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ABSTRACT 
 
The 3D approach was employed for investigations of the stability loss of the cylinder with circular cross 
section fabricated from the viscoelastic composite materials. This approach is based on the investigations of 
the development of the initial infinitesimal imperfections of the cylinder within the scope of the 3D 
geometrically nonlinear field equations of the theory of the viscoelasticity for anisotropic bodies. The 
numerical results on the critical forces and critical time are presented and discussed. 
Keywords: Stability loss, cylinder made from viscoelastic composite material, boundary form perturbation 
method.   
 
 
VİSKOELASTİK KOMPOZİT MALZEMEDEN YAPILMIŞ DAİRESEL SİLİNDİRİN 
STABİLİTESİNİN KAYBI HAKKINDA 
 
ÖZET 
 
Viskolelastik kompozit malzemeden yapılmış dairesel silindirin 3 boyutlu stabilite kaybının incelenmesi için 
yaklaşım önerilmektedir. Bu yaklaşım, anizotrop cisimler için, viskoelastisite teorisinin, 3 boyuttlu, geometrik 
olarak doğrusal olmayan, alan denklemleri çerçevesinde silindire ait başlangıçtaki sonsuz küçük sapmanın 
gelişiminin araştırılmasına dayanmaktadır. Kritik kuvvet ve kritik zamana ait sayısal sonuçlar bulunmuş ve 
tartışılmıştır. 
Anahtar Sözcükler: Stabilite kaybı, viskoelastik kompozit malzemeden yapılmış silindir, sınır formu 
pertürbasyon yöntemi. 
 
 
 
1. INTRODUCTION  
 
 
In the paper [1,2] and others, the 3D approach was proposed for investigations of the stability loss 
of the elements of constructions fabricated from the viscoelastic composite materials. This 
approach is based on the investigations of the development of the initial infinitesimal 
imperfections of these elements of constructions within the scope of the 3D geometrically 
nonlinear field equations of the theory of the viscoelasticity for anisotropic bodies. The review of 
the investigations carried out by utilizing the mentioned approach is given in a paper [3]. It 
follows from this review that, up the now the corresponding problem for cylinders do not studied. 
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In the present paper the first attempt is made in this field and the stability loss of the circular 
cylinder fabricated from viscoelastic composite material is studied. 

Throughout the investigations, repeated indices are summed over their ranges.  
  
2. FORMULATION OF THE PROBLEM 
 
We consider a cylinder which has an initial imperfection in the natural state and determine the 
position of the points of this cylinder with the Lagrange coordinates in the cylindrical Or zq  and 

the Cartesian system of coordinates 1 2 3Ox x x  system of coordinates (Fig. 1). The noted initial 

imperfection is given through the following equation of the middle line of the cylinder 
 

3 3x t= ; sin1 3x A t
pæ ö÷ç= ÷ç ÷çè ø

; 02x                                                                                            (1) 

 

where 3t is a parameter and ( )0,3t Î  , A is the amplitude of the initial imperfection form. 

We assume that the cylinders’ cross section which is perpendicular to its middle line 
tangent vector, is a circle of the constant radius R .   Moreover, as in [1,2], we assume that 

lA   and introduce the small parameter 
 

Ae=


,          10                                                                                                             (2) 
 

 
Figure 1. The geometry of the considered 

cylinder 
 

We suppose that the material of the cylinder is 
viscoelastic transversal isotropic the symmetry 

axis of which coincides with the 3Ox ( Oz ) 

axis. Within the foregoing assumptions, we 
investigate the evolution of the infinitesimal 
initial imperfection of the cylinder with time in 
the case where the cylinder is loaded by 
uniformly distributed normal compressed forces 
with intensity p acting on the ends of the 

cylinder in the direction of the Oz  axis. 
This investigation is made within the scope of 
the following field equations. 
 

( ) 0,
jin i

un ni s d + =é ù
ê úë û

2
n

u u u um m m nij j j je =  + +        (3) 

The constitutive relations for the cylinder material in the cylindrical system of 
coordinates are given as follows: 

 
 

Ş. Karakaya                                                                                      Sigma 31, 1-19, 2012 



3 
 

; ;11 12 13 12 11 13A A A A A Azz zzrr rr rrs e e e s e e eqq qq qq
* * * * * *= + + = + +  

( ); ;13 13 33 11 22A A A A Azz zzrr r rs e e e s eqq q q
* * * * *= + + = -  

2 ; 2 ,G Grz rz z zs e s eq q
* *= =                                                                                           (4) 

 

where 

ijA and 


G  are following operators 

 

   
 

 
 0 1

00 1

A A tA tij ijij t t d
G G tG


    



                            
                                                           (5) 

 

Here, 0Aij and 0G  are the instantaneous values of elastic constants, ( )1A tij  and ( )G t  

are the given functions which determine the hereditary properties of the cylinder material. 
Assume that on the lateral surface S of the cylinder the following conditions are satisfied 

 

( ) 0j jin u nn n jS
s d + =                                                                                                           (6) 

 

In the natural state, the upper and lower ends of the cylinder are on the inclined planes 
with unit normal vectors 

 

0 2 21

k i
n

ep

e p

- -=
+

 
  (for lower end plane) 

2 21

k i
n
l

ep

e p

-=
+

 
  (for upper end plane)                                                                           (7) 

 

Denote the upper (lower) end cross section of the cylinder through ( )0S S and the 

conditions for the forces on these end cross sections can be written as follows: 
 

( ) ( )3 3,0
0

j j j jn nu n p u n pn n n nj ljS S
s d s d+ = + =-


                                           (8) 

 

The end conditions for the displacements will be discussed below.  

Note that in (3), (4), (6), (7) and (8) the following notation is used: i  shows the 

covariant derivatives with respect to the i-th cylindrical coordinate, 
in  is a contravariant 

component of the stress tensor, ij  is a covariant component of the Green’s strain tensor, 

( )nu un  is a covariant (contravariant) component of the displacement vector, 

 zzrrzzrr  ,...,,,,...,,   is a physical component of the stress (strain) tensor in the 

cylindrical system of coordinates Or zq ; 
i
n  is the Kronecker symbol; n j  is a covariant 

component of the unit normal vector of the lateral surface of the cylinder; 0n j  ( )n j  is a 

covariant component of the unit normal vector of the end inclined plane at 03t = ( )3t =  . 

Moreover, below we will use the notation ur , uq and uz for denoting the physical components 
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of the displacement vector. It is known that the mentioned physical components are determined 

according to the expressions ( )ij
ijH Hi js s= , ( ) 1

( ) H Hij i jije e
-

= ,  ( ) ( ) 1iu u H u Hi i ii
-

= =

, where   , , , , ,ij rr zz r rz z   ,  ( ) , ,i r z . Here Hi  are Lamé’s coefficients and 1.01H  , 

2H r ,  1.03H   for the cylindrical system of coordinates. Thus, with this the formulation of 

the considered problem has been exhausted and it follows from this formulation that the evolution 
of the infinitesimal initial imperfection of the cylinder with time for the fixed value of the initial 
compressed force p (for the case where the material of the cylinder is viscoelastic) or with initial 
compressed force p  (for the case where the  material of the cylinder is pure elastic) will be 
investigated within the framework of the field equations (3), (4),  (5) and boundary condition (6) 

and (8). 
 
3. METHOD OF SOLUTION 
 
Now we consider the method of solution of the problem formulated in the previous section. Note 
that the method employed below can be briefly summarized as follows. By employing the 
boundary-form perturbation techniques the considered boundary value problem for the non-linear 
integro-differential equations (3) – (5) is reduced to the series boundary-value problems for the 
corresponding system of the linear integro-differential equations. Owing to both the expressions 
of the operators (5) and the convolution theorem, by the use of the Laplace transform with respect 
to time these series problems are reduced to the corresponding series boundary value problems for 
the linear system of differential equations in the Laplace transform parameter space. For each 
fixed value of this parameter the linear problems are solved by employing variable-separation 
method and finally, applying the Schapery [4] inverse transformation method we determine the 
sought values. It should be noted that for the case where the material of the cylinder is pure 
elastic, the operators (5) are replaced by mechanical constants and therefore instead of the 
integro-differential equations we obtain differential equations and the corresponding problems for 
these equations are also investigated in the framework of the above procedure but without 
employing the Laplace transform. 

Since, according to the procedure summarized above and the problem statement, first 
we derive the equation for the lateral surface S of the cylinder. According to the condition of the 
cylinder’s cross section we can conclude that the coordinates of this surface must simultaneously 
satisfy the following equations. 

 

  '( )3 10 3f t x f t   030 3x t  , 

 22
20 30 3x x t     2 2

10 3x f t R  ,                                                                                  (9) 
 

where    sin3 3f t t   ,     ' cos3 3f t t   ; 10x , 20x , 30x  are coordinates of the 

surface S . Note that the first equation in (9) is an equation of the plane perpendicular to the 
vector which is the tangent vector to the middle line of the fiber at the point that corresponds to 
the fixed value of the parameter 3t ; but the second equation in (9) is an equation of the circle 

which is counter to the cross section of the cylinder which rises on the foregoing plane.  
Using the relations cos10x r  , sin20x r   we obtain the following equation for 

the surface S  in the cylindrical system of coordinates Or z : 
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( , , )3r r t  , ( , , )3 01 3z t z t                                                                                           (10) 
 

The explicit expressions of the functions ( , , )3r t  , 01 3( , , )z t  can also be attained 

from equation (9); in order not to take up too much space here, we will not present these 
expressions. 

Using the assumption (2) and supposing that the conditions   2' 13f t  , after some 

mathematical manipulations, we obtain the following equations. 
 

 , 301

kr R a tkk
 


  


,  ,3 301

kz t b tkk
 


  


, 

 1 ,0 301

kn c tr kk
 


  


,  , 301

kn d tkk
 


 


,  , 301

kn g tz kk
 


 


.                         (11) 

 

where nr , n , nz are physical components of the unit normal vector to the surface S . The 

explicit expressions of the functions ( , , )3r t  , ( , , )01 3z t  , nr , n  nz ,  , 3a tok  , 

 , 30b tk  ,  , 30c tk  ,  , 30d tk  and  , 30g tk  can also be attained from equation (9); in 

order not to take up too much space here, we will not present these expressions. 
We write the equation of the planes on which lays lower and upper inclined ends of the 

cylinder 
 

3 1x xep=-  (for the lower end)    3 1x xep= +   (for the upper end)                         (12) 
 

According to Eq. (7), we can also present the expression of the components of the 
normal vectors to these ends as follows 
 

( )1 2 41 ( ) ( )01 1 2
n n Oep ep ep

æ ö÷ç= =- - + ÷ç ÷çè ø  , ( )1 2 41 ( ) ( )03 2
n Oep ep

æ ö÷ç=- - + ÷ç ÷çè ø
, 

( )1 2 41 ( ) ( )3 2
n Oep ep

æ ö÷ç= - + ÷ç ÷çè ø .                                                                                        (13) 

 

According to the procedures of the boundary perturbation technique, as in the works 
[5,6] and in many others, we attempt to solve the considered problem by employing the boundary 
form perturbation method. For this purpose the unknowns are presented in series form in   (2). 
 

 ; ; ;ij iu uij i    ( ) ( ) ( ) ( ); ; ;
0

q q ij q q q iu uij iq
  





.                                                         (14) 

 

Substituting Eq. (15) into Eq. (3), we obtain set equations for each approximation (14). 
Using Eq. (11) we expand the values of each approximation (14) in series form in the vicinity of  

the  point  ;0 0 0 3r R z t  . Substituting these last expressions in the boundary conditions in (6) 

and using the expressions of nr , n  and nz  given in (11), after some mathematical 

transformations we obtain boundary conditions which are satisfied at  ; 3r R z t   for each 

approximation in Eq.(14).  It is evident that for the zeroth approximation, Eq.(3) is valid and 

condition (6) is replaced by the same one satisfied at point  ; 3r R z t  . We assume that 

(0) 1un   and therefore we replace the terms (0)j un n   by j
n  where j

n  is the 
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Kronecker symbols. According to this assumption, for the zeroth approximation, we obtain the 
following system of equations: 
 

(0) 0ij
i  , (0) (0) (0)2 u uij j i i j    ,                                                                         (15) 

 

and boundary conditions 
 

 
(0) 0ij r R

 


,                                                                                                                              (16)  

 

where ( ) , , , ( ) , ,ij rr r rz i r z   .  
 

Moreover, we obtain the following end conditions for zeroth approximation from (7), 
(8), (8) and (13). 
 

(0) (0)( , ,0) ( , , )r r pzz zz      ,                                                                                        (17) 
 

Note that the mathematical procedure, according to which the end condition (17) is 
obtained, will be given below. 

Taking the last assumption into account, for the subsequent approximations we obtain 
the following system of equations. 
 

 1( ) (0) ( ) ( ) ( )

1

qq ij in q j q m in m ju un ni im
  

           
,

1
( ) ( ) ( ) ( ) , ( )

1

2
q

q q q q m n m
ij j i i j j i k

m

u u u u






       .                                                                         (18) 

 

The underlined terms in Eq. (18) are equal to zero for the first approximation. By direct 
verification it is proven that the left side of Eq. (18) coincide with the corresponding equations of 
the Three-Dimensional Linearized Theory of  Stability (TDLTS) [7]. Dui to linearity the 
constitutive relations (4) are satisfied by each approximation separately, i.e. 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); ;11 12 13 12 11 13
q q q q q q q qA A A A A Azz zzrr rr rrs e e e s e e eqq qq qq

* * * * * *= + + = + +  

( )( ) ( ) ( ) ( ) ( ) ( ); ;13 13 33 11 22
q q q q q qA A A A Azz zzrr r rs e e e s eqq q q

* * * * *= + + = -  

( ) ( ) ( ) ( )2 ; 2 ,q q q qG Grz rz z zs e s eq q
* *= =                                                                                         (19) 

 

Now we write the boundary conditions given on the lateral surface of the cylinder for 
the first approximation by the physical components of the stress tensor. 
 

(0) (0)
( ) ( )(1)

1 1( )
ir ir

fir r z

 
 

 
  

 
(0) (0) (0) 0,( ) ( ) ( )zr ir i i z                                                  (20) 

 

where ( ) , ,i r z . In Eq. (20) replacing ( )i with ,r   and z  we obtain the explicit form of the 
corresponding contact conditions in the considered approximation. Moreover, in Eq. (20) the 
following notation is used. 
 

'( )cos( )3f tz   , ( )cos( )1 3f f t  , '( )cos( )1 3Rf t   , 

 
( )3 ''( ) cos( )3

f t
f tr R

 
 

   
 

,
( )3 sin( )

f t

R
    , 

 3'( )3
3

df t
f t

dt
 ,  
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 2
3''( )3 2

3

d f t
f t

dt
 .                                                                                                        (21) 

Consider the satisfaction of the end conditions (8). To simply the discussion we rewrite 
these conditions in the Cartesian system of coordinates 1 2 3Ox x x . 
 

;3 0 3

0

u uj jj jn p n pn nn j n jx xn nS S

s d s d
æ ö æ ö¶ ¶÷ ÷ç ç÷ ÷ç ç+ = + =-÷ ÷ç ç÷ ÷ç ç÷ ÷¶ ¶÷ ÷ç çè ø è ø 



                                         (22) 

 

According to equation (12) and (13), we can write the following expressions from the 
conditions (22). 
 

( , , , )1 1 1 2 1( , , , )3 0 3 1 2 1 01

0

u u x x x tjj n x x x t nn nn j nx xn nS

ep
s d s ep d
æ ö¶ æ ö¶ -÷ç ÷ç÷ç ÷ç+ = - + +÷ ÷ç ç÷ ÷ç ÷ç÷¶ ¶÷ç è øè ø

 

( , , , )3 3 1 2 1( , , , )3 1 2 1 03
u x x x t

x x x t n pnn xn

ep
s ep d

æ ö¶ - ÷ç ÷ç- + =-÷ç ÷÷ç ¶è ø
 

( , , , )1 1 1 2 1( , , , )3 3 1 2 1 1

u u x x x tjj n x x x t nn nn j nx xn nS

ep
s d s ep d
æ ö¶ æ ö¶ +÷ç ÷ç÷ç ÷ç+ = + + +÷ ÷ç ç÷ ÷ç ÷ç÷¶ ¶÷ç è øè ø


 



 

( , , , )3 3 1 2 1( , , , )3 1 2 1 3
u x x x t

x x x t n pnn xn

ep
s ep d

æ ö¶ + ÷ç ÷ç+ + =÷ç ÷÷ç ¶è ø


                                           (23) 

 

Using the expansions  
 

( , , , )1 2 1x x x tin   ( ) (0)( , , , ) ( , ,0, )1 2 1 1 20

q q x x x t x x tin inq
   


  


 

   
(0)( , ,0, ) 2(1) 1 2( , ,0, )1 2 1

3

x x tinx x t x Oin x


   
            
 

;  

( , , , )1 2 1u x x x tm
x j

 




( ) (0)( , , , ) ( , ,0, )1 2 1 1 2
0

qu x x x t u x x tm mq
x xq j j




  
 

 
 

   
(1) (0)2( , ,0, ) ( , ,0, ) 21 2 1 2

1
3

u x x t u x x tm m
x O

x x xj j
  
               
 

; 

( , , , )1 2 1x x x tin   ( ) (0)( , , , ) ( , , , )1 2 1 1 20

q q x x x t x x tin inq
   


  


   

   
(0)( , , , ) 2(1) 1 2( , , , )1 2 1

3

x x tinx x t x Oin x


   
           
 


 ;  
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( , , , )1 2 1u x x x tm
x j

 




 ( ) (0)( , , , ) ( , , , )1 2 1 1 2
0

qu x x x t u x x tm mq
x xq j j




  
 

 

 
 

   
(1) (0)2( , , , ) ( , , , ) 21 2 1 2

1
3

u x x t u x x tm m
x O

x x xj j
  
              
 

 
,                               (24) 

 

we obtain the following expression for the end conditions (22). 
 

(0) (1) (0)(0) 2
(0) (0) (0)3 13 3 31

13 3 3
3

u u uu
xk k k k kx x x x xk k k k

s d e ps d s p
ì éæ ö æ öæ öï ÷ ÷÷ï ç çç¶ ¶ ¶¶ê÷ ÷÷ï ç ççï ÷ ÷÷ç ççê- + + - + - - -÷ ÷÷í ç çç÷ ÷÷êï ç çç¶ ¶ ¶ ¶ ¶÷ ÷÷ï ç çç÷ ÷÷ç çê è øè ø è øï ëïî

 

( )
(0) (0)

(1) 23 3
1 33

( , ,0)1 2

ukkx O pk x xk k
x x

s
s p d e

üùæ öæ ö ï÷ ÷ ïç ç¶ ¶ ú÷ ÷ ïç ç ï÷ ÷ç ç ú- + + =÷ ÷ ç ç÷ ÷ú ïç ç÷¶ ¶ ÷ ïç ç÷ ÷çç úè øè ø ïû ï

 

(0) (1) (0)(0) 2
(0) (0) (0)3 13 3 31

13 3 3
3

u u uu
xk k k k kx x x x xk k k k

s d e ps d s p
ì éæ ö æ öæ öï ÷ ÷÷ï ç çç¶ ¶ ¶¶ê÷ ÷÷ï ç ççï ÷ ÷÷ç ççê+ + + + + +÷ ÷÷í ç çç÷ ÷÷êï ç çç¶ ¶ ¶ ¶ ¶÷ ÷÷ï ç çç÷ ÷÷ç çê è øè ø è øï ëïî

 

( )
(0) (0)

(1) 23 3
1 33

( , , )1 2

ukkx O pk x xk k
x x

s
s p d e

üùæ öæ ö ï÷ ÷ ïç ç¶ ¶ ú÷ ÷ ïç ç ï÷ ÷ç ç ú+ + + =-÷ ÷ ç ç÷ ÷ú ïç ç÷¶ ¶ ÷ ïç ç÷ ÷çç úè øè ø ïû ï 

.                                         (25) 

 

In similar manner, we can write the expansions for physical components ( )u i  of the 

displacement vector at the ends of the cylinder 
 

(0)( , ,0, )1 2( )u x x ti     
(0)( , ,0, ) 21 2( )(1)( , ,0, ) 01 2 1( )

3

u x x ti
u x x t x Oi x

  
            
 

,

(0)( , , , )1 2( )u x x ti     
(0)( , , , ) 21 2( )(1)( , , , ) 01 2 1( )

3

u x x ti
u x x t x Oi x

  
           
 


 . ( ) , ,i r zq=   (26) 

 

We assume that the coefficient of qe in the expansion (26) for ( ) ;i r q= is equal to 

zero. Consequently, according this assumption, we obtain the end conditions for the first and 
subsequent approximations for the displacements ur  and uq . 

Taking the estimations ( )(0)3 3
3u xk k kd d+¶ ¶ » , ( )(0)1 1

1u xk k kd d+¶ ¶ » and the 

expansions (23)-(26) into account we obtain the following end conditions for the stresses for the 
zeroth and first approximations from the condition (22). 

For zeroth approximation: 
 

( ) ( )(0) (0), ,0 , ,33 1 2 33 1 2x x x x ps s= - .                                                                                        (27) 
 

For the first approximation 



9 
 

(1) (0)2( , ,0, ) ( , ,0, )(0) (0) 3 1 2 3 1 2( , ,0, ) ( , ,0, )31 1 2 1 2 13
3

u x x t u x x t
x x t x x t xk x x xk k

ps s p
æ ö÷ç¶ ¶ ÷ç ÷ç+ - +÷ç ÷ç ¶ ¶ ¶ ÷ç ÷çè ø

 

(0)( , ,0, )(1) 33 1 2( , ,0, ) 033 1 2 1
3

x x t
x x t x

x

s
s p
æ ö÷ç ¶ ÷ç ÷ç - =÷ç ÷ç ¶ ÷ç ÷çè ø

, 

(1) (0)2( , , , ) ( , , , )(0) (0) 3 1 2 3 1 2( , , , ) ( , , , )31 1 2 1 2 13
3

u x x t u x x t
x x t x x t xk x x xk k

ps s p
æ ö÷ç¶ ¶ ÷ç ÷ç+ + +÷ç ÷ç ¶ ¶ ¶ ÷ç ÷çè ø

 
   

(0)( , , , )(1) 33 1 2( , , , ) 033 1 2 1
3

x x t
x x t x

x

s
s p
æ ö÷ç ¶ ÷ç ÷ç + =÷ç ÷ç ¶ ÷ç ÷çè ø


 .                                                                         (28) 

 

Thus, rewriting the condition (26) in the cylindrical system of coordinates Or z we 
obtain the condition (17).  

According to (15), (16) and (17), the values related to the zroth approximation are 
determined as follows. 
 

(0) pzzs =- , (0) 0, ( )( ) for ij zzijs = ¹ ,                                                                                        (29) 
 

It follows from (29) that in the zeroth approximation the components of the 
displacement vector can be presented as follows 
 

(0) ( ) 0u a t r ar = + , (0)
0u bq = , (0) ( ) 0u c t z cz = + ,                                                         (30) 

 

where ,0 0a b and  0c are constants, ( )a t and ( )c t are functions, t is a time. The 

functions ( )a t and ( )c t can be easily determined from equations (19) and (29).  
 Now we consider the determination the values related the first approximation.  Taking 
the expression (29) into account the following field equations are obtained from Eq. (18)  for this 
approximation.  
 

 
(1)(1) (1)1 1 (1) (1)rrr rz

rrr r z r

   

 
    

  

(1)2(0) 02
uz

zz
z

 



, 

(1) (1) (1) (1)2
1 2 (1) (0) 02

ur z
zzrr r z r z

      

   
    

   
, 

(1)(1) (1) (1)21 1 (1) (0) 02
uz zz zrz

zzrzr r z r z

   


  
    

   
. 
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(1)
(1) ur
rr r
 




, 

(1) (1)
(1) u ur

r r
 


 


,

(1)
(1) uz
zz z

 



, 

(1) (1)(1)1(1)
2

u uur
r r r r

   

       
 

, 

(1) (1)1(1)
2

u uz
z z r

 

       
 

,  
(1)(1)1(1)

2

uuz r
zr r z


   
   

.                                                         (31) 

 

The following conditions on the lateral surface of the cylinder are obtained from (20) 

and (29). 

 

(1)( , , , ) 03R t trr   , (1)( , , , ) 03R t tr   ,  (1) (0)( , , , ) 2 cos cos ,3R t t zzzrz               (32) 

 

According to Eqs. (26) and (28), the end conditions fort he first approximation can be 

written as follows: 

(1)( , ,0, )(1) (0)( , ,0, ) 0
u r tzr tzz zz z

   
 


, (1)( , ,0, ) 0u r tr   , (1)( , ,0, ) 0u r t   

(1)( , , , )(1) (0)( , , , ) 0
u r tzr tzz zz z

   
 


 , (1)( , , , ) 0u r tr   , (1)( , , , ) 0u r t  .                         (33) 

 

Thus, the equation (31), (19), (5) and boundary conditions (32), (33) complete the 

formulation of the problem for determination the values of the first approximation. For solution to 

this problem we apply the Laplace transform 

  stt e dt
0

                                                                                                                            (34) 

with parameter  s 0 , to all equations and relations related to the first approximation. After this 

applying the equation (31), boundary conditions (32) (in which (0)
zz must be replaced with 

(0) szz ) and (33) are valid for the Laplace transforms of the corresponding  sought-for 

quantities, where as constitutive relations (19) are transformed to the following ones: 
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(1) (1) (1) (1) (1) (1) (1) (1); ;11 12 13 12 11 13A A A A A Azz zzrr rr rrs e e e s e e eqq qq qq
* * * * * *= + + = + +  

( )(1) (1) (1) (1) (1) (1); ;13 13 33 11 22A A A A Azz zzrr r rs e e e s eqq q q
* * * * *= + + = -  

(1) (1) (1) (1)2 ; 2 ,G Grz rz z zs e s eq q
* *= =                                                                                         (35) 

 

where 
 

   
 
 

 10

0 1

A sAA ijijij
s s s

G G sG
  

               
         

,                                                                         (36) 

 

As has been noted above, Eqs. (31)-(36) coincide with the corresponding equations of 
the TDLTS, therefore to solve the obtained equation systems, according to [6, 7] in the cylindrical 
system of coordinates we can use the following representations. 

 
21(1)ur r r z

 

 

 
  

 ,
21(1)u

r r z
  

 
   

  
, 

    21(1) (0)* * * *
13 11 1 2u A G A Gz zz

z
 

         
,  

2 21 1
1 2 2 2r rr r 

  
   

 
.          (37) 

 

The functions   and   are determined from the equations. 
 

2
2 01 1 2z

 
      

, 
2 2

2 2 01 2 1 32 2z z
  

              
,                                         (38) 

 

where 

*22
1 * *

11 12

G

A A
 


, 

  
1

(0) (0) 2* *
332 2

2,3 * *
11

A Gzz zz
c c

A G

 


   
   

 
 

, 

   2(0)* * * * *2 * *2 11 11 33 13A G c A A G A Gzz     .                                           (39) 

 
Taking the expressions of the right sides of the conditions (32) and (33) we find the 

solution to the equations (38)  as follows: 
 

( )sin( )sin1 1 1B I r z     , ( ) ( ) cos( )cos2 1 2 3 1 3B I r B I r z           ,                         (40) 
 

where ( )1I x is the first order Bessel function of a purely imaginary argument, 1B ,  2B

and 3B are unknown constants. Substituting these solutions into relations (37) and (35) we obtain 

the following expressions for Laplace transform of the south values.  
 

1(1) 2 ' 2 '( ) ( ) ( ) sin( )cos1 1 1 2 2 1 2 3 3 1 3u B I r B I r B I r zr r
                

, 

(1) ' ( ) ( ) ( ) sin( )sin1 1 1 1 2 1 2 3 1 3u B I r B I r B I r z
r r

          
      

, 
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(1) 2 2( ) ( ) sin( )cos2 1 2 3 1 3u B D I r B D I r zz            
,  

(0)* *
11

* *
13

A G zz
D

A G

 



, 

   1(1) * * * * '1( ) ( )1 11 12 1 1 11 12 1 12B A A I r A A I rrr rr

 
    

         
  

 

* 3 2 '' * ' * 32( ) ( ) ( ) ( )2 11 2 1 2 12 1 2 1 2 13 1 22B A I r A I r I r A D I r
rr

           
  

         

 * 3 ( ) sin cos13 1 3A D I r z    


 

 1 1(1) * * 2 2 '' '1( ) ( ) ( )1 11 12 1 1 1 1 1 1 122
B A A I r I r I rr rr

 
        

                
 

   * * * *( ) ( ) sin( )sin2 11 12 1 2 3 11 12 1 32 2B A A I r B A A I r z
r r

      
   

      
   

; 

 (1) * * 3 '( ) ( ) 11 1 1 2 2 1 2B G I r B G I r Drz r

           

 * 3 ' ( ) 1 cos( )cos2 2 1 2B G I r D z      ; 

2
(1) * 2 3 '' ' * 32( ) ( ) ( ) ( )2 13 2 1 2 1 2 1 2 33 1 22B A I r I r I r A D I rzz rr

            
                

 

 
2

* 2 3 '' ' * 33( ) ( ) ( ) ( ) sin cos3 13 3 1 3 1 3 1 3 33 1 32B A I r I r I r A D I r z
rr

             
             

.          (41) 

 

It follows from the expression (41) that the selected solution to the problem under 
consideration satisfies automatically the end condition (33). Replacing the unknowns 1B ,  2B

and 3B  with 2
1B   1C ,  3

2B  2C and 3
3B  3C , respectively, we obtain the 

following algebraic equation from the boundary condition (32) for determination these unknowns. 
 

     (1)( , , , ) 0 0,3 1 11 2 12 3 13R t t C a R C a R C a Rrr          

     (1)( , , , ) 0 0,3 1 21 2 22 3 23R t t C a R C a R C a Rr           

      1(1) (0)( , , , ) 0 2 ,3 1 21 2 22 3 23R t t C a R C a R C a R zzrz s
                                   (42) 

 
Thus, with the foregoing we determine completely the Laplace transforms of the values 

related the first approximation. The Laplace transform of the values of the second and subsequent 
approximations in (14) can also be determined as the values of the first approximation by taking 
the obvious changes into account. However, as shown in the works [5, 6], for stability loss 
problems, the consideration of only the zeroth and first approximation is sufficient, because 
accounting the second and subsequent approximation does not change the values of the critical 
parameters.  
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 The original of the south values is determined by employing Schapery [4] method, 

according to which, for instance, the original of the displacement (1)( , , , )3u r t tr   is determined 

through the expression 
 

 (1) (1)( , , , ) ( , , , )3 3 1 (2 )
u r t t su r t sr r

s t
 


                                                                         (43) 

 

Now we consider the selection of the stability loss criterion. In the present investigation, 
the case will be understood under stability loss, where 

 

 
 
 

0,3

0,

0,2

(1)max ( , , , )3
t

r R

u r t tr

 











 as .t tcr  (or as .p pcr for the pure elastic case).          (44) 

 

Thus, the values of the critical time or the values of the critical force are determined 
from the initial imperfection criterion (44). 
 
4. NUMERICAL RESULTS AND DISCUSSIONS 
 
We assume that the cylinder is made from viscoelastic unidirectional fibrous composite material 
and the fibers in that lie along the Oz axis. In the discussions below, the values related to the 
matrix and the fibers will be denoted by upper indices (1) and (2), respectively.  The material of 
the fibers is supposed to be pure elastic with Young’s modulus (2)E , Poisson coefficient (2) , 

Lame’s constants (2) , (2) , but the material of the matrix is supposed to be linearly 
viscoelastic with operators 
 

*(1) (1) *( ) ( )0 0 0E E t      
       

, 

(1)1 2*(1) (1) *0( ) ( )0 0 0(1)2 0

t


        

       
 

, 

(1)1 2 3*(1) (1) *0( ) ( )0 0 0(1) (1) (1)2 (1 ) 2(1 )0 0 0

t


          

         

,  

3 3*(1) (1) *( ) ( )0 0 0(1) (1) (1)2 (1 ) 2(1 )0 0 0

t          

 
        

,                         (45) 

 

where (1)
0E , (1)

0 are the instantaneous values of Young’s modulus and the Poisson 

coefficient, respectively, (1)
0 , (1)

0  are the instantaneous values of Lame’s constants,  , 0

and  are the rheological parameters of the matrix material, * is the fractional exponential 

operator of Rabotnov [8], and this operator is determined as 
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 * ( , )
0

t
x x t d       ,                                                                                        (46) 

 

where  
 

(1 )
( , )

((1 )(1 ))0

nnx t
x t t

nn

  


 

 
,   1 0   ,                                                         (47) 

 

where  ( )x is the Gamma function. 

We introduce the dimensionless rheological  parameter  0    and the 

dimensionless time 
 1 1

' 0t t



 

 
 

and assume that (2) (1) 0.30   , (2) 0.5  , where (2)

is a fiber concentration in the composite under consideration. 
It is known that, within the scope of the continuum approach this composite can be 

taken as homogeneous transversal isotropic one the isotropy axis of which coincide with the Oz
axis. According to [9], by replacing the mechanical constants of components of a composite with 
Laplace transform of corresponding operators in the expressions of the effective mechanical 
properties, we determine the Laplace transform of the effective operators. Therefore, in the 

Laplace transform of the constitutive relations (35) instead of *Aij  and *G we write these 

expressions. For the considered composite material the expressions for *Aij  and *G  are 

determined as follows: 
 

 2* * * *433 3 31 21A E K  , * * *213 31 21A K , * * *
11 12 12A K  , * * *

12 12 12A K   , 

(2) (2) (1) (2)(1 ) (1 )(1)*
(2) (2) (1) (2)(1 ) (1 )

G
   
   

  


  
,                                                                         (48) 

 
where 

   
1

(2)1 11 1(1) (1) (2) (2) (1) (2) (1)*
12 4(1) (1)3 3

3

K K K K
K


   




            
  
 

, 

(2) (2) (2) (1)* (1 )3E E E      

(2) (2) (2) (1) (1)4 (1 )( )
(2) (1) (2) (2) (2) (1) (1) (1)1 1(1 ) ( 3) ( 3)K K

    

     

 
    

 , 

(2) (2) (2) (1)* (1 )31         

(2) (2) (2) (1) (1) (1) (1) (1) (2) (2)1 14 (1 )( ) ( 3) ( 3)

(2) (1) (2) (2) (2) (1) (1) (1)1 1(1 ) ( 3) ( 3)

K K

K K

       

     

        
    

 , 
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1(1) (1) (1)7 3(1) (2)* 112 (2) (1) (1) (1)8 3

K

K

   
  

       
     

.                                                         (49) 

 

Here the following notation is used:  
 

(1)
(1)

(1)3(1 2 )

E
K

n
=

-
,  

(2)
(2)

(2)3(1 2 )

E
K

n
=

-
, 

*(1) (1) 1 ( )0E E  
     

,    
(1)1 2*(1) (1) 010 (1)2 0


   



    
 
 

, 

(1)1 2 3*(1) (1) 01 ( )0 (1) (1) (1)2 (1 ) 2(1 )0 0 0


     

     
   

, 

3 3*(1) (1) 1 ( )0 (1) (1) (1)2 (1 ) 2(1 )0 0 0

     

 
    
   

,          1
1x

s x
   

.          (50) 

 

Thus, within the framework of he foregoing preparation we consider numerical results 
and first examine the pure elastic stability loss under  ' 0t  and 't   . Note that the problem 
under consideration is the 3D generalization of the stability loss of the simply-supported Bernoulli 

beam. Therefore, we can compare the values of the critical forces (1)' .0 .0 0p p Ecr cr and 

(1)' . . 0p p Ecr cr  which are attained at ' 0t  and  't   , respectively, with those calculated 

according to the Euler expression for critical force: 
 

2
30

. .0 2

E J
PEu cr





,   

2
3

. . 2

E J
PEu cr

  
,                                                                         (51) 

 

where  
 

4

4

R
J


 , *

30 3E E
s




,   *
3 3 0

E E
s

 
.                                                                         (52) 

 

For this purpose we rewrite the expression (51) as follows [10]. 
 

   
2

(1) 2 30' . .0 . .0 0 (1)
0

E R
p P E REu cr Eu cr

E

     
 

, 

   
2

(1) 2 3' . . . . 0 (1)
0

E R
p P E REu cr Eu cr

E

        
.                                                         (53) 

 

Introduce the parameter R    and consider the cases where 0.1  and 0.2  . 

Table 1 shows the values of ' .0p cr  (upper number), ' . .0p Eu cr (lower number), ' .p cr  (upper 
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number), and ' . .p Eu cr  (lower number)under 0.5  . These values are obtained for various 

(2) (1)
0E E under 0.5  , 0.1  and 0.2  .  

 
Table 1. 

 

(2)

(1)
0

E

E
 

                   0.1                   0.2   

.0

. .0

'

'
cr

Eu cr

p

p
 .

. .

'

'
cr

Eu cr

p

p




 .0

. .0

'

'
cr

Eu cr

p

p
 .

. .

'

'
cr

Eu cr

p

p




 

1 0.00247

0.00250




 
0.00164

0.00166




 
0.00963

0.01000




 
0.00638

0.00666




 

5 0.00740

0.00750




 
0.00649

0.00708




 
0.02849

0.03000




 
0.02419

0.02530




 

10 0.01348

0.01375




 
0.01236

0.01332




 
0.05105

0.05500




 
0.04390

0.05330




 

20 0.02543

0.02625




 
0.02348

0.02582




 
0.09317

0.10500




 
0.07663

0.10330




 

50 0.05959

0.06375




 
0.05262

0.06333




 
0.19972

0.25500




 
0.14176

0.25330




 

 
Table 2. 

 

(2)

(1)
0

E

E
 

                   0.1                   0.2   

(1)
0

p

E
 .'crt  

(1)
0

p

E
 .'crt  

1 -0.00206 0.22950 -0.00801 0.23020 
5 -0.00695 0.26510 -0.02634 0.37420 
10 -0.01292 0.40560 -0.04748 0.67850 
20 -0.02446 0.75670 -0.08490 1.01580 
50 -0.05611 1.28540 -0.17074 0.94840 

 
It follows from the Table 1 that the difference between the results obtained within the 

3D and within the Bernoulli beam theory approaches increases with (2) (1)
0E E  and with  . 

This difference has a significance meaning under investigation of the stability loss of the 
viscoelastic cylinder. Because, for the occurrence of the viscoelastic stability loss the values of 
the external compressive force must satisfy the inequality 

 

. .0p p pcr cr  .                                                                                                        (54) 
 

So that, for some selected p  the stability loss of the viscoelastic cylinder which occurs 
within the 3D approach may be does not occur within the Bernoulli beam theory approach. For 
illustration this conclusion we consider some numerical results regarding ' .t cr given in Table 2. 

Note that these results are obtained within the 3D approach developed in the present paper. 
According to the relation (54) and according to the results given in Table 1, under 0.17074p  
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selected in the case 0.2  , (2) (1) 500E E  , 0.5  , 0.5    (see Table 2), the stability loss 

of the cylinder-beam can not occur within the Bernoulli beam theory approaches.  
 

Table 3. 
 

  

2 (1)
010 /p E  

0.637 0.650 0.660 0.670 0.680 0.690 0.700 0.710 

3 . .D crt  

-0.3 10.59  3.341  1.726  0.967  0.561  0.328  0.187  0.100  

-0.5 35.92  7.143  2.835  1.258  0.588  0.277  0.126  0.052  

-0.7 620.9  42.05  9.015  2.331 0.655  0.187  0.050  0.011  
 

Consequently, under investigation of the stability loss problems of the cylinder from 
viscoelastic composite materials in many cases it is necessary to employ the 3D approach 
described in the present paper.  

Table 3 shows the values of .crt¢ obtained for various values of (1)
0/p E and b  under 

0.1r= ,  0.5w=  and (2) (1)
0 5E E = . It follows from the results given in Table 3 that before the 

certain value of (1)
0/p E (denoted by  ( )(1)

0 *
/p E ) an increase in the absolute values of the 

rheological  parameter b  causes to increase of the critical time, but under  (1)
0/p E > ( )(1)

0 *
/p E  

an increase in the absolute values of the rheological  parameter b  causes to decrease of the 

critical time. Note that such character of the influence of the rheological  parameter b  on the 
values of the critical time was also observed in the resent investigations [11, 12]. 

Compare the values of .crt  with the corresponding ones calculated by employing the 

critical deformation method [13]. According to this method, it is assumed that the critical 
deformation of the viscoelastic cylinder is equal to the critical deformation of the corresponding 
elastic cylinder. Consequently, using this assumption the critical deformation for the pure elastic 
cylinder is determined within the scope of the TDLTS. Note that in the considered case the 
critical deformation mentioned corresponds to ' .0p cr . According to this determination, using the 

relation  *
3' /.0p p Ecr   the critical time is determined for the selected values of p . The values 

of the dimensionless critical time (denoted by . .cdm crt ) determined by employing the critical 

deformation method are given in Table 4. These values are calculated for the case where 0.1  , 
(2) (1)

0 5E E   and 0.5  . At the same time, in this table the corresponding values of .crt are 

also illustrated. Comparison of the values of . .cdm crt with the corresponding values of .crt  shows 

that the critical deformation method is not acceptable for determination of the critical time for the 
stability loss of the cylinder made from viscoelastic composite material. 
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Table 4. 
 

  

2 (1)
010 /p E  

0.660 0.670 0.680 0.690 0.700 0.710 0.720 

. .cdm crt / .crt  

-0.3 
52.77

1.726
 

52.77

0.967
 

1.179

0.561
 

0.532

0.328
 

0.262

0.187
 

0.127

0.100
 

0.055

0.046
 

-0.5 
340.2

2.835
 

7.577

1.259
 

1.662

0.588
 

0.545

0.277
 

0.202

0.126
 

0.074

0.052
 

0.023

0.018
 

-0.7 
26326

9.015
 

46.40

2.331
 

3.701

0.655
 

0.578

0.187
 

0.110

0.050
 

0.020

0.011
 

0.0029

0.0019
 

 
5. CONCLUSIONS 
 
Thus, in the present paper the 3D approach proposed in the works [1-3, 5, 6] is employed and 
developed for the study of the 3D stability loss of the cylinder with circular cross section made 
from viscoelastic transversally isotropic material. The problem considered can be taken as 3D 
generalization of the classical stability loss problem for simply supported Bernoulli beam.  

The numerical results on the critical forces and on the critical time are presented and 
discussed. 

According to these results, in particular, it is established that for the study of the 
stability loss of cylinder made from strongly anisotropic viscoelastic materials it is necessary to 
use 3D approach proposed in the works [1-3, 5, 6].  
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