameters during 2002–2003 for Yenibosna and
Umraniye air pollution monitoring stations. These data sets
were organized as follows: one of themwas formed assuming
a missing data percentage of 50. In this data set, it was
assumed that data measurements were not performed every
other day. The other, was formed using a missing data
percentage of 20. It was assumed that data measurements
were not performed for one out of every five days in this data
set. The use of these assumptions in training and testing
studies is explained in Table 3 in detail.

The most important factor in the establishment of the CNN
model is neighboring relations. For this reason, we have
calculated correlations between meteorological and pollution

parameters using the statistical software package SPSS11.5. To
improve prediction performance, the CNN model was set with
side by side high correlation coefficients among thedata values.
In our CNNmodel, the elements of the input (u) and output (y)
matrix structure are shown in Fig. 5. The elements of the input
matrix consist of daily SO2 and PM10 concentrations to be
predicted for the 20% and 50%missed data. In the CNN training
study, the elements of the output matrix consisted of all daily
observed concentrations.Wehave designed aMATLAB7.0 code
on Pentium IV computers for our CNN model.

3. Results and discussion

3.1. PM10 and SO2 pollution in Istanbul

Summary statistics of daily PM10 and SO2 data between
1999 and 2003 at the Yenibosna and Umraniye stations are
given in Table 4. The daily PM10 and SO2 concentrations for each
station are given in Fig. 6. The PM10 and SO2 concentrations
recorded at theYenibosna stationwere higher than those at the
Umraniye station. In Yenibosna, traffic, industry and residential
populations are quite dense. The five-year average SO2

concentration measured at the Yenibosna station was one
and a half times higher than the concentrationmeasured at the
Umraniye station. As shown in Fig. 6, at both monitoring
stations the results recorded in winter were five times higher
than those measured in summer. The 24-hour PM10 limit of
50 μg/m3 was exceeded on many days (more than 80%) for all
stations. But the 24-hour SO2 limit of 125 μg/m3 was exceeded
ononly a fewdays (aboutfivedays) for all stations. Before 1995,
the average SO2 levelwas250 μg/m3 in Istanbul (Tayanç, 2000).
After 1995, the use of natural gas instead of coal became more
widespread and SO2 levels have therefore begun to decrease.
After 1999, the average SO2 concentration was 25 μg/m3.
However, PM10 levels have not effectively decreased over this
period. There is no significant difference in PM10 pollution

Fig. 4. Location of the air quality measurement and meteorology stations in Istanbul.

Table 1
Specific pollution sources and category by EU of the air pollutant sampling
sites.

AQ
stations

Pollution sources Categorized by EU

Commercial Industrial Traffic Urban
background a

Kerbside b

Yenibosna x x x x x
Umraniye x x x

a Urban backgound: b2500 vehicles/day within a radius of 50 m.
b Kerbside: within street canyons.
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levels between winter and summer. The effect of long distance
transport should be considered as well as the anthropogenic
pollution sourced from industry, heating and transport (Karaca
et al., 2009; Kindap, 2008).

Istanbul needs a long-term plan to address its air pollution
problems since the city is home to the majority of industries
and the population in Turkey. A continuous data record is
very important. One problem with this record is the high
number of missing data points in the AQM stations' records
for the period analyzed, from 1999 to 2003. As shown in
Table 4, the missing data rates for SO2 and PM10 are 19.7% and
38.8%, respectively, at the Yenibosna station and 13.7% and
22.1%, respectively, at the Umraniye station. Because of the
technical difficulties, the missing data fraction is as high as
50% for some one-year period. That's why the idea of such
a study can be completed with the missing data, where it
could be developed and implemented. Five years of data were
examined and the 2002 to 2003 period was selected, because
this period had a missing data fraction less than 8%. With
this method (CNN), the pixel belonging to the time zone of
missing data can be defined as 2-dimensional; not only the
past data but also today and the day after data can be affected
to predict missing data, effectively.

3.2. Analysis of CNN model

The data recording was performed as a continuous and
periodic determination of air pollutant parameters at mea-
surement stations located in different areas of the city. How-
ever, it was not always possible to obtain continuous data due
to a malfunctioning of measurement devices, power failures
or environmental factors. Data missing due to these factors
negatively affect the results of modeling and pollutant tracing
studies. In this study, a CNNmodel structure was tested under
scenarios of 20% and 50% missing data fractions for SO2 and
PM10 concentrations measured on the Anatolian (Asian)
and European sides of Istanbul during 2002 and 2003.

The CNN training process required approximately 4 and
5 min, respectively, to predict daily mean pollutant concen-
trations based on data from the Yenibosna and Umraniye
AQM Stations. The processes were stopped when the error
reached a value of 2.10−4. Testing of the CNN approach with
the optimized A,B,I templates occurred in real time. In
training the CNN model using u and y matrices, we obtained
A, B and I templates for each study as follows:

To predict 50% missing PM10 concentration data in
Yenibosna:

A =
0:0426 0:0545 0:0521
0:0644 1:2885 0:0644
0:0521 0:0545 0:0426

2
4

3
5

B =
−0:0615 − 0:0618 − 0:0613
−0:0616 − 0:0614 − 0:0616
−0:0613 − 0:0618 − 0:0615

2
4

3
5 I = −0:0614½ �:

ð12Þ

To predict 20% missing PM10 concentration data in
Yenibosna:

A=
−0:0054 0:0075 − 0:0280
0:0048 1:005 0:0048

�0:0280 0:0075 −0:0054

2
4

3
5

B=
0:0065 0:0068 0:0069
0:0068 0:0069 0:0068
0:0069 0:0068 0:0065

2
4

3
5 I = 0:0069½ �

ð13Þ

To predict 50% missing SO2 concentration data in Yenibosna:

A =
0:0537 0:0732 0:0636
0:0592 1:4524 0:0592
0:0636 0:0732 0:0537

2
4

3
5

B =
−0:0731 −0:0734 −0:0733
−0:0734 −0:0734 −0:0734
−0:0733 −0:0734 −0:0731

2
4

3
5 I = −0:0754½ �

ð14Þ

Table 2
The minimum, mean and maximum values of meteorological model parameters during 2002 and 2003 years.

Parameters Notations Units Minimum Mean Maximum

Florya Goztepe Florya Goztepe Florya Goztepe

Temperature T °C −2.2 −2.2 14.7 14.7 31.2 32
Wind speed WS m/s 0.3 0.2 2.2 2.5 6.2 7.3
Sunshine S Hour 0 0 6.7 6.3 13.8 12.9
Rel. humidity RH % 43.3 38.7 72.2 74.8 95.7 96
Pressure P mbar 990.9 988.8 1012.5 1012.6 1031.4 1032.7
Cloudy C m 0 0 4.4 6.3 10 10
Wind direction WD North (N), South (S),

West (W), East (E)
WSW – NNW

Rainfall R mm 0 0 – – 31.8 61.9

Table 3
The structure of SO2 and PM10 data for the CNN and LR model training and testing.

Training data sets during 2002–2003. Testing data sets during 2002–2003.

Missing data
percentage of 50

Ot, Mt+1, Ot+2, Mt+3, Ot+4, Mt+5, Ot+6, Mt+7, Ot+8,
Mt+9, Ot+10,…… Ot+730,

Mt, Ot+1, Mt+2, Ot+3, Mt+4, Ot+5, Mt+6, Ot+7, Mt+8, Ot+9,
Mt+10,…… Ot+730,

Missing data
percentage of 20

Ot, Ot+1, Ot+2, Ot+3, Ot+4, Mt+5, Ot+6, Ot+7, Ot+8, Ot+9,
Mt+10,…… Ot+730,

Ot, Mt+1, Ot+2, Ot+3, Ot+4, Ot+5, Mt+6, Ot+7, Ot+8, Ot+9,
Ot+10,…… Ot+730,

O: Observed data; M: Missing data; t: daily.
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To predict 20%missing SO2 concentration data in Yenibosna:

A =
0:0619 0:0697 0:0674
0:0570 1:4848 0:0570
0:0674 0:0697 0:0619

2
4

3
5

B =
−0:0752 −0:0755 −0:0754
−0:0754 −0:0754 −0:0754
−0:0754 −0:0755 −0:0752

2
4

3
5 I = −0:0754½ �

ð15Þ

To predict 50% missing PM10 concentration data in
Umraniye:

A =
−0:0024 0:0400 0:0308
0:0541 1:0350 0:0541
0:0308 0: 0400−0:0024

2
4

3
5

B =
−0:0238 −0:0237 −0:0240
−0:0238 −0:0239 −0:0238
−0:0240 −0:0237 −0:0238

2
4

3
5 I = −0:0239½ �

ð16Þ

To predict 20% missing PM10 concentration data in
Umraniye:

A =
−0:0054 0:0097− 0:0260
0:0038 1:005 0:0038

−0:0260 0:0097 −0:0054

2
4

3
5

B =
0:0090 0:0089 0:0089
0:0088 0:0089 0:0088
0:0089 0:0088 0:0090

2
4

3
5 I = 0:0089½ �

ð17Þ

To predict 50%missing SO2 concentration data in Umraniye:

A =
0:0142 −0:0182 0:0277
0:0157 1:1553 0:0157
0:0277 −0:0182 0:0142

2
4

3
5

B =
−0:0271 −0:0273 −0:0271
−0:0272 −0:0273 −0:0272
−0:0271 −0:0273 −0:0271

2
4

3
5 I = −0:0273½ �

ð18Þ

To predict 20% missing SO2 concentration data in
Umraniye:

A =
0:0402 0:0131 0:0289
0:0276 1:2505 0:0276
0:0289 0:0131 0:0402

2
4

3
5

B =
−0:0429 −0:0433 −0:0433
−0:0433 −0:0433 −0:0433
−0:0433 −0:0433 −0:0429

2
4

3
5 I = −0:0433½ �

ð19Þ

Here, neighborhood (r) is chosen as 1. To guarantee
stability of the CNN, the templates are symmetric. We have
replaced the template values obtained in Eqs. (12)–(19) with
those from Eqs. (2)–(3). In the optimization process, all
template coefficients were chosen to four significant figures.
We have especially chosen a linear region of the piece-wise
linear function as in Fig. 3. Thus, we have obtained multilevel
CNN outputs between −1 and +1 values. Furthermore, we
have mapped CNN output values to actual measured values
over the range of 0–250 μg/m3 for SO2 and 0–500 μg/m3 for
PM10. As a result, we have reached precise results that are
relatively close to the desired concentrations.

Fig. 5. Input (u) and output (y) matrices of our CNN model. (AP: Air Pollutant, SO2 and PM10 in observed; MAP: air pollutant with missing data).

Table 4
Summary statistics of daily PM10 and SO2 concentrations (μg/m3) of each station between 1999 and 2003 years.

Stations/pollution Valid data number Missing data number Mean Std. deviation Min Max Median

YENİBOSNAPM10 1118 708 64.2 33.8 10 272 55.5
ÜMRANİYE PM10 1422 403 53.8 30.6 5 287 46.4
YENİBOSNASO2 1467 359 30.2 28.6 0 205 23.0
ÜMRANİYE SO2 1575 250 20.2 20.4 0 166 13.6
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In this study, the Multiple Linear Regression (LR) model
was developed as a comparison to the performance of the
CNN-based approach. Linear Regression Equations were
derived by using the training data sets defined in Table 3.
Pollutant concentrations were calculated by using these
derived equations. The equations were given below;

To predict 50% missing PM10 concentration in Yenibosna:

PM10t+1= 0:164 PM102t−0:065 Tt + 0:259 Rt−5:420WSt
+ 0:000WDt−0:039 RHt

+ 1:105 Pt−1:465 Ct−0:577St−1045:152: ð20Þ

To predict 20% missing PM10 concentration in Yenibosna:

PM10t+1=0:259 PM102t−0:341 Tt + 0:083 Rt−5:187WSt
+ 0:006 WDt−0:044 RHt

+ 0:703 Pt−0:954 Ct−0:034 St−642:105:

ð21Þ

To predict 50% missing SO2 concentration in Yenibosna:

SO2t+1 = 0:381 SO2t−0:863 Tt + 0:097 Rt−3:463WSt
+ 0:008WDt−0:197 RHt

+ 0:210 Pt−1:739 Ct−1:003 St−147:250:

ð22Þ

To predict 20% missing SO2 concentration in Yenibosna:

SO2t+1 = 0:416 SO2t−0:990 Tt + 0:19 Rt−4:212WSt
+ 0:004WDt−0:285 RHt

+ 0:254 Pt−0:358 Ct−0:068 St−195:177:

ð23Þ

To predict 50% missing PM10 concentration in Ümraniye:

PM10t+1 = 0:316 PM102t−0:162 Tt + 0:364 Rt−4:372WSt
+ 0:028WDt−0:052 RHt

+ 0:708Pt−1:008 Ct−0:841 St−656:624:
ð24Þ

To predict 20% missing PM10 concentration in Ümraniye:

PM10t+1 = 0:280 PM102t–0:653 Tt + 0:120 Rt � 5:765WSt
+ 0:011WDt � 0:053 RHt

+ 0:276 Pt � 1:555 Ct � 0:588 St � 203:686:
ð25Þ

To predict 50% missing SO2 concentration in Ümraniye:

SO2t+1 = 0:444 SO2t–0:377 Tt � 0:166 Rt � 2:602WSt
+ 0:001 WDt � 0:154 RHt

+ 0:549 Pt � 0:480 Ct � 0:762 St–515:177:
ð26Þ

To predict 20% missing SO2 concentration in Ümraniye:

SO2t+1 = 0:377 SO2t–0:677 Tt + 0:046 Rt � 3:259WSt
�0:001WDt � 0:207 RHt + 0:327 Pt � 0:283 Ct

�0:409 St � 282:587:
ð27Þ

The data sets including all available measurements were
used to train the CNN model, then the coefficients obtained
in the training process were used to test, the model under
the scenarios of 20 percent and 50 percent missing data. The
correlation coefficients obtained after training the CNN and
LRmodels are given in Table 5. CNN training results hadmuch
higher correlation coefficients than the LR training results in
both the 20% and 50% data deficiency cases. Additionally, the
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Fig. 6. Variations of daily average PM10 and SO2 concentrations of the Yenibosna and Ümraniye air quality stations in Istanbul.
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highest SO2 prediction value was calculated as 0.90 in
Umraniye and the lowest value was calculated as 0.72 in
the Yenibosna stations. The highest PM10 prediction value
was calculated as 0.89 and the lowest value was calculated as
0.72 at the Yenibosna stations.

The data set was tested using the A, B, I (Eqs. (12)–(19)) in
terms of the CNN model obtained after training. We
estimated the daily mean missing PM10 and SO2 concentra-
tions during 2002 and 2003, and compared these estimates
to observed data (Figs. 7 and 8) from the Yenibosna and
Umraniye stations, respectively. The CNN and LR model
results were also checked by calculating five different
statistical indices, given in Eqs. (7)–(1), which are based on
the deviations between predicted values and original obser-
vations. The final results of statistical model evaluation for the
daily meanmissing PM10 and SO2 concentrations during 2002
and 2003 have been presented in Table 6. For both pollutants
and both missing data assumptions, the results have been

Fig. 7. Two years of observed and CNN model predicted daily mean PM10 and SO2 concentrations at the Yenibosna Station.

Table 5
Training and validation results for CNN and LR model.

Site Missing
data (%)

Pollution Model Correlation (r),
training set

Correlation (r),
validation set

Yenibosna 50 PM10 CNN 0.66 0.62
LR 0.48 –

SO2 CNN 0.72 0.70
LR 0.69 –

20 PM10 CNN 0.89 0.85
LR 0.51 –

SO2 CNN 0.88 0.80
LR 0.68 –

Umraniye 50 PM10 CNN 0.73 0.64
LR 0.51 –

SO2 CNN 0.75 0.69
LR 0.71 –

20 PM10 CNN 0.87 0.84
LR 0.52 –

SO2 CNN 0.90 0.73
LR 0.70 –
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Fig. 8. Two years of observed and CNN model predicted daily mean PM10 and SO2 concentrations at the Umraniye Station.

Table 6
Model performance indices for theCNNmodel. The results differ by themissingdata percentage, Yenibosna andUmraniyeairquality stations and PM10 and SO2pollution.

Stations Air
pollutant

MDP
(%)

Model Statistical performance indices

Max. Min. Avrg. σ r d Bias MAE RMSE

Yenibosna PM10 50 CNN 218 13 47 36.1 0.57 0.70 16.3 27.5 34.4
LR 112 21.5 63 12.9 0.50 0.61 0.03 16.0 22.6

20 CNN 211 15 59 23 0.87 0.92 4.2 9.9 13.6
LR 121 26 63 13.1 0.51 0.62 0.31 15.7 22.5

SO2 50 CNN 170 0.3 26 26.1 0.67 0.81 2.76 15.5 20.5
LR 96 −2.2 29 15.6 0.66 0.77 0.01 13.1 17.7

20 CNN 148 2.2 30 25.5 0.73 0.85 −0.91 13.6 18.0
LR 102 −2.9 28 16.1 0.67 0.78 0.52 12.8 17.6

Ümraniye PM10 50 CNN 279 10 49 34.3 0.54 0.74 6.87 24.4 32.3
LR 126 8.9 56 16.8 0.53 0.64 −0.35 18.4 26.7

20 CNN 244 2.5 54 24.3 0.86 0.91 1.95 11.1 16.6
LR 122 10.9 55 16.5 0.54 0.65 0.11 18.1 26.6

SO2 50 CNN 164 5.5 21 30.3 0.60 0.73 −2.43 13.3 24.3
LR 103 −5.1 18 15 0.70 0.80 −0.12 9.5 15.0

20 CNN 170 6 21 24.3 0.75 0.85 −2.54 11.5 16.5
LR 92 −5.8 18 14 0.71 0.80 0.30 9.3 15.0

MDP: Missing data percentage.
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presented separately for each Station. It can be inferred from
the bias values in Table 6 that all of the CNN model
predictions are less than the measured concentration values
except for the data set with 20% deficiency for SO2 at the
Umraniye station. When the RMSE values are controlled,
RMSE values are mostly equal or close to LR model values in
the case of 20% data deficiency. Index of agreement values
reached a maximum of 0.81 in the case of 20% data deficiency
and reached a maximum of 0.92 in the case of 50% data
deficiency. Reducing the data deficiency in the data set boosts

the performance of the CNN model. When all of the model
results are evaluated in general, the indexes of agreement and
correlation in the LR predictions are found to be less than
those of the CNN predictions.

We also evaluated the effects of seasonal changes on CNN
predictions. The observed versus CNN-predicted daily mean
PM10 and SO2 values for the 2002–2003 winter and summer
periods are plotted in Fig. 9 and the correlation coefficients
are presented in Fig. 9. It is evident that the CNN provides
more reliable predictions of the daily mean PM10 and SO2

a b

p

Fig. 9. Scatter plots of predicted versus observed concentrations of SO2 and PM10 at Yenibosna and Umraniye on the CNN test data. a): Missing data percentage of
50 and b): Missing data percentage of 20. I. Part: events exceeding the attention level correctly predicted; II. Part: events exceeding the attention level not correctly
predicted.
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concentrations at all stations during the winter as compared
to the summer, as shown by the greater agreement of
observed and predicted values for the winter seasons.

The relevant levels of daily mean SO2 and PM10 concen-
trations, according to EU legislation (see the EC Normative-
Council directive 1999/30/EC of 22 April 1999 relating to limit
concentration limits for sulfur dioxide, nitrogen dioxide and
oxides of nitrogen, particulate matter and lead in ambient air)
are 125 μg/m3 and 50 μg/m3, respectively, and are not to be
exceeded more than 3 and 35 times a year, respectively. The
environmental laws in Turkey are being revised according to
guidelines of the European Union. When Draft Air Pollution
Control Laws are considered, it will be necessary to assert the
EU limit values. There are two parts presented in Fig. 9: Part I
demonstrates the correctly predicted events exceeding the
attention level, and Part II demonstrates the events exceeding
the attention level that were not correctly predicted. Three
values in Part II were determined in the prediction of SO2 for
the Umraniye Station data set with 20% data deficiency;
the majority of the SO2 concentrations were lower than the
EU-mandated level. Approximately 50% of the measured
concentration values are higher than the limit values. This
situation was observed in the CNN model prediction, and the
studies with 20% data deficiency yielded predictions with
82% success (predicted data in Part I).

4. Conclusion

In this study, the major air pollutants of concern for the
city of Istanbul, particulate matter (PM) and sulfur dioxide
(SO2), were estimated using a CNN approach. There are many
computational methods available for air pollutant modeling.
One of the frequently used methods is the use of an Artificial
Neural Network (ANN). In ANN modeling, the training
process time increases as the problem becomes increasingly
complex. To reduce the complexity of the calculations used by
the ANN, Chua and Yang introduced the Cellular Neural
Network (CNN) in 1988 as a new non-linear, dynamic neural
network structure. In a CNN, the correlations between
neighboring pixels are modeled by cloning templates with a
limited number of elements and using these pixels for solving
complex problems.

Here, we model missing daily mean PM10 and SO2 air
pollutant concentration data in Istanbul. Comparing the
results obtained using the CNN model with those obtained
using a LR model, we observed that the CNN model provides
more reliable predictions. In previous similar ANN modeling
studies the correlation coefficient values ranged between
0.50 and 0.80 (Mok and Tam, 1998; Chelani et al., 2002; Sahin
et al., 2005; Hooyberghs et al., 2005; Slini et al., 2006). In this
paper, the measured r values for the CNN model were found
to be between 0.54 and 0.87 for daily mean PM10 concentra-
tions and 0.60 and 0.75 for daily mean SO2 concentrations.

These result shows that the CNN modeling technique can
be considered a promising approach for air pollutant
prediction. We have proposed a new method for modeling
the air-pollution problem using a CNN. In addition, we
propose to test the ability of CNN models to model other
environmental pollution problems.We specifically propose to
apply CNN methods to three-dimensional air pollution
modeling problems in the future.
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