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Osteoarthritis (OA) is the most common progressive condition affecting joints. It
mainly affects the knees and hips as predominant weight-bearing joints. Knee
osteoarthritis (KOA) accounts for a large proportion of osteoarthritis and presents
numerous symptoms that impair quality of life, such as stiffness, pain, dysfunction,
and even deformity. For more than two decades, intra-articular (IA) treatment
options for managing knee osteoarthritis have included analgesics, hyaluronic
acid (HA), corticosteroids, and some unproven alternative therapies. Before
effective disease-modifying treatments for knee osteoarthritis, treatments are
primarily symptomatic, mainly including intra-articular corticosteroids and
hyaluronic acid, so these agents represent the most frequently used class of
drugs for managing knee osteoarthritis. But research suggests other factors, such
as the placebo effect, have an essential role in the effectiveness of these drugs.
Several novel intra-articular therapies are currently in the clinical trial processes,
such as biological therapies, gene and cell therapies. Besides, it has been shown
that the development of novel drug nanocarriers and delivery systems could
improve the effectiveness of therapeutic agents in osteoarthritis. This review
discusses the various treatment methods and delivery systems for knee
osteoarthritis and the new agents that have been introduced or are in
development.
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1 Introduction

Osteoarthritis (OA) is the most common joint disease. It can affect any joint, but mainly
affects the hips, knees, hands, and feet in the body. OA is an inflammatory joint disease
recognized by pathological features in bone, cartilage, muscle, synovium, periarticular fat,
and ligaments, causing stiffness, joint dysfunction, loss of valued activities, functional
limitations, and pain. Osteoarthritis is a very complex pathophysiological process and a
multifactorial disorder, thus creating limited treatment options for OA. Age, sex hormone
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level, obesity, major joint injury, and genetics are important risk
factors for OA. Patients with OA commonly suffer from
comorbidities, and are more disabled. Lack of or constrained
physical activity is responsible for higher age-related mortality
rates (Katz et al., 2021). Osteoarthritic chondrocytes are deranged
and degenerated, as evidenced by an uncoordinated gene expression
pattern and ultrastructural changes. In addition, in OA progression,
the whole joint is involved OA, commonly known as wear and tear
disease, is the consequence of complex interactions between many
elements such as genetic, metabolic, biomechanical, and
biochemical factors (Liu-Bryan, 2013). To date, geneticists have
identified 124 single nucleotide polymorphisms (SNPs) correlated
with OA. These SNPs comprise 95 independent loci spread
throughout the genome, with some loci (such as in the collagen
type XI Alpha 1) containing multiple SNPs showing separate
associations at the locus. Generally, OA is a common polygenic
disease that occurs because of the inheritance of several risk alleles of
moderate individual impact. Certainly, multiple disease-modifying
OA drugs (DMOADs) are in clinical trials at present; for instance,
Wnt inhibitors and intra-articular FGF-18 and TGF-β growth factor
therapies, target proteins whose genes have been identified by
genome-wide association studies (GWAS). Intra-articular (IA)
drug delivery provides direct access to the joint and can relieve
inflammatory symptoms. The prospect of Intra-articular (IA) drug
delivery is exciting and has a number of advantages over systemic
administration. As a disadvantage, the quick clearance of drugs from
the joint is considered a severe obstacle to their therapeutic efficacy
(Jones et al., 2019). Many researchers are developing drug delivery
systems (DDS) or formulations with a slower release effect to
increase drug retention capacity and reduce side effects. The
present review article attempted to accumulate novel information
in intra-articular drug delivery, gene and cell therapies,
nanotechnology-based application in OA therapy especially drug
delivery systems (DDS) for effective OA treatment, and finally the
IA therapy pipeline. In this part of the review, we explain intra-
articular drug delivery and cell therapies before describing DDS. We
optimism that the ideas created in this review will support the
improvement of effective OA treatment in the future.

2 Intra-articular drug delivery

It offers many pluses since Intra-articular (IA) drug delivery
provides direct access to the joint, hence strengthening the local
bioavailability of therapeutic drugs while decreasing potential
adverse events, systemic exposure, and total expenses. However,
IA injections are usually recognized as safe; the rapid clearance of
drugs limits their therapeutic effect (March et al., 2014). In addition,
factors such as systemic effects (Habib, 2009), administration
technique (Jackson et al., 2002), and drug residence time
contribute to treatment variability (Gerwin et al., 2006).
Hyaluronic acid (HA) and corticosteroids are the most general
agents administered by IA injection for joint lubrication and the
management of pain (Ma et al., 2022). The effectiveness of IA
therapies, such as HA and corticosteroids, is limited by their fast
clearance. Therefore, we need safe formulations which provide
extended and sustained drug availability. For this purpose, many
synthetic and natural (bio) materials have been utilized to

accomplish desirable qualities such as enhanced articular
retention time with the steady and slow release of drugs, and
drug delivery vehicles’ biodegradation (Rai and Pham, 2018).

2.1 The placebo effects

As a clinical event, the placebo effect explains how a sham
medical intervention could improve a patient’s condition due to
factors related to the patient’s perception of the medical
intervention. There are many examples of placebo interventions,
such as saline injections, sugar pills, and therapeutic rituals. The
placebo effects are not only limited to inert interventions. Standard
effective treatments can also create a placebo effect. Generally, the
placebo effect is considered a confounding variable to control.
However, there has been much interest in studying this
phenomenon due to some significant research showing its
potential to modulate treatment results in recent years
(Munnangi et al., 2018). A systematic review investigated the
placebo effect in knee osteoarthritis (KOA), which confirmed that
the measured placebo effect was remarkably better than no
treatment. Adapting significant clinical effects of therapies such
as HA IA in real-world settings and normal clinical practice with
measurable placebo effects on symptom reduction in clinical trials
needs a rigorousmethod to better realize the placebo effect and other
associated factors. For instance, since interventions of KOA may be
performed using several approaches, such as IA injection, oral or
topical, studies have been conducted to quantify alternative
placebos’ effects, which showed that IA placebo shows more
significant pain reduction compared with oral placebo. It is
worth recalling that novel intra-articular injections may not be
suitable for every patient (Fazeli et al., 2022).

2.2 Standard IA treatments

Corticosteroids and hyaluronic acid (HA) are the most common
agents used through IA therapy. Albeit not definitively described as
the standard of care, these two agents are used as standard treatment
options for managing pain in KOA patients who are unresponsive to
analgesics, non-pharmacologic therapy, and non-steroidal anti-
inflammatory drugs (NSAIDs). IA injection of the knee might be
a good option for patients who cannot tolerate oral medications
when medicines are no longer effective and for patients avoiding or
delaying surgery (Rastogi et al., 2016).

2.2.1 Corticosteroids as pain relievers
IA corticosteroid injections of the knee are useful for short-to

medium-term therapy of joint pain. Corticosteroids have both
immunosuppressive and anti-inflammatory effects.
Corticosteroids directly affect steroid hormone receptors and
disrupt the immune response and the inflammation process at
some levels (Bodick et al., 2015; Frederick et al., 2021). In that
way, corticosteroids diminish the permeability of blood vessels and
can prevent inflammatory cells accumulation, neutrophil superoxide
production, metalloprotease, and their activators, as well as inhibit
the production of multiple inflammatory mediators like leukotrienes
and prostaglandin. The clinical anti-inflammatory effects of these

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Amirsaadat et al. 10.3389/fbioe.2023.1128856

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1128856


actions reduce erythema, heat, swelling ng, and joints’ tenderness,
and increase relative viscosity and HA concentration (Ayhan et al.,
2014). There are many corticosteroids, such as dexamethasone LA,
triamcinolone acetonide, methylprednisolone acetate, and
betamethasone. The most frequently consumed corticosteroids
include triamcinolone acetonide (TA) and methylprednisolone
acetate (MA). Their usual dosage is 40 mg (Law et al., 2015).

2.2.2 Hyaluronic acid
Hyaluronic acid (HA), officially identified as hyaluronate or

hyaluronan, is an unsulfated glycosaminoglycan with high-
molecular weight formed from the repetitive accumulation of
molecular chains of N-acetyl-glucosamine and glucuronic acid. It
is responsible for shock absorbency and joint lubrication during
movements, enhancing synovial fluid viscosity. HA, which functions
as a backbone for the proteoglycans of the extracellular matrix
(ECM), creates a hydrated pathway by which the cells can move and
migrate (Brockmeier and Shaffer, 2006). Studies have indicated that
HA elevates chondrocyte proliferation and differentiation, which
has aroused attention to its application in tissue-engineering
techniques (Yagishita et al., 2005). HA contributes to the
inhibition of enzymatic cartilage degradation (Bowden et al.,
2017). In the arthritic joint, molecular weight and concentration
of HA are reduced by 33%–50%, which restricts the effectiveness of
HA to maintain joint biomechanics at normal levels. Visco-
supplementation could provoke HA endogenous production and

replace the lost HA (Strauss et al., 2009). Also, some clinical studies
have displayed that IA-HA hampers pain and recovers joint
function in OA patients. HA treatment has positive effects and is
well tolerated (Park et al., 2021; In and Ha, 2022). Several studies
focusing on the knee joint have revealed that repetitive treatment of
the patients by IA-HA therapy, as a safe method, can delay total joint
replacement surgery by up to 3 years (De Lucia et al., 2020).

2.3 IA delivery of bioagents targeting
inflammatory mechanisms

Recently some evidence has shown that the progression of OA is
related to an imbalance of anabolic and catabolic factors (Figure 1).
These findings have created hope that biological agents may be utilized
in OA therapy. Some clinical studies using IA biological agents have
been discussed in the following subsections (Chevalier et al., 2013).

2.3.1 Targeting TNF
As a potent pro-inflammatory cytokine, together with other

cytokines, TNF acts as a catabolic factor for cartilage (Aletaha et al.,
2011). It cooperates with chondrocytes, showing a relationship with
knee cartilage loss (Stannus et al., 2010). TNF provokes MMPs
release by synovial fibroblasts leading to cartilage destruction and
diminishing chondrogenesis by the NF-kB pathway via
downregulating the SOX9 production. Another particular
function of TNF is to induce the apoptosis signal in
chondrocytes. Also, TNF-alpha has been also shown to hinder
mesenchymal stem cell differentiation into chondroblasts, which
in turn affects chondrogenesis (Chisari et al., 2020). The joint
inflammation caused by TNF-alpha activity has been investigated
in patients with OA and rheumatoid arthritis (RA), illustrating it as a
promising target to be considered in RA treatment. Currently, anti-
TNF-alpha-targeted therapy is used as a treatment option for OA
patients, which has shown satisfactory results in reducing
inflammation. Several agents that target TNF-alpha, namely
trastuzumab, etanercept, infliximab, and adalimumab, have been
developed to treat OA. However, the mechanisms by which TNF-
alpha regulates the inflammation in synovial fibroblasts from
patients with OA, need to be further clarified (Li et al., 2018).

2.3.2 Targeting IL-1β
IL-1β pro-inflammatory cytokine is also involved in the

pathogenesis of OA. This cytokine, which seems to be related to
cartilage destruction, is synthesized by mononuclear cells,
chondrocytes, synovial tissues, and osteoblasts, induces the
production of some catabolic and inflammatory factors. In OA
patients, the level of IL-1β is upregulated in the synovial membrane,
synovial fluid, subchondral bone, and cartilage. IL-1β could act in
cooperation with other cytokines or independently to instigate and
propagate inflammation (Thomas et al., 1991). Some studies have
investigated the significance of targeting IL-1 signaling utilizing IL-1
Receptor Antagonist (Anakinra) or targeted gene therapy. The
obtained results showed the significant protective effect of
treatment in surgical models of rapidly progressive OA (RPOA)
early after surgery. A similar result was observed in rats treated by
anakinra following anterior cruciate ligament transection (ACLT)
(Vincent, 2019).

FIGURE 1
The secretion of cytokines in OA disease. This joint disorder
consist of the secretion of cytokines by the cartilage, bone, and
synovial membrane. IL-1β, IL-6, and TNF cytokines are produced by
macrophages, T cells, chondrocytes, and osteophytes in
response to damaged tissue. The released Pro-MMPs bymacrophages
and synoviocytes, undergo cleavage and turn into functional MMPs
contributing to tissue injury. TNF, IL-6, and IL-1β enter the
bloodstream, making OA as a systemic disorder. B and T cells in the
synovial fluid are engaged by the cytokine milieu and contribute to
local synovitis. Furthermore, some cytokines, primarily RANKL and IL-
6, are released by bone cells (Chevalier et al., 2013).
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2.4 Growth factor therapy: Targeting
cartilage metabolism

Growth factors are small peptide molecules that can provoke cell
growth, differentiation and, division processes. Multiple growth
factors in articular cartilage, act together to control homeostasis
and articular cartilage development during life. So, growth factors
are also considered new therapeutic targets for enhanced cartilage
repair in articular cartilage defects or conditions with extensive
cartilage loss like OA (Fortier et al., 2011). Various growth factors
are involved in bone repair, but two essential families can be
categorized as follows: bone-derived growth factors (BMPs
family) and autologous blood-derived growth factors which are
generally applied for the regeneration of bone, and another
family (Civinini et al., 2013).

2.5 Cell therapies

Lack of study comparability, internal limitations, and
methodological make it difficult to critically evaluate the efficacy
of cell therapies. However, given their widespread clinical use, a
basic understanding of cell therapy is essential. In the sections below,
an overview will be provided concerning the most common cell
therapies used and/or studied for the treatment of KOA.

2.5.1 Platelet-rich plasma
Platelet-rich plasma (PRP) is described as a portion of the liquid

section of autologous blood with a higher concentration of platelet
than the baseline. RP treatments have been applied for different
indications for more than three decades, resulting in significant
attraction in the PRP potential in regenerative medicine (Everts
et al., 2020). Several companies have presented PRP preparation
systems that allow outpatient and intraoperative use of PRP for
orthopedic pathologies (Hall et al., 2009). PRP comprises a diverse
and complex milieu of chemical mediators interacting with
endogenous cells in the joint. Although IA injections of PRP can
be recommended for patients with OA, however, this is not an FDA-
approved approach (Dhillon et al., 2012; Beitzel et al., 2015).

2.5.2 Bone marrow aspirate concentrate (BMAC)
Mesenchymal stem cells (MSCs), as multipotent cells, have the

ability to differentiate into multiple cell types depending on
environmental factors, so they can participate in bone and soft
tissue healing (Amirazad et al., 2022). The main site for the storage
of MSCs is bone marrow. The use of MSCs in soft tissue and bone
healing has displayed favorable results; one of the few intraoperative
concentrated stem cell transfer methods approved by the FDA
(Glenn et al., 2021). Bone marrow aspirate concentrate (BMAC)
is a cell therapy approach used in KOA therapy. The benefit of this
method is its composition of various cell types, such as MSCs,
monocytes, and platelets (Kouroupis et al., 2020).

BMAC is prepared from bonemarrow aspirate, usually aspirated
from the ilium crest, by means of density gradient centrifugation
(DGC). BMAC is demonstrated to contain high levels of MSCs,
platelets, hematopoietic stem cells (HSCs), cytokines, and
chemokines, including TGF-β and PDGF (Themistocleous et al.,
2018). Clinically, MSCs and BMAC hold a therapeutic promise in

several orthopedic conditions, such as KOA and spinal OA.
Nevertheless, the quality of clinical implications remains poor
(El-Kadiry et al., 2022).

2.5.3 Stromal vascular fraction (SVF)
SVF is a collection of variable cell populations obtained

through liposuction derived by enzymatic digestion of
lipoaspirate. It includes endothelial progenitors, hematopoietic
cells, endothelial cells, ASCs, pericytes, adipose progenitors,
macrophages, immune cells, fibroblasts, leukocyte subtypes,
smooth muscle cells, lymphatic cells, and other
uncharacterized cells (Figure 2) (Ude et al., 2021). Studies
have shown that about 2% of isolated SVF cells expressed
hematopoietic associated CD45+ and CD34+ and 7% expressed
mesenchymal CD146+ and CD105+. The expression pattern of
markers for SVF-derived cells is similar to bone marrow-derived
mesenchymal stromal cells (BM-MSCs), such as CD105/SH2,
CD29, CD90, CD71, SH3, and CD44, along with downregulation
of CD45, CD31, and CD24 (Han et al., 2015). The ASCs in SVF
are between <1 and >15%; nevertheless, they could be
significantly varied in alignment with the patient’s health, age,
and the method used for harvesting (Shimozono et al., 2019).
Unlike the treatment by ADSCs, which requires in vitro
expansion, there is no need for such a thing through
treatment by SVF (Ashammakhi et al., 2019). Other benefits
of SVF are heterogeneous cell composition, which contribute to
better outcomes (Pak et al., 2018). Moreover, the presence of
pericytes in the SVF, by differentiating to active MSCs in
response to inflammation and injury, plays a critical role in
regeneration (Michalek et al., 2017). In recent years, some
studies have showed the short and mid-term results of SVF
for KOA, displaying their joint function improvement and
analgesic effect (Hong et al., 2019; Tran et al., 2019; Garza
et al., 2020). Zhang et al. (2022) conducted a medium-term
study on SVF treatment in KOA patients. The results showed
that up to 5 years after SVF treatment, almost 60% of patients had
an acceptable clinical status (Aubourg et al., 2021; Xiao et al.,
2022).

2.6 Adipose tissue injections

In recent years, the attention to using adipose tissue to treat
orthopedic disorders has been raised. Adipose-derived stromal/stem
cells (ASCs), a group of MSCs, are obtained from adipose tissue
located in the perivascular blood vessels and capillaries within
adipose tissue. Studies have shown that compared to BMAC,
ASCs are outnumbered per unit volume, less sensitive to
senescence secondary caused by culture expansion, and more
rapidly proliferate in culture (Malanga and Ibrahim, 2017;
Dadashpour et al., 2018). Previously, ASCs were separated
utilizing digestive enzymes from the suspensions of the stromal
vascular fraction. This method was challenging, not only because of
the complex harvesting techniques but also because of regulatory
concerns about cell manipulation and expansion. Therefore, the
FDA updated the guidelines for using all stem cell therapies on
16 November 2017 (Malanga and Bemanian, 2019). Some research
has illustrated the benefits of ASCs in improving knee joint function
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and pain. Bistolfi and colleagues examined the safety and efficacy of
autologous concentrated adipose tissue as a treatment method for
patients with KOA. In this study, the knees of 20 OA patients were
IA injected with autologous ASCs. Patients’ articular pain and
functionality were evaluated by VAS (visual analog scale) and
WOMAC (Western Ontario and McMaster Universities
Osteoarthritis Index) scores at 3, 6, and 18 months from the
infusion. The result of treatment was safe, and all patients

reported improved pain relief and increased function (Roato
et al., 2019).

2.6.1 Mechanisms involved in the therapeutic
properties of MSCs

Since the initial discovery of MSCs in 1960, they have been the
subject of scientific research. MSCs are described as cells that have
the capacity to differentiate into multiple lineages of mesoderm,

FIGURE 2
(A)Different cells that form SVF and MAT-SVF (micronized adipose tissue-stromal vascular fractions). (B) Cells, associated markers and frequency of
occurrence of SVF and MAT-SVF (Ude et al., 2021).

FIGURE 3
Themechanisms of action in therapeutic procedures based onMSCs. MSCs heal and/or rescue injured cells via differentiation into replacement cells
andmodifying immune responses. The ability ofMSCs to function as immunomodulators is exerted by cell-cell contact and interactionwith immune cells
(Fan et al., 2020).
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such as osteoblasts, chondrocytes, adipocytes, and hematopoietic
stroma. These cell types have been considered in cell therapy due to
their immunomodulatory potential, a tendency to damage/inflam
tissues, and relatively easy isolation and expansion. There are many
sources for MSCs in the body, including adipose tissue, bone
marrow, placenta, umbilical cord, cord blood, dental pulp,
amniotic fluid, endometrium, lung tissue, skeletal muscle tissue,
dermal tissue, liver tissue, and many of them have been utilized in
clinical studies (Spees et al., 2016).

Two main aspects show the capacity of MSCs as therapeutic
options: replacement of damaged tissue and immunomodulatory
function. The pleiotropic effect is the main mechanism underlying
MSC therapy and allots the release of different soluble factors that
exhibit immunomodulatory, antioxidant, angiogenic, and anti-
apoptotic effects (Figure 3). The immunomodulatory and
regenerative effects of MSCs are modulated through cell-cell
interactions mediated by tunneling nanotubes to targeted cells.
Furthermore, an anti-inflammatory effect was observed by
releasing exosomes containing several microRNAs (miRNAs) that
increase the cellular proliferation during the regeneration of bone
tissue (Merimi et al., 2021; Sahabi et al., 2022).

2.7 Gene therapy and gene delivery system

Gene therapy, by providing therapies for underlying factors rather
than disease symptoms, illustrates the great potential in modern
medicine. Gene delivery is an important part of gene therapy.
However, delivering a therapeutic gene to target cells via crossing
the plasma membrane remains a major limitation in gene delivery.
Hence, for safe and highly efficient delivery of nucleic acid to the target
site, it is a prerequisite to study the vector/carrier that is necessary to
transport the nucleic acid across the negatively charged and
hydrophobic cell membrane. An optimized carrier/vector that
effectively compresses and provides stability until the nucleic acid is
transported to the target site in the cells and transfers the nucleic acid in
the nucleus via crossing the cell membrane should be considered extra-
cellular barriers (such as mechanisms of DNA degradation), and
intracellular barriers (such as nuclear and intracellular uptake,
endosomal escape, DNA release) present in the cell system. Gene-
based systems primarily use adenoviruses, lentiviruses, and retroviruses,
that are unable to replicate (change to replication-deficient), and they
are only able to nucleic acid delivery and expression. Constant
expression of therapeutic genes is the main advantage of these
systems, but they have some limitations, such as toxicity, lack of
optimization, and immunogenicity. Non-viral gene delivery systems
are classified as chemical methods (using natural or synthetic carriers)
and physical methods (such as ultrasound, microinjection, and
hydrodynamic applications). Liposomes, polymers, inorganic
materials, and dendrimers are applied for the non-viral gene delivery
system. This system has some advantages, such as easy modification,
cell/tissue targeting, and low immune response. However, the main
challenge is increasing gene transfection efficiency into cells. Exosomes
are important intracellular messengers, so they can be utilized as
delivery vehicles for transferring drug and genetic material. Synovial
mesenchymal stem cell-derived exosomes can induce chondrocyte
proliferation. As sleep is beneficial for cartilage restoration, and also,
circular RNAs (circRNAs) have been indicated to be involved in theOA

pathogenesis, Sleep-Related circRNA (SR-circRNA) cartilage repair was
the first time screened employing melatonin therapy and small
extracellular vesicles (sEVs) transferring SR-circRNA (circRNA3503)
were constructed. A triblock copolymer gel was utilized as a carrier for
sEVs. In vitro studies have illustrated that this system has the ability to
promote chondrocyte regeneration and decrease the progressive loss of
articular cartilage, and it is an effective therapy for preventing OA
progression. Lipid-based nanocarriers can deliver RNA or DNA into
cells. Sometimes these particles are trapped via the endocytosis process,
and the release of nucleic acids is limited. To solve this challenge,
another nanocarrier (HA-coated p5RHH) called cytolytic peptide was
proposed, which was improved to decrease its pore-forming capability
and maintain its capability to cross a bilayer membrane. The improved
peptide can form a self-assembled nanostructure, and then stabilization
via HA, the siRNA can be rapidly transported to the cytoplasm and
suppress the expression of specific genes in vitro and in vivo. Delivery of
this nanocomposite to human cartilage explants suppresses β-Catenin/
WNT3a signaling, leading to decreased chondrocyte apoptosis.
Moreover, the relationship between genetics and epigenetics of OA
can open up the option as a therapeutic approach. A number of OA risk
loci colocalize with genes that encoding histone deacetylase (HDAC)
inhibitors and histonemodifying proteins indicate effect as inhibitors of
catabolic molecules expression, such as IL-1 and matrix
metalloproteinases (MMPs), in the mouse OA models and OA
chondrocyte. Also, CRISPR-Cas9, as a promising tool, can modify
DNA methylation (DNAm). In the functional study, a dCas9-TET1
construct was utilized for the demethylation of the hypermethylated
mQTL in the RWDD promoter. The resulting increase in RWDD2B
expression reversed the effect of OA genetic risk in this locus. Although
this study was performed in an immortalized cell line, it highlights the
possibility of applying epigenome editing to counteract the gene
expression impacts of a risk source. The initiation of CRISPR-Cas9
and the following progress of the Cas9 toolbox has revolutionized
targeted editing of the genome and epigenome. Besides CRISPR dCas9-
DNMT3a/TET1 as a novel tool was utilized in OA genetic studies
(Aubourg et al., 2021; Grigsby et al., 2021; Xiao et al., 2022).

3Nanotechnology-based application in
OA therapy

As an indispensable tool in medicine and research,
Nanotechnology by using various fields of study, including
biology, chemistry, physics and electronics, plays an important
role in the development of new approaches by focus on the
manipulation of particles (molecules, atoms and macromolecules)
with size of 1–100 nm (Nejati-Koshki et al., 2017; Jeevanandam
et al., 2018; Hu et al., 2020). These types of particles, which are called
nanoparticles, because of their particularity in the scale structure,
possess some distinctive features, such as size and quantum effects as
well as interfacial phenomena. The diversity of these properties
related to the size makes nanoparticles favorable in new functions,
and their manipulation and control may lead to the appearance of
novel biological, physical and chemical characteristics. Besides, due
to perfect scale for catalysis, high ratio of surface to volume, and
availability of nanoscale structures in the body, nanotechnology has
become a more important tool in science (Jin, 2020). To fabricate
nanoparticles by nanotechnology, two common strategies are used,
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including top-down and bottom-up approaches. The first approach
includes the nanofabrication tools that help to produce
nanoparticles by the reduction of macro-sized structures. The
latter approach involves chemical and physical processes that are
used to integrate atomic or molecular constituents into larger
particles in nanoscales (Baig et al., 2021).

Nanotechnology is widely used in various industries and
medicine, even in clinical applications, such as Doxil and
Ferumoxytol, which are effective in the treatment of ovarian
cancer and iron deficiency anemia, respectively (Fathi Karkan
et al., 2017; Farjadian et al., 2019). However, despite the
incredible advancements in the usage of nanotechnology, it has
not found its way into clinical application for OA treatment. By the
way, recent studies have evidenced the significance of
nanotechnology in the treatment of OA by developing drug
delivery approaches. These systems have been shown to improve
the specific targeting and increase the efficiency of drug delivery and
therapeutic effects, reduce the side effects, extend the drug retention
and circulation time, and inhibit the dispersion and degradation of
drugs in body fluids (Corciulo et al., 2020; Guo et al., 2022).
Subsequently, recently various delivery systems based on
nanotechnology have been developed for OA therapy.

3.1 Improving joint drug delivery by
nanotechnology

Direct IA injections of therapeutic agents are generally
employed to overwhelm the low rate of joint bioavailability seen
in systemic administration but the rapid clearance of drugs limits
their therapeutic effect and has been detected in various substances
from small-molecule drugs to macromolecules, and among animal

species (Larsen et al., 2008; Evans et al., 2014). Many researchers are
developing drug delivery systems (DDS) or formulations with a
slower release effect to increase drug retention capacity and reduce
side effects. The frequently used DDS for IA injection is micro/nano
DDS due to its good safety, easy modification feature, and sustained
release performance. Suspension, binding, and permeation are three
micro/nano-drug carrier types (Figure 4) (Huang et al., 2022).
Suspension and binding carriers could resolve the obstacles
related to short half-life and rapid clearance of therapeutic agents
in the joint cavity. In addition, they significantly enhance the
curative effect of therapeutic agents. Although, ECM is only lost
at International Cartilage Repair Society (ICRS) grade III-IV when
the suspension and binding carriers can well demonstrate the
efficacy of drugs that promote MSCs differentiation and
proliferation or affect chondrocytes. In OA patients suffering
from grade I-II ICRS, ECM is rather undamaged, so a tiny
amount of the drugs released from carriers could penetrate the
cartilage; also, the depth of penetration is not satisfactory. Hence, the
drug at the target site cannot reach the therapeutic concentration,
thereby compromising therapeutic efficacy (Zeng et al., 2021; Huang
et al., 2022). In the following, some types of drug carriers were
introduced.

3.2 Liposomes

Liposomes are known as one of the favorable drug delivery
systems and the first FDA-approved nano-drug carrier. Liposomes
are spherical vesicles with an aqueous core surrounded by a
phospholipid bilayer with an approximate size between 50 and
5,000 nm. Three types of liposomes are commonly formulated,
including unilamellar vesicles, large unilamellar vesicles, and

FIGURE 4
Three types of micro and nano drug carriers [(A): Suspension drug carriers, (B): Binding drug carriers, and (C): Permeable drug carriers] and their
characteristics (Huang et al., 2022).
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multilamellar vesicles. These structures are very maneuverable and
they can be modified through coating other polymers, such as
antibodies to have become immunoliposomes (Nsairat et al.,
2022). Until now, some valuable liposome-based delivery systems
have been formulated for medical ends, for example: Liprostin and
Doxil which are used for the treatment of thrombosis and cancers
(Gu et al., 2020; Pala et al., 2020). More importantly, Lipotalon®

(dexamethasone palmitate) is another liposome-based drug delivery
system being used for IA therapy of OA (Evans et al., 2014). Besides,
some studies showed that liposomes could be effectively used in the
delivery of therapeutic agents in OA. As mentioned, it has been
shown that the encapsulation of adenosine and its receptor A2A, as
factors involved in cartilage homeostasis, in liposomal carriers and
their delivery using the IA method in obese mice and rats suffering
from OA, could consider the progression of the disease (Corciulo
et al., 2020). Besides, liposomes have been also shown to be very
useful in the formulation of drug delivery carriers for Rapamycin.
This drug, which is an inhibitor of mTOR, a potential therapeutic
target of OA, through encapsulation in the liposomes and IA
delivery can effectively reduce the inflammation in the
spontaneous OA guinea (Chen et al., 2020). Fish oil protein (FP)
is another therapeutic agent that is used for OA treatment because of
its anti-inflammatory effect. Sarkar et al. (2019) evidenced that gold
nanoparticles (GNP) tagged with fish oil could be encapsulated in
dipalmitoyl phosphatidylcholine (DPPC) liposomes (FP-GNP-
DPPC) and delivered to OA rat models using the IA strategy.
They observed that these drug carries by the constant release of
FP-GNP into the synovial fluid, leding to the downregulation of Bax,
Caspase 3, and p53 apoptosis genes and pro-inflammatory cytokines
as well as increased the expression of antioxidant, such as superoxide
dismutase (SOD) and glutathione reductase (GSH). These results
suggested the great potential of FP-GNP-DPPC for treatment of OA.
The infiltration M1 macrophages into the joint synovium in one of
mechanisms involved in obesity-induced OA. It has been shown that
the encapsulation for clodronate into liposomes and its IA delivery
in obese mice models, could deplete M1 macrophages and reduce

collagen X, leading to the suppression of OA progression (Feng et al.,
2011; Ponzoni et al., 2018). In addition, Curcumin, as a herbal
compound involved in the inhibition of human cancers by its anti-
inflammatory effects (Farajzadeh et al., 2018; Tavakoli et al., 2018;
Mansouri et al., 2020), has been shown through encapsulation into
soybean phosphatidylcholines liposomes and IA delivery could
exerts efficient suppressive effects on OA progression in
interleukin-1 β induced in vitro models. This was because of the
increased bioavailability of Curcumin through encapsulation into
liposomal carriers (Yeh et al., 2015). Overall, these findings suggest
that liposomes could serve as useful carriers for better and specific IA
delivery of therapeutic agents of into the region of action and lead to
more favorable outcomes through treatments.

3.3 Exosomes

Exosomes are nano-sized (50–150 nm in diameter)
phospholipid bilayer vesicles that are derived from the plasma
membrane. These structures, which are biologically released from
normal and pathologic cells, carry various cargoes, including
proteins, DNA, and RNA molecules (Doyle and Wang, 2019).
Exosomes derived from some specific cells, such as MSCs, have
been shown to exert therapeutic effects in various diseases, including
OA (Cai et al., 2020). In particular, exosomes derived from BMSCs
and chondrocytes have been evidenced to carry non-coding RNAs,
including miRNA and lncRNA, that prevent the expression of
inflammatory factors and proteolytic enzymes, subsequently
inhibiting OA progression (Miao et al., 2021). As an example,
MSC-derived exosomes were reported to contain miRNAs that
are involved in the regulation of genes participating in signalling
pathways activated in OA, such as the Wnt/β-Catenin pathway,
SIRT1/p53 pathway and NF-kB pathway (Jin, 2020). Exosomes
could also be fused with other compounds for a more specific
delivery. To be mentioned, Liang et al. (2020) fused exosomes
derived from chondrocytes with lysosome-associated membrane

FIGURE 5
Timeline of treatments in the history of osteoarthritis (Hyndman, 2017; Kraus et al., 2018; Pelechas and Karagianni, 2020; Cai et al., 2021).
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glycoprotein 2b containing chondrocyte-affinity peptide (CAP) to
overcome the challenge in drug delivery through the dense cartilage
matrix. They showed that the delivery of the fused exosomes
containing CAP and miR-140 could remarkably decrease OA
development in rat models. Despite the mentioned advantage of
exosomes to be used in OA treatment, their low production rate by
MSCs and other cells is considered a main challenge in clinical
applications. By the way, currently, a large number of studies are
being carried out to increase the yield of exosomes, which could
open new avenues into the exosome-based treatment of OA
(Nguyen et al., 2021).

3.4 Chitosan

As a polyaminosaccharide, chitosan is obtained from the
N-deacetylation of the natural polysaccharide chitin. Due to its
biodegradability, non-toxicity, biocompatibility, and mucoadhesive
and bacteriostatic properties, chitosan received attention in
numerous pharmaceuticals, biomedical, drug slow-release
material, food, and environmental fields. Chitosan nanoparticles
(NPs) have been extensively studied as gene delivery systems and
nanocarriers for drugs and proteins (Muxika et al., 2017; Saeed et al.,
2020; Serati-Nouri et al., 2020). Kang and colleagues developed
thermo-responsive polymeric nanospheres, which in response to
temperature change offer an independent and simultaneous dual
drug delivery capacity. Nanospheres based on chitosan conjugated
Pluronic F127 (PF127) grafting carboxyl group were designed for
simultaneous delivery of diclofenac (DCF) and kartogenin (KGN) to
treat OA. The nanospheres demonstrated sustained release of KGN
and immediate DCF release, which were separately regulated via the
change in temperature. They also stimulated chondrogenic
differentiation of MSCs, which was improved by cold shock
treatment. Results showed that the nanospheres have
chondroprotective and anti-inflammatory effects and could
suppress the OA progression in rat models (Kang et al., 2016).

3.5 Polyester amide (PEA)

The PEAs are synthetic biodegradable polymers containing
amide and ester groups in their chain. They can be produced by
polycondensation of linear monomers or ring-opening
polymerization of cyclic monomers. This chemical structure
improves the materials’ biodegradability, mechanical properties,
and processability. In addition, the most important property of
PEAs is their degradable composition through the surface erosion
mechanism (Andrés-Guerrero et al., 2015; Winnacker and Rieger,
2016). Janssen et al. (2016) studied the capacity of celecoxib-loaded
PEAmicrospheres as a self-regulating DDS for treating KOA-related
pain. Their results showed after a primary rapid release of celecoxib
load on day one (about 15%), the drug was then gradually released
over 80 days. Histologically, IA biocompatibility of PEA-
microspheres was demonstrated, whereas there were no cartilage
damage and necrosis or synovial thickening after injections. The
degradation of PEA-microspheres was considerably higher in OA-
induced knee joints in comparison with the contralateral healthy
knee, however loading of celecoxib on PEA microspheres

remarkably prevented the degradation, demonstrating a DDS
with self-regulatory action. The mentioned study evidenced that
celecoxib-loaded PEA microspheres have a great capacity to utilize
as a safe DDS with suitable biocompatibility, long-term retention in
the joint cavity, and self-regulatory property for OA treatment. The
timeline of treatments in the history of osteoarthritis is summarized
in Figure 5.

3.6 Poly-lactic-co-glycolic acid (PLGA)

PLGA is one of the polymers used in DDS construction and
formulation for therapeutic approaches due to its remarkable
characteristics, including biosafety, biodegradability, biocompatibility,
and versatility in functionalization (Ghitman et al., 2020). PLGA
polymers have an extensive degradation range which is tuned via
their copolymer and the ratio of their molecular weight. PLGA can
dissolve in common solvents, such as chlorinated, acetone, and ethyl
acetate solvents (Operti et al., 2021). Supplements, PLGA-based
nanocarriers ensure optimal drug bioavailability by protecting it
from premature degradation, providing sustained and target-specific
delivery, accelerating intracellular penetration of the drug, and lessening
the side effects (Ghitman et al., 2020). Goto et al. (2017) developed
fluvastatin-loaded PLGA microspheres (FLU-PLGA) to achieve
controlled IA administration of fluvastatin to treat OA. First,
in vitro experiments were conducted, and the results showed that
the drug could continuously be released within 4 weeks. After that,
the therapeutic effects of FLU-PLGA were investigated in a rabbit OA
model. The knees were subdivided into four groups. Five weeks after IA
injection, it was histologically demonstrated that the OARSI scores were
lower in the FLU-PLGA-treated group. The study showed that a single
IA injection of FLU-PLGA could be a promising new therapeutic
method for the management of OA patients. Some properties of these
carriers are summarized in Table 1.

4 The IA therapy pipeline

Currently, many IA-based therapeutic strategies for OA are in
clinical development. Some of these treatments are discussed in the
following sections. Clinical Trials of IA-based therapeutic for the
treatment of osteoarthritis are outlined briefly in Supplementary
Table S1.

4.1 LMWF-5A (Ampion)

Human serum albumin has been for treating shock and burns
for more than three decades, considering its advantageous
tolerability and safety. Ampion is a fraction of commercial
human serum albumin with molecular-weight lower than
5,000 Da containing aspartyl-alanyl diketopiperazine that may
function as an immunomodulator and exert anti-inflammatory
effects (McGrath, 2015). In vitro studies showed the involvement
of Ampion in themodulation of the inflammatory immune response
by regulating a pathway involving T cells (Shimonkevitz et al., 2008).

The Ampion effect on pain reduction in KOA was studied, and
its primary results were published. This observation focuses on the
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prominent aspects of this trial in a heterogeneous “real-world”
group of KOA patients. In this study, patients were divided to
receive a single 4- or 10-mL IA injection of Ampion or saline as the
control group. At baseline, the age of patients was an average of
about 62 years (64% female and 36%male). WOMAC pain scores of
Ampion-treated patients were remarkably better than those of
placebo-treated patients at week 12. The Ampion effect on pain
was even more noticeable in patients suffering from acute KOA: the
assessed treatment difference from the control group was −0.42. The
adverse event profile was generally slight and similar in patients
receiving Ampion (41%) and saline (47%). This clinical trial showed
that Ampion was safe and effective in relieving moderate to severe
KOA pain 12 weeks after administration by IA injection into the
knee (Bar-Or et al., 2014).

4.2 HA-triamcinolone hexacetonide (Cingal)

Cingal is a new product developed to provide short-term pain
relief from a corticosteroid, triamcinolone hexacetonide, with the
persistent pain relief of a HA viscosupplement. It is a single IA

injection with the total volume of 4 mL consisting of 18 mg of
triamcinolone hexacetonide and 88 mg HA. This trial aimed to
indicate the safety and efficacy of Cingal for relieving joint pain and
symptoms in KOA patients. A double-blind, multicenter saline-
controlled trial compared the utilization of saline, HA, and Cingal in
69, 150, and 149 patients with KOA, respectively. The WOMAC
score at 26 weeks suggested that Cingal provided better symptom
relief in this trial than the placebo. Nevertheless, Cingal only showed
statistically remarkable advantages compared to HA alone in the
first and third weeks (Hangody et al., 2018).

4.3 JTA-004

JTA-004 is a novel protein solution, which originated from plasma
and supplemented with clonidine and HA, developed by Bone
Therapeutics S.A., Belgium. The intra-articular administration of
JTA-004 has been shown to ease the local discomfort and pain
related to IA injections via the short-term analgesic effects of
clonidine in OA patients, and, and to restores joint homeostasis
thanks to the interaction between human plasma and HA. After

TABLE 1 Comparison of different nanovechicles from various aspects.

Carrier Mmune response Stability and other propeties Circulation Ref.

Liposome Inhibiting monocyte production and
depletion M1 Macrophage

Natural-based liposomes
(phosphatidylcholine species: bilayer

structures) are permeable and have low
stable properties.

The intermediate sized liposomes
(150–200 nm) have the longest

circulating time.

Nakhaei et al. (2021)

Saturated-phospholipids-based
liposomes (dipalmitoyl

phosphatidylcholine) are rigid and
impermeable (Sterols, such as ergosterol,

stigmasterol, and cholesterol).

Exosome Exhibit pro-inflammatory activity at
the initial stage of transplantation to
activate the innate immune system
and subsequently exhibit anti-

inflammatory activity.

Stable, Natural generation, Low
immunogenicity, Have capability to

cross biological barrier

Indeterminate loading efficacy, rapid
clearance from blood, and weak

targeting capability.

Chen et al. (2021b), Xian Bo et al.
(2022)

Chitosan Has excellent anti-inflammatory and
antioxidants capability the IL-6, IL-10,
and TNF-α plasma levels were down-

regulated

Low toxicity, low immunogen, high
biodegradable, high biocompatible,

stable

Rapid clearance from systemic
circulation, but PEGylated chitosan
nanoparticles have long circulation

time in the blood.

Mohyuddin et al. (2021)

PEA Inhibits the level of inflammatory
cytokines

High biodegradable, high biocompatible Slow clearance from systemic
circulation

Kropp et al. (2014)

Non-toxic, high stable

Good thermal and mechanical properties

Extended degradation and release
profiles in comparison with PLGA

PLGA Modulating monocyte recruitment. High biodegradable, high biocompatible,
non-toxic

Tunable prolonge blood circulation
time

Rezvantalab et al. (2018),
Chatterjee and Chanda (2022)

Stable (have a high residence time in the
joint cavity)

The drug release from PLGA can be
controlled by regulation the ratio of

glycolic acid (GA) and lactic acid (LA) in
the PLGA chain.

(50 GA: 50 LA in PLGA): 2 months
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injection into the knee joint, the jellification is induced by plasma
through a coagulation cascade, forming a coagulable gel that results
in a three-dimensional network stabilized through interactions between
the patient’s synovial proteins and HA fibers (Gentili et al., 1996; Sun
et al., 2014; Martin-Alarcon and Schmidt, 2016). This gel exhibits a
rheological and mechanical behavior similar to synovial fluid with
shock-absorbing and lubricating effects and protects the patient’s
cartilage. To examine the safety and efficacy and to choose the most
satisfactory formulation, a single IA administration of three JTA-004
formulations, which differ in clonidine concentration and volume, was
tested in comparison with Hylan G-F 20 reference treatment for
6 months. Based on the interim results, the JTA-004 formulation
containing 20 mg hyaluronic acid and 200 μg clonidine was selected
at 6 months. The difference in WOMAC score from baseline at month
six was9.49 mm; therefore, the superiority of JTA-200 was not
statistically indicated. There were no significant changes in adjusted
mean difference from baseline between JTA-200 and the control group
in terms of physical function, pain, total WOMAC score, stiffness
subscales, and wellbeing score at any time point. However, JTA-200
stimulated greater enhancements in WOMAC scores compared to
Hylan G-F 20 treatment. Besides, the safety of IA injection of JTA-
004 was evidenced in KOA patients through this study (Bettonville et al.,
2021).

4.4 PTP-001

PTP-001 is a lyophilized, sterile, human placental tissue
preparation in the development phase as a novel agent for the
therapy of OA symptoms and structural pathology. Unlike other
conventional autologous therapies (e.g., ASCs, BMAC and PRP),
PTP-001 is a room-temperature (“off-the-shelf”) stable therapeutic
agent being resuspended in saline instantly before use. In a study,
Flannery et al. (2021) characterized the biochemical features of PTP-
001 in OA progression using interesting periclinal in vitro and in
vivo models. PTP-001 contains multiple beneficial substances, such
as growth factors, anti-inflammatory molecules, and cytokines.
Then, PTP-001 was demonstrated to dose-dependently inhibit
the production of MMP-13 by chondrocytes, as well as diminish
proinflammatory cytokine secretion from macrophages/monocytes.
PTP-001 also enhanced synovial cell proliferation and remarkably
decreased pain responses over 6 weeks post-dosing, in rat OA
models. The duration and magnitude of pain relief after an IA
injection with PTP-001 were comparable to rats treated with
corticosteroid (active control). A significant reduction in cartilage
histopathology scores was obtained for animals treated twice with
PTP-001. These results demonstrated that PTP-001 is a promising
biologic therapy for OA that may participate in disease modification
and symptom management by a multimodal mechanism.

4.5 Adalimumab

Adalimumab (Humira®) is a recombinant, human
IgG1 monoclonal antibody that specifically blocks TNF-α and
prevents the binding of TNF-α to p75 and p55 receptors and
neutralizes cytokine activity (Bang and Keating, 2004).
Adalimumab can affect biological responses that are regulated via

TNF-α. For instance, adalimumab is correlated with changes in the
concentration of molecules responsible for leukocyte emigration
(e.g., ELAM-1, ICAM-1, and VCAM-1) (Plosker and Lyseng-
Williamson, 2007). A randomized, open-label trial investigated
the efficacy and safety of adalimumab compared with HA via IA
injection for moderate to severe KOA. 56 patients with moderate to
severe KOAwere randomly divided into HA or adalimumab groups.
On day 0, in the adalimumab group, patients received adalimumab
(10 mg), while the other group received HA (25 mg). All patients
received 200 mg/day of celecoxib for 4 weeks. At baseline, the pain
VAS, Physician Global Assessment (PhGA), Patient Global
Assessment (PGA), and WOMAC scores were similar between
groups. The reduction in WOMAC score, VAS score, and
WOMAC physical function score from baseline to the fourth
week was more significant in the adalimumab than in the HA
group. A greater reduction in the PhGA and PGA scores from
baseline to week four was noticed in the adalimumab than the HA
group. There was no difference in terms of side effects between two
groups. These results illustrated that adalimumab by IA injection
was tolerated and effective for moderate to severe KOA (Wang,
2018). However, other studies failed to observe clinically significant
improvements in patients who received short-term adalimumab
treatment (Aitken et al., 2018; Maksymowych et al., 2022).

4.6 rhFGF18 (Sprifermin)

Fibroblast growth factors (FGFs) are associated with a wide
array of biological processes, such as cell growth, morphogenesis,
differentiation, inflammation, angiogenesis, tumor growth, tissue
repair and multiple developmental processes. The FGF family
consists of 23 members that signal by four FGF receptors. Some
of the FGFs have been investigated for their therapeutic capacity.
Recombinant human FGF18 (rhFGF18) is evaluated as a treatment
for OA (Sieber and Gigout, 2020). A randomized, double-blind,
placebo-controlled study of rhFGF18 in patients with advanced
KOA was conducted to estimate the safety of IA rhFGF18 and to
assess systemic exposure, histology, biomarkers, and other cartilage
parameters. Patients were randomly divided 3:1 to rhFGF18 or
placebo, injected into the knee once or once a week for 3 weeks,
and followed up for 6 months. 55 patients were treated with
rhFGF18, 25 with a single dose, 30 with multiple doses, and
18 received a placebo. There was no significant difference
between the placebo and active groups in incidence, severity, and
side effects. No significant difference was seen between placebo and
rhFGF18 in physician-assessed local tolerability, swelling, or pain in
the knee. No meaningful differences between treatment groups, or
changes over time, were seen for ECG or safety laboratory
parameters. This trial showed no serious safety concerns;
however, more extensive studies are needed. The positive effects
of rhFGF18 on histological and other parameters in KOA also
warrant further investigation (Dahlberg et al., 2016).

4.7 Fasinumab (REGN475)

As a human recombinant IgG4 monoclonal antibody,
Fasinumab binds specifically to NGF without affecting signaling
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pathways mediated by other neurotrophins, including brain-derived
neurotrophic factor and neurotrophin-3 (NT-3). A double-blind,
randomized, placebo-controlled exploratory trial in KOA patients
was conducted to evaluate the safety, efficacy, and tolerability of
fasinumab. In this study, 217 patients (40–75 years old) were
randomized 1:1:1:1 to receive intravenous fasinumab and a
placebo on the first and 57th days. Daily pain intensity was
recorded utilizing a numerical rating scale. Tolerability and safety
were assessed as primary study endpoints through treatment-
emergent adverse events (TEAEs). The endpoints of the
secondary study included the change from baseline in walking
knee pain and assessing function, pain, and stiffness employing
the WOMAC index. After 6 months, the most common TEAEs
included hyperesthesia, arthralgia, myalgia, joint swelling, and
peripheral edema. TEAEs leading to discontinuation occurred in
3.7% of placebo patients and 5.6% of fasinumab patients. Results
illustrated that all doses of fasinumab were correlated with
significant improvements (p < 0.05) in WOMAC total and
walking knee pain and subscale scores compared with placebo.
Generally, fasinumab was well tolerated and correlated to an
improvement in function and a remarkable reduction in walking
knee pain for up to 8 weeks (Tiseo et al., 2014).

4.8 EP-104IAR

EP-104IAR is a novel IA formulation of corticosteroid fluticasone
propionate (FP), which is developed to ease pain in OA patients and
consists of FP crystals that are covered with polymer polyvinyl alcohol
(PVA). A randomized, double-blind, placebo-controlled trial was
carried out to measure the safety, efficacy, and pharmacokinetics
(PK) of EP-104IAR in KOA patients. 32 patients were randomized
(11men, 21 women, mean age: 64.8 years), received a single dose of EP-
104IAR or placebo, and were followed up for 42 weeks. The results
showed that the well toleration of EP-104IAR by patients. In addition,
average serum cortisol levels did not illustrate any clinically relevant
deviation in comparison with the placebo group and stayed at the
normal range of cortisol levels. Compared to marketed FP products,
plasma pharmacokinetics (PK) concentrations were in good safety
margins. The assessment of efficacy displayed that EP-104IAR
offered fast improvement in OA symptoms, and the effects were
consistently sustained for 2–3 months across all measures (Malone
et al., 2021; Hunter et al., 2022).

4.9 TPX-100

TPX-100 is a peptide derived from the matrix extracellular
phosphoglycoprotein (MEPE). MEPE is highly expressed via
osteocytes cells, is downregulated in OA, and may have a role in
OA bone remodeling. A study was conducted to evaluate the efficacy
of TPX-100-5 in patients with bilateral KOA. 104 patients
(25–75 years old) were divided to receive TPX-100 or a placebo
(Leiman et al., 2020). The placebo-treated contralateral knee of each
patient served as a paired control. Compared with placebo-treated
knees, TPX-100-treated knees indicated a statistically significant
reduction in pathologic bone shape change at 6 and 12 months. The
correlation between total andmedial tibiofemoral cartilage thickness

changes and bone shape change was statistically significant in the
TPX-100 group at 12 months (Leiman et al., 2020; McGuire et al.,
2021).

5 Conclusion and prospective

KOA is themost common degenerative joint disease and represents
a considerable social burden. IA injections of HA, corticosteroid, and
PRP represent treatment options with minor side effects for pain and
symptom relief in patients who do not respond to non-pharmacological
treatments, analgesics, or NSAIDs and can delay surgical treatment.
Currently, many new drugs are being developed that have shown good
therapeutic potential and promise new approaches to treat KOA.
However, the benefits of new agents should be carefully weighed
against their potential risks and cost. Further studies are needed to
assess new molecules and associated therapies in KOA IA injection
treatment. This review summarized the significance of nanomaterials in
the development of the delivery systems and improving the therapeutic
effect of these agents for osteoarthritis through targeted delivery,
biocompatibility and controlled release of drugs. However, in this
case, there is also a need for further investigation to optimize these
methods for clinical practice. Additionally, osteochondral lesions are
usually great defects that require a significant amount of nanomaterials,
and mass production of the nanomaterials is difficult, which is a
challenge in osteochondral restoration. Currently, gene therapy
technology is very popular, and numerous therapeutic targets for
OA disease have been suggested, providing a theoretical basis for
utilizing NPs in gene therapy. So there are logical reasons to be
optimistic that data from genetic studies of OA and from genomic
analyzes, which complement these, will be used for patient therapy.
Based on the possible developmental origin of several OA risks,
translation of genetic discoveries requires consideration of the time
in a person’s life when it is best to initiate treatment. In the future, the
application of enhanced chondrogenic potential cells combinedwith 3D
models of cartilage, and cartilage with bone, will prepare more realistic
and robust organ and cell models for functional analysis (FA) of OA
SNPs and target genes. Moreover, the combination of the new
nanotechnology with RNAs in OA defects may help to increase the
success ratio of optimum therapeutic results (Jin, 2020). Nano-
technology-based treatments such as smart nanobots as drug
delivery systems, artificial intelligence, and three-dimensional
printing methods can be used in the regeneration of osteochondral
defects in the future (Deng et al., 2019).
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Glossary

ACLT anterior cruciate ligament transection

ASCs adipose-derived stromal/stem cells

BMAC bone marrow aspirate concentrate

CAP chondrocyte-affinity peptide

DCF diclofenac

DGC density gradient centrifugation

DPPC dipalmitoyl phosphatidylcholine

ECM extracellular matrix

FGFs fibroblast growth factors

FP fish oil protein

FP fluticasone propionate

GNP gold nanoparticles

GSH GSHand glutathione reductase

HA hyaluronic acid

HSCs hematopoietic stem cells

IA intra-articular

ICRS international cartilage repair society

KGN kartogenin

KOA knee OA

MEPE matrix extracellular phosphoglycoprotein

miRNAs microRNAs

MSCs mesenchymal stem cells

NPs nanoparticles

NRS numeric rating scale

NSAIDs non-steroidal anti-inflammatory drugs

OA osteoarthritis

PEA polyester amide

PhGA physician global assessment

PK pharmacokinetics

PRP platelet-rich plasma

PtGA patient global assessment

PVA polyvinyl alcohol

RA rheumatoid arthritis

rhFGF18 recombinant human FGF18

SOD superoxide dismutase

SVF stromal vascular fraction

TEAEs treatment-emergent adverse events

TEAEs treatment-emergent adverse events

VAS visual analog scale

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Amirsaadat et al. 10.3389/fbioe.2023.1128856

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1128856

	An update on the effect of intra-articular intervention strategies using nanomaterials in osteoarthritis: Possible clinical ...
	1 Introduction
	2 Intra-articular drug delivery
	2.1 The placebo effects
	2.2 Standard IA treatments
	2.2.1 Corticosteroids as pain relievers
	2.2.2 Hyaluronic acid

	2.3 IA delivery of bioagents targeting inflammatory mechanisms
	2.3.1 Targeting TNF
	2.3.2 Targeting IL-1β

	2.4 Growth factor therapy: Targeting cartilage metabolism
	2.5 Cell therapies
	2.5.1 Platelet-rich plasma
	2.5.2 Bone marrow aspirate concentrate (BMAC)
	2.5.3 Stromal vascular fraction (SVF)

	2.6 Adipose tissue injections
	2.6.1 Mechanisms involved in the therapeutic properties of MSCs

	2.7 Gene therapy and gene delivery system

	3 Nanotechnology-based application in OA therapy
	3.1 Improving joint drug delivery by nanotechnology
	3.2 Liposomes
	3.3 Exosomes
	3.4 Chitosan
	3.5 Polyester amide (PEA)
	3.6 Poly-lactic-co-glycolic acid (PLGA)

	4 The IA therapy pipeline
	4.1 LMWF-5A (Ampion)
	4.2 HA-triamcinolone hexacetonide (Cingal)
	4.3 JTA-004
	4.4 PTP-001
	4.5 Adalimumab
	4.6 rhFGF18 (Sprifermin)
	4.7 Fasinumab (REGN475)
	4.8 EP-104IAR
	4.9 TPX-100

	5 Conclusion and prospective
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Glossary


