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Abstract

Recent advancement of rainbow tensor models based on their superintegrability (manifesting itself as 
the existence of an explicit expression for a generic Gaussian correlator) has allowed us to bypass the long-
standing problem seen as the lack of eigenvalue/determinant representation needed to establish the KP/Toda 
integrability. As the mandatory next step, we discuss in this paper how to provide an adequate designation to 
each of the connected gauge-invariant operators that form a double coset, which is required to cleverly for-
mulate a tree-algebra generalization of the Virasoro constraints. This problem goes beyond the enumeration 
problem per se tied to the permutation group, forcing us to introduce a few gauge fixing procedures to the 
coset. We point out that the permutation-based labeling, which has proven to be relevant for the Gaussian av-
erages is, via interesting complexity, related to the one based on the keystone trees, whose algebra will pro-
vide the tensor counterpart of the Virasoro algebra for matrix models. Moreover, our simple analysis reveals 
the existence of nontrivial kernels and co-kernels for the cut operation and for the join operation respectively 
that prevent a straightforward construction of the non-perturbative RG-complete partition function and the 
identification of truly independent time variables. We demonstrate these problems by the simplest non-
trivial Aristotelian RGB model with one complex rank-3 tensor, studying its ring of gauge-invariant opera-
tors, generated by the keystone triple with the help of four operations: addition, multiplication, cut and join.
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1. Introduction

Tensor models [1] begin to acquire attention that they deserve [2–25] as natural objects to 
study in the framework of the non-linear algebra [26]. In a recent series of papers [9–12], we 
described the technique necessary for the first step of systematic analysis of tensor models. It 
turned out that the simplest problem is a complete description of the Gaussian correlators, the 
problem which for many years remained unsolved in the case of matrix models, despite a num-
ber of brilliant insights including the celebrated Harer–Zagier formulas [27,28]. As was expected, 
a solution to the problem came from the synthesis of character [29] and Hurwitz [30–32] calculi 
(see [11]), and it appeared to be immediately generalizable to the tensor case [12,33]. Like in 
the matrix model case, the simplest from this perspective is the rectangular complex model of 
[34–36], and, among tensor models, the easiest treatable are rainbow models [9] with the highest 
possible “gauge” symmetry, while models with restrictions on the colorings and/or reality con-
ditions are described by a little more complicated formulas, with the simplest example of such 
complications provided by the Hermitian matrix model (!). Of additional interest is the subclass 
of starfish rainbow models [9], where the large-N limit is automatically described by melonic 
diagrams (these, however, will not be considered in the present paper).

As usual in quantum field theory, the study of any such model consists of several steps: de-
scribing the symmetries and the field content of the model, enumeration and classification of 
operators, introduction of appropriate generating functions and evaluation of correlators/aver-
ages. Only at the last of these steps, the action/dynamics of the model is needed, though a clever 
choice of the generating functions to make can also depend on the action and on a particular 
phase of the model. Traditional analysis begins from the Gaussian phase, and then the Ward 
identities are used to express the correlation functions through the Gaussian spectral curve in 
a functorial way (by the procedure known as topological recursion [37]), and transition to the 
non-perturbative (Dijkgraaf–Vafa) phases goes through a deformation of the spectral curve. This 
approach is successfully developed for the one-matrix eigenvalue models (where also integrabil-
ity properties are revealed and understood), and the present task is to extend it in two directions: 
to multi-matrix and to (multi-)tensor models. However, such extension is quite sophisticated and 
can hardly be made by one simple effort. As suggested in [10], we move by small steps, but in a 
systematic way with the hope that it will be no less straightforward for tensors than it has proven 
to be for matrices.

Accordingly, the very first task is to provide an efficient enumeration of operators. As was al-
ready mentioned, this step is independent of the action of the model and depends just on its field 
content. The problem is purely combinatorial, but one should not underestimate its significance. 
The choice of an appropriate language and notation is crucial for the theory of tensor models, 
which did not advance for years, with the main obstacle being the lack of notation like traces and 
determinants (while their relevant generalizations in the character/Hurwitz calculus are perfectly 
known within the context of non-linear algebra, see [26] and references in the last paper there). 
We advocate the use of permutation-group terminology, which was attempted for matrix models 
already in [30,31], but did not gain enough attention, both because of efficiency of other lan-
guages and, as we now understand, because of the fact that its application to the Hermitian rather 
than to the rainbow-like rectangular complex model (RCM) is rather clumsy. For tensor models, 
however, advantages of this terminology become obvious: it was actually used in the tensorial 
calculations in [10], and was made fully explicit in [11,12,32] and [33], where it immediately 
provided generic explicit expressions for the Gaussian correlators in arbitrary matrix and tensor 
models. These formulas can not be fully appreciated without detailed examples and explanations 
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of how they can be practically used. Our consideration should now be lifted to the next level: 
a systematic description of operators and their Gaussian correlators as functions of models and 
index contractions expressed in terms of the permutations and Young diagrams.

To put it differently, in our previous studies [10–12] (see also [33]) we have proposed a tech-
nique that allows one to calculate any Gaussian correlator, however, in order to proceed with 
non-Gaussian actions, one has to construct first the complete set of Ward identities. To this end, 
one has to effectively enumerate all the gauge-invariant operators, and to reveal their ring struc-
tures. This is the main goal of the present paper: we discuss the set of gauge-invariant operators 
and their ring structure and illustrate them with explicit complete description at the first 5 levels, 
i.e. up to operators containing 10 tensor fields. We also discuss a degeneracy of the Gaussian 
correlators: the fact that the averages of different operators may coincide in the Gaussian case 
because of the symmetry which is lifted by considering non-Gaussian action. This degeneracy is 
lifted at different levels of non-Gaussianity for different operators, what can provide them with 
an additional characteristic, which was difficult to study earlier.

In fact, in the present text, we consider from this perspective the simplest of the rainbow 
tensor models of [9]: the Aristotelian model with a single complex tensor of rank 3 and the RGB
(red–green–blue) symmetry U(N1) ⊗ U(N2) ⊗ U(N3).1 Our main purpose is to illustrate the 
non-trivial interplay with the theory of Hurwitz numbers, which, in the case of rank 3, is reduced 
to the distinguished theory of the Belyi functions and Grothendick’s dessins d’enfants [28,31,
38–40]. We emphasize that this latter subject describes equilateral triangulations and, thus, is 
often emerging in string theory studies [41–43], but the rank-3 tensor theory is the first place 
where it is practically unavoidable. At the same time, the relation is not literal: the operators 
of the Aristotelian models are originally labeled by pairs of permutations and their variety is 
not fully reduced to the admissible triples of Young diagrams, i.e. to the most natural conjugacy 
classes. The knowledge of the Gaussian correlators, provided by [10] and [12,33] is an important 
tool, helping to check and validate the general considerations.

This paper has overlaps at several points with [44] and more recent ones [45,46]: some of the 
questions we address are close and some answers seem to be in accord. The main difference is 
that we not just enumerate the gauge-invariants operators, but also reveal an additional cut and 
join structure in their ring.2 These operations, along with addition and multiplication, allow one 
to generate all the ring starting with simplest keystone operators and provide a proper counterpart 
to the Virasoro constraints in the matrix model case [47,48]. In fact, versions of cut and join 
operations which act on graphs were considered within the context of Ward identities in tensor 
models earlier [17,18], hence, this our paper is an attempt to marry up these two structures 
discussed previously.

We also put more emphasis on concrete examples and on variety of more delicate properties, 
which can be revealed. In particular, we wonder if operators can be distinguished by the Gaussian 
correlators, which remain independent after factoring over the coloring permutations Scolor

3 , how 
close is the result to the set of Hurwitz admissible triples, what is the number of independent con-
nected operators etc. Our answers to these questions are far from being exhaustive, and still they 
are important to developing the language, which would adequately reflect the renormalization 

1 For interpretation of the references to color please refer to the web version of this article.
2 A word of precaution is necessary here: the cut and join operations here is different from the cut-and-join operator 

of [30], since, though in the both these cases the operations are acting in the group algebra of infinite symmetric group, 
those from [30] are elements of center of the group algebra, and the operations in this paper are not.
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group properties and provide an appropriate substitute for the resolvents and for other generating 
functions used in the matrix model theory.

2. Logic and the structure of the paper

Since the study of tensor models is still at the very early stage when there is no consensus 
even in terminology and in the main research directions, it deserves making explicit our logic 
and immediate goals. In this section, we elaborate the Introduction, introducing systematic pro-
cedures, some of which are explicitly carried out in this paper. Schematically our plan can be 
described as follows:

Selection of a model
Aristotelian r = 3

↙ ↓ ↘

classification of operators CJ structure Gaussian averages

↙ ↓ ↓ ↓ ↘

invariant gauge choice elementary recursions averages correlators
description RG completion non-Gaussian averages

↓ ↙ ↘ ↙ ↓

level m σ1 = id depth of non-Gaussianity
coset S⊗3

m σ2 = [σ2] CJ “cohomologies”

↓ ↓

S⊗3
m /S

coloring
3 generating functions

Virasoro constraints

↓

AMM/EO topological recursion

The very first step is specification of a model, and, in this paper, it will be the simplest one 
of all: the rank-three Aristotelian model, which was also the choice in [10] and [45,46]. Ac-
tually, chosen at this stage is the (“gauge”) symmetry and the field content, but some work 
is still needed before the choice of dynamics (Lagrangian) can be discussed. Given the field 
content, there are two immediate directions to follow: one can ask what are the “local” oper-
ators and how they “communicate” at the perturbative level. The second question involves the 
Gaussian averaging and the Feynman diagram technique. This leads us to consider the Gaussian 
averages of the local operators and their Gaussian correlators, the latter are actually a step to-
wards the perturbative consideration of non-Gaussian Lagrangians. A distinguished step in this 
consideration is inserting a single propagator: according to the Wick theorem, calculation of 
arbitrary Gaussian correlators is multiple applications (iterations) of this elementary operation. 
Inserting a propagator can join two disconnected operators and can cut one connected operator 
into two disconnected ones. Thus, this operation introduces a peculiar cut and join (CJ) struc-
ture in the operator ring, and this is actually the one which stands behind the renormalization 
group (RG) properties and the celebrated Virasoro-type constraints which further lead to the 
AMM/EO topological recursion. Despite that they underlie the RG structure in all models of 
quantum field theory, the particular formulation of Virasoro type constraints and their technical 
efficiency strongly depend on the clever choice of the generating functions for the RG-complete 
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set of local operators: in matrix models, these are just the ordinary resolvents, but they are clearly 
not just so simple in tensor models. We refer the reader to an introductory discussion of the issue 
in [10], and, in the present paper, we will not reach the level of generating functions. Our goal 
in this paper is more modest: it is to prepare the necessary ingredients, namely, to discuss clas-
sification/enumeration of gauge-invariant operators and the CJ structure on this set. This step is 
already highly non-trivial, and it is by no means fully performed in the present paper, we rather 
formulate problems and provide enlightening examples of how they can be dealt with. The cru-
cial point is that needed is not just some classification procedure, but the one which is relevant 
for the deep study of tensor models, their dynamics, integrability and superintegrability. (For this 
last issue, see the last section.)

If this were not the case, the set of independent gauge-invariant operators in the Aristotelian 
model would be easy to characterize: for the operators made from m pairs of the rank-r tensor 
fields M and M̄ , it is the double coset Sr

m = Sm\S⊗r
m /Sm where Sm is the symmetric group, 

consisting of permutations of m elements. The textbook symmetric group calculus [49] says that 
the size of this set, i.e. the number of linearly independent gauge-invariant operators at level m
(linear generators of the operator ring), is∣∣∣∣∣∣Sr

m

∣∣∣∣∣∣= ∑
��m

zr−2
� (2.1)

where the sum goes over all Young diagrams (conjugacy classes) � with lines δ1 ≥ δ2 ≥ . . .

of the size m =∑
i δi , and z� =∏

i i
ki ki ! is the number of conjugations which leave the per-

mutation with ki cycles (lines of the Young diagram �) of length i intact, and the plethystic 
logarithm can be used to extract the number of independent connected operators (multiplicative 
generators of the ring), these simple formulas are well known in tensor model theory [44–46]. 
However, this powerful invariant technique is nearly inapplicable for any further considerations, 
even for asking appropriate “physical” questions. One of the ways out is to abandon the invariant 
formalism and proceed in concrete gauges, somehow fixing some of the r permutations in the 
conjugacy classes Sr

m. For the Aristotelian model per se, i.e. for r = 3, a possible gauge choice 
is σ1 = id and σ2 identified with its Young diagram [σ2], i.e. is reduced just to a set of numbers 
of cycles of different lengths, this is what has led to the formalism of “red–green cycles”, effi-
ciently used in [10]. It allows us to enumerate the operators in terms of simple pictures and it 
also provides an acceptably simple description of the CJ structure. It is important that these cut 
and join operations connect only levels adjacent to level m, which makes their description at a 
given m a finite problem. It also splits the size ||Sr

m|| into finer and informative structure, char-
acterizing the number of independent σ3 when the two Young diagrams [σ2] and [σ3] are fixed, 
which measures the deviation (degeneracy) of the operator classification problem from the better 
studied Hurwitz calculus of [30].3 The main drawback of this formalism (gauge choice) is that 
it breaks the global “symmetry” Scoloring

r , which is very important for decreasing the number of 
independent operators: for r = 3, the red–green symmetry is easily seen, while the red–blue and 
green–blue ones are more difficult to see. Consideration of this formalism, its various realizations 

3 There is a confusion in terminology: the calculus of coverings directly related to tensor model calculus, is 
somewhat different from the symmetric group calculus of [30] based on the Burnside–Frobenius formula [28,50]∑

R d
2−2g
R

∏
i ϕR(�i) which is nowadays associated with “Hurwitz τ -functions”: they coincide only for simple ram-

ification points, i.e. for the Young diagrams of the type � = [2k, 1l ]. This is reflected in the fact that, beyond this 
intersection domain, the Hurwitz τ -function are not of the KP/Toda type (and this is exactly what makes them mysteri-
ous and so interesting) unlike what one expects [12] for the truly combinatorial partition functions of tensor models.
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and applications to the study of CJ structure will be one of the main topics of the present paper. 
What we actually do is the level-after-level analysis of the two stories: the operator set S3

m and 
the CJ action on it, for m = 2, 3, 4, 5, with the most interesting things starting to happen at the 
m = 5 level.4

An immediate benefit of this naive classification of gauge-invariant operators is the possibil-
ity of extracting the primary dynamical information by looking at their Gaussian averages: like 
matrix models [11], the rainbow tensor models are also superintegrable, and all the Gaussian 
correlators are immediately and explicitly calculable (expressed through the finite sums of sym-
metric group characters) [12,33]. It is of course very appealing to use this extraordinary strong 
result in the study of operator classification (Hilbert and Fock spaces) and of the CJ structures 
on it. The problem, however, is that, starting from m = 5, the Gaussian averages do not fully 
distinguish the gauge-invariant operators: there are some operators which are different, but have 
the same averages. Since the operators are different, this degeneracy is of course lifted in the 
non-Gaussian case, but any such pair of degenerate operators is separated at its own level (depth) 
of non-Gaussianity, and this provides an additional “depth” structure on the set Sr

m.
However, if one wants to address the truly interesting dynamical questions, the Gaussian 

averages and correlators are not enough. The powerful approach to study of non-Gaussian 
phases in matrix models is obtained through the Virasoro-like constraints, which are applica-
ble in any backgrounds. They are the Ward identities associated with the change of integra-
tion variable (quantum field) δM = ∂

∂M̄
K�0 with a gauge-invariant operator K�0(M, M̄) and 

are fully expressed through the CJ structure of the operator ring. If the theory has an action 
−μTrMM̄ +∑

� t�K�, then, the Ward identities are

μ|�0| ·
〈
K�0

〉
=

∑
�

t� ·
〈
{K�,K�0}

〉
+

〈
�K�0

〉
(2.2)

where |�| denotes the degree of �. One can rewrite this relation in more details introducing the 
structure constants for the join operation

{K�′ ,K�′′ } =
∑
�′′′

γ �′′′
�′,�′′K�′′′ (2.3)

and for the cut operation

�K� =
∑

�′,�′′
�

�′,�′′
� K�′K�′′ (2.4)

Note that these operations are associated with gluing and contraction in [18]: � is a sum over all 
contractions of the observable and {, } is the sum over all gluings between two observables. We, 
however, keep the name CJ in order to preserve the parallel with the CJ operations introduced by 
I. Goulden and D. Jackson in Hurwitz theory [51]. The cut operation � is at most quadratic when 
acting on connected operators, because inserting the propagator can cut any connected operator 
into two disconnected parts at most. On the disconnected operators, � acts with the help of { }:

�(K� ·K�′)=�K� ·K�′ +K� ·�K�′ + {K�,K�′ } + {K�′,K�} (2.5)

4 Since Paolo Ruffini and Niels Henrik Abel it is known that m = 5 is the threshold for symmetric group theory to 
become really interesting, though insolvability of Sm for m ≥ 5 per se, which explains Abel’s impossibility theorem of 
solving degree m equations in radicals, still needs to find its place in the tensor model story.
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With the help of (2.3) and (2.4), the Ward identities for the partition function Z{t} acquire the 
familiar form

L�Z{t} = 0 (2.6)

with

L� =−μ · |�| ∂

∂t�
+

∑
�′,�′′′

(
γ �′′′
�,�′ · t�′

∂

∂t�′′′
+�

�′,�′′′
� · ∂2

∂t�′∂t�′′′

)
(2.7)

What we need for an efficient formalism is an appropriate description of γ and �. The problem 
is that they are governed by somewhat different structures.

What stands behind γ is just a Lie algebra, and a appropriate labeling � of operators should 
properly take into account this algebraic structure. In general, this Lie algebra generated by γ
only, i.e. by {, } operation, is just that of rooted trees [10,17,18], which, in turn, appear after one 
specifies a set of keystone operators (see [10] for details). Namely, one can form operators as a 
sequence of action of {, } on keystones, implying the labeling like

K[
[AB][[AA]B]] =

{
{KA,KB},

{{
KA,KA},KB

}}
(this example is for the case of two keystones KA and KB ). This is a very clear labeling, but 
definitely different from the one natural for the coset Sr

m within the framework of symmetric 
group theory. An interplay between the two is an important and challenging problem. Moreover, 
the tree labeling is incomplete: the join operation has a huge cokernel in Sr

m, and there are many 
operators that are not tree descendants of the keystones. Still, they can be produced by the cut 
operation � and then should be included into an RG-complete non-perturbative partition function 
as a new secondary keystone operators.

The most important feature of � is its degeneracy, which means that the partition function 
actually depends on less number of variables then one would think. The problem could be seen 
even at the matrix model level. Imagine that we have made an erroneous choice of the operator 
set and included into the action the terms like tk,lTrMkTrMl . Clearly, many of them will be 
mapped into the same operators by the action of �, and the result of this will be that the partition 
function satisfies some “trivial” relations such as

∂Z
∂tk,l

= ∂2Z
∂tk∂tl

which reduce it to a function of tk’s only. In this matrix model example, this simply means that 
one should include only connected operators into the action. Remarkably, even this restriction 
is already non-trivial for tensor models: description of the “connected subset” of Sr

m is not fully 
straightforward in symmetric group language. But, in fact, even for the connected operators the 
operation � remains degenerate: this is simply because the number of different gauge-invariant 
operators increases with level, unlike in the matrix model case, where there is just one operator 
Tr (MM̄)m at each level m. This means that the actual set of independent time variables is much 
smaller than all elements of (Sr

m)conn, and one needs to look for an appropriate set of bases from 
this point of view.

At the same time, images of the operations { } and � at a given level m are essentially differ-
ent: not all of the operators which � creates from the operators of level m + 1 are multilinear 
combinations of those produced by { } from the lower levels: in this sense, the set of operators 
is bigger than generated by { }, and this is contrary to what happens in matrix models (at r = 2). 
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In particular, the original (primary) keystone operators need to be complemented by secondary 
keystones arising from �-images of the join-descendants of the original ones.

The next problem is that the labeling that is relevant for the Lie algebra structure and under-
lies the join operation { }, is not immediately consistent with the one separating non-degenerate 
subspace for the cut operation �, and, as we already said, neither is provided by the symmetric 
group theory, at least, naively.

This completes our brief survey of the problems that we see when approaching the tensor 
model theory and which motivate our study in the present paper. Hopefully, these comments 
would help the reader to get through these examples and extract technical lessons which, at the 
next stage, can be used in attacking the generating function problem and appropriate formulation 
of Virasoro-like (actually, the Bogoliubov–Zimmermann rooted-tree algebra [10,17,18,52–55]) 
relations and associated version of the AMM/EO topological recursion (see [24] for the blobbed 
topological recursion applied in the tensor model case).

Throughout the paper, we use in examples various concrete gauge-invariant operators from 
levels m = 1, 2, 3, 4, 5. These operators are all listed in Appendix A, hence, all notation of op-
erators can be found there. In Appendix B, we collected tables describing various numbers of 
operators and their association with permutations.

3. Models, operators and Gaussian averages

The models referred to as rainbow models are the ones with |I | complex tensors MI
a1...ar

of 
the rank r , with I ∈ {1, 2, . . . , |I |} and with the “gauge” symmetry U = U(N1) ⊗ . . .⊗U(Nr). 
The simplest among these are

• The Aristotelian model with a single tensor, |I | = 1: it includes the vector model at r = 1, 
the rectangular matrix model (RCM) for r = 2, the Aristotelian (red–green–blue) model 
of [10] per se at r = 3, and many more models with arbitrary r > 3

• The AB model with |I | = 2, i.e. with the two tensors of rank r named A and B: it includes 
the peculiar two-matrix model at r = 2

• The 3-tensor ABC models with |I | = 3: at the matrix model level of r = 2, the interesting 
chiral keystone operator (see [10]) TrABC appears

• The tetrahedron (ABCD) model with |I | = 4: the interesting chiral keystone operator (tetra-
hedron vertex) appears at r = 3

• The starfish models [9] with interesting starfish keystone operators at r = |I | − 1
• . . .

Boldfaced in this list is the Aristotelian model, which we will actually focus on in the present 
paper.

The operators of interest are invariants of U , made by contraction of all indices of m tensors 
M and m complex conjugates of tensors M̄ . We call m the “level” of the operator, especially 
simple being invariants at level 1:

TrMIM̄J =
N1∑

a1=1

. . .

Nr∑
ar=1

MI
a1...ar

M̄
a1...ar

J (3.1)

In the case of bilinear operators, we may denote the obvious contraction of all indices by “Tr”, 
though in general the notion of trace has no direct meaning for tensors. These operators at level 
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one are used in the definition of Gaussian averages, when the action is given by the bilinear 
kinetic term∑

I

TrMIM̄I (3.2)

We do not consider the space–time dependence, because it adds nothing new to the combinatorial 
aspect of the story, which is our main interest in this paper. In what follows, we also put |I | = 1, 
i.e. consider a single complex tensor.

At level m = 2, the gauge-invariant operators are made from

Ma1...ar Ma′1...a′r M̄
b1...br M̄b′1...b′r

by the contraction of each pair bi, b′i with the corresponding ai, a′i (one can not contract bi and 
aj with i �= j because of the huge symmetry of the rainbow models). There are two possibilities 
for each i: one can put bi = ai, b′i = a′i or put bi = a′i , b′i = ai , i.e. a total of 2r choices labeled by 
r permutations from the symmetric group S2 (of permutations of two elements). To write down 
a formula, we need to change the notation, from ′ to numeric superscript, taking values 1 and 2, 
say, ai = a1

i , a′i = a2
i , and the 2r gauge-invariant operators at level 2 are

K�σ∈S⊗r
2
=Ma1

1 ...a1
r
Ma2

1 ...a2
r
M̄a

σ1(1)

1 ... a
σr (1)
r M̄a

σ1(2)

1 ... a
σr (2)
r (3.3)

At level m, the gauge-invariant operators are labeled by r permutations from the symmetric 
group Sm:

K(m)
σ1⊗...⊗σr

=
m∏

p=1

Ma
p
1 ...a

p
r
M̄a

σ1(p)

1 ... a
σr (p)
r (3.4)

In fact, one can now permute the m tensors M or the m tensors M̄ as a whole, i.e. multiply all 
the permutations σi by two common permutations, from the right and from the left sides, which 
factorizes S⊗r

m by Sm both from the left and from the right sides and provides the double coset 
[10,12,33,44,45]

Sr
m = Sm\S⊗r

m /Sm (3.5)

An explicit description/parameterization of this coset can begin from violating the “symmetry” 
Sr between different indices (i.e. colorings), for example, by always putting σ1 = id (this “sym-
metry” is, in any case, violated by the difference between Ni in the gauge groups U(Ni)). This 
leaves us with (m!)r−1 classes of operators at level m, in particular, with m! for the complex ma-
trix model (r = 2) and with (m!)2 for the Aristotelian model with the tensor of rank r = 3. These 
are still not the minimal classes: the remaining freedom is the common conjugation. For complex 
matrix model, this means that the gauge-invariant operators are enumerated by conjugacy classes 
in Sm, which are labeled by Young diagrams μ:

r = 2 : Kμ =
l(μ)∏
k=1

Tr (MM̄)μk , μ= {μ1 ≥ μ2 ≥ . . .≥ μl(μ) > 0}, |μ| =
l(μ)∑
k=1

μk =m

(3.6)

For the Aristotelian model, we get two permutations σ2 ⊗ σ3 modulo common conjugation:
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r = 3 : K<σ2⊗σ3> =
∑
{�a,�b,�c}

⎛
⎝ m∏

p=1

MapbpcpM̄apbσ2(p)cσ3(p)

⎞
⎠

σ2 ⊗ σ±1
3

∼= (σ ⊗ σ) ◦ (σ2 ⊗ σ±1
3 ) ◦ (σ−1 ⊗ σ−1), i.e.

⎧⎨
⎩

σ2 ∼= σ ◦ σ2 ◦ σ−1

σ3 ∼= σ ◦ σ3 ◦ σ−1

σ2 ◦ σ±1
3

∼= σ ◦ σ2 ◦ σ±1
3 ◦ σ−1

(3.7)

The first task in any study of tensor models is to describe these conjugacy classes. This was 
partly done in [10,12,33,44–46], but, as explained in sec. 2 above, much more details are actually 
needed and different relevant classification schemes should be somehow matched. As was also 
mentioned, the useful tool (though of a limited capacity), which allows one to illustrate general 
arguments by explicit formulas, is use of the Gaussian averages, which are integrals with the 
quadratic action (3.2) and are defined by the Wick theorem:〈〈

m∏
p=1

Ma
p
1 ...a

p
r

m∏
p=1

M̄b
p
1 ...b

p
r

〉〉
=

∑
γ∈Sm

⎛
⎝ m∏

p=1

r∏
i=1

δ
b
γ (p)
i

a
p
i

⎞
⎠ (3.8)

Hereafter, we normalize the averages so that 
〈
1
〉= 1. The Gaussian average of an arbitrary oper-

ator at (3.4) is, therefore, known in full generality [12], see also [33] and [45]:〈〈
K(m)

σ1 ⊗ . . .⊗ σr︸ ︷︷ ︸
�σ

〉〉
=

∑
γ∈Sm

r∏
s=1

N
#(γ ◦σs)
s =

∑
�R �m

(
r∏

s=1

DRs (Ns)ψ �R(�σ)

)
(3.9)

where DR(N) = χR{pk =N} is the dimension of representation R of sl(N), given by the hook 
formula, and

ψ �R(�σ)=
∑
γ∈Sm

(
r∏

s=1

ψRs (γ ◦ σs)

)
(3.10)

The sums in these formulas are finite and run over r Young diagrams R1, . . . , Rr , of the size m
each, and over 2m permutations from the symmetric group Sm. The symmetric group characters 
ψR(σ) depend only on the conjugacy class of the permutation σ , i.e. on the associated Young 
diagram [σ ] and are easily available in MAPLE and Mathematica. The degeneracy, the size of 
the conjugacy class [σ ] is equal to m!

z[σ ] .
As noted already in [10], some of the Gaussian averages are actually factorized. This usually 

happens, when the Young diagram [σs] has single-box lines and follows from the factorization 
of the sum over cycles∑

γ∈Sm

N#(γ ) =N(N + 1) . . . (N +m− 1)= �(N +m)

�(N)
(3.11)

and its generalizations such as∑
γ∈Sm

N
#(γ ◦σm−k)

1 N
#(γ )

2 = �(N1N2 + 2k)

�(N1N2 + k)

∑
γ∈Sm−k

N
#(γ ◦σ̂m−k)

1 N
#(γ )

2 (3.12)

where σm−k ∈ Sm is a permutation that contains k unit cycles and σ̂m−k ∈ Sm−k is the same 
permutation with the unit cycles dropped off. The explanation of these formulas is that each 
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permutation from Sm+1 is a composition of a permutation from Sm and an additional permutation 
given by the length 2 cycle: (i, m +1). Then, for i =m + 1, we have #(id ◦σ) = #(σ ) + 1, while 

for all other i = 1, . . . , m the number of cycles remains intact: #
(
(i, m + 1) ◦ σ

)
= #

(
σ
)

for all 
σ ∈ Sm. This means that for σ ∈ Sm, i.e. for σ ⊗ (m + 1) ∈ Sm+1∑

γ∈Sm+1

N#
(
γ ◦(σ⊗(m+1))

)
= (N +m)

∑
γ∈Sm

N#(γ ◦σ) (3.13)

and this provides the necessary factorization when the cycle of unit length is added. Generaliza-
tion from N to N1, . . . , Nr is straightforward.

As a first illustration for the structure of operator set and for its Gaussian averages, we list 
them for the few simplest levels m. For m = 1, there is one diagram and one correlator equal to 
N1N2N3. For m = 2, there are one connected correlator with the average N1N2N3(N1N2 +N3)

(it is one correlator modulo permutations of colorings) and one disconnected correlator, coming 
from the previous level: its average is N1N2N3(N1N2N3 + 1), etc:

m= 1 1 1 K1 =Kid,id,id

m= 2 1 N1N2N3(N1N2 +N3) K2 =Kid,(12),(12)

1 N1N2N3(N1N2N3 + 1) K2
1 =Kid,id,id

m= 3 3 N1N2N3(3N1N2N3 +N2
1 +N2

2 +N2
3 ) KW =Kid,(123),(132)

N1N2N3(N
2
2 N2

3 + 3N1N2N3 +N2
1 + 1) K3 =Kid,(123),(123)

N1N2N3(N1N2N
2
3 +N2

1 N3 +N2
2 N3 + 2N1N2 +N3) K2,2 =Kid,(12),(13)

2 N1N2N3(N1N2 +N3)(N1N2N3 + 2) K2K1 =Kid,(12),(12)

N1N2N3(N1N2N3 + 1)(N1N2N3 + 2) K3
1 =Kid,id,id

where (N1N2 +N3)(N1N2N3 + 2) at level 3 comes from the product of connected correlators 
from S1 and S2 and (N1N2N3 + 1)(N1N2N3 + 2) comes from the product of three connected 
correlators from S1. An extended and detailed version of this table can be found in sec. 7, see, in 
particular, (7.14) and (7.15).

4. Cut and join operations and Virasoro-like recursions: a primer

For the rectangular complex matrix model (RCM), the elements of the coset S2
m = Sm\Sm ⊗

Sm/Sm, i.e. operators

KRCM
μ =

lμ∏
i=1

KRCM
mi

(4.1)

forming the linear basis of the operator ring, are labeled by Young diagrams μ = {m1 ≥ m2 ≥
. . .mlμ > 0} of the size m, and all connected (non-factorizable) operators
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KRCM
m = Tr (MM̄)m =

∑
�a,�b

⎛
⎝ m∏

p=1

MapbpM̄apbp+1

⎞
⎠=

∑
�a,�b

⎛
⎝ m∏

p=1

MapbpM̄apbσ(p)

⎞
⎠ (4.2)

with σ(p) = (123 . . .m) being the longest cycle, are represented by polygons (red–green cycles) 
of the size 2m: we depict one example m = 3,

KRCM
3 = �

� �

�

� �

� �

�
� �

�

The index is just the Dedekind function

ηRCM(q)=
∞∏

m=1

1

1− qm
= PE

(
q

1− q

)
, ηconn

RCM(q)= q

1− q
(4.3)

where we have denoted by PE plethystic exponential (the Euler transform) [56]. Finding this 
function for a more complicated tensor model is a less trivial exercise. Even if that is solved, 
however, it does not provide enough information for building a reasonable generating function: 
some deeper structures on the ring must be revealed for this.

The first two important operations on the ring of gauge-invariant operators are the cut

�K= Tr
∂2 K

∂M∂M̄
=

∑
a1,...ar

∂2K
∂Ma1...ar ∂M̄a1...ar

(4.4)

and join

{K,K′} =
∑

a1,...ar

∂K
∂Ma1...ar

· ∂K′

∂M̄a1...ar
(4.5)

In fact, there are many different possibilities of choosing the cut and join operations, with differ-
ent properties. Our choice in this paper serve as an archetypical example and enjoys additional 
interesting structures. Note that this join operation is definitely not like a Poisson bracket, it 
is neither associative, nor antisymmetric, in fact, it is also not always symmetric, though non-
symmetric examples first appear at level m = 5: e.g. the join operation involving the black-white 
asymmetric operator KXV III . They necessarily appear in the description of Virasoro-like re-
cursions for the averages [10,17,18,57]: as we explained in the previous section, if the action 
S is some combination of gauge-invariant operators, then the averages (functional integrals) 
satisfy the Ward identities, following from invariance under the shift of integration variables 
δM̄ =∇MK:〈

{K, S}
〉
S
= h̄

〈
�K

〉
S

(4.6)

or, more generally,〈
{K, S} ·K′〉

S
=

〈
{K,K′}

〉
S
+ h̄

〈
�K ·K′〉

S
(4.7)

where we restored for a moment the Plank constant h̄ in order to emphasize that the cut operation 
comes from the variation of measure in the path integral. For Gaussian averages, when S =K1 =
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TrMM̄ , the l.h.s. of (4.6) reduces to rescaling of K, which just multiplies the operator by its 
degree in M :

degK · 〈〈K〉〉= h̄
〈〈
�K

〉〉
(4.8)

Iteration of this formula gives for the operator of degree deg(m)

K =m

〈〈
K(m)

〉〉
= h̄m

m!
〈〈
�mK(m)

〉〉
, (4.9)

where �mK(m) is just a number: this expression is nothing but the Wick theorem for the Gaussian 
correlators. In what follows, we omit h̄, which counts the degree (grading) and can be easily 
restored.

Let us choose a set of “keystone” operators [10], S = {Kα} which is a subset of the whole 
graded ring R of gauge-invariant operators. This subset generates a sub-ring R(S)

{,};� (depending 
on the choice of S, it may sometimes coincide with the whole ring R, see also [22]) by application 
of the addition, multiplication, cut and join operations (i.e. is not just a set of multiplicative 
generators of the ring) and introduces this way an additional structure in the operator ring: all 
other (non-keystone) operators can be represented as “descendants” of the keystone ones, and 
what matters is their “depth”, the number of times the cut and join operators are applied to 
produce them from the keystone ones. If the operator belongs to the sub-ring generated only by 
the join operation, this operator is of the “tree” type, otherwise, it is of the “loop” type. This 
structure is at the operator level, and does not depend on the choice of the action and manifests 
itself in all the averages, not being limited to the Gaussian ones. For the matrix RCM, the action 
of the introduced cut and join operations is

�KRCM
m =m(N1 +N2)KRCM

m−1 +m

m−2∑
k=1

KRCM
k KRCM

m−k−1

{KRCM
m ,KRCM

n } =mnKRCM
m+n−1 (4.10)

i.e. it closes on the ring, and the keystone operator KRCM
2 serves just as a multiplicative generator. 

Already at the Aristotelian model, the situation changes: while the keystone set is provided by 
the three operators K2, K2, K2, the ring itself is far more complicated: keystones are no longer 
its multiplicative generators, they generate the ring only if cut and join operators are added.

Convenient for study of the cut and join operations is the following pictorial representation of 
operators K(m)

σ2,σ3 :

� � � � � � � �

� � � � � � � �

�
���

�
���

�
���

���������
	

�
���

�
���






� [σ2] = [(1234)(678)] = [431]

� � � � � � � �

����������


�
���

������






�

���������






��

����������� σ3 = (1523)(468)

The green permutation σ2 is in the canonical form of the Young diagram, and the blue one σ3
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is just a permutation (defined modulo conjugations that leave σ2 intact). The operator is con-
nected, if the vertical green lines do not cut the blue permutation σ3 into independent pieces 
(collections of cycles). Here is an example of disconnected operator: K(8)

(1234)(678),(1253)(68) =
K(5)

(1234),(1253)
·K(3)

(123),(13)

� � � � � � � �

� � � � � � � �

�
���

�
���

�
���

���������
	

�
���

�
���






� [σ2] = [(1234)(678)] = [431]

� � � � � � � �

����������


�
���

������ �

���������






��

������ σ3 = (1523)(68)

The action of the cut operation � = ∂2

∂Mijk∂M̄ijk produces a double sum over indices p, q =
1, . . .m which label the M and M̄ tensors respectively:

�K(m)
σ2,σ3

=
∑
p,q

K(m−1)

σ
(p,q)
2 σ

(p,q)
3

(4.11)

where σ (p,q) ∈ Sm−1 are best described pictorially. Consider an example of p = 3 and q = 7: 

� � � � � � � �

� � � � � � � �

�
���

�
���

�
���

���������
	

�
���

�
���






� [σ2] = [(1234)(678)] = [431]

� � � � � � � �

����������


�
���

������






�

���������






��

����������� σ3 = (1523)(468)

�

�

�

�

�

� � � � � � �

� � � � � � �

�
���

�
���

���������
	

���������






�
σ

(7,3)
2 = (127634)

� � � � � � �

����������


�
���

������






�

���������






�

����������� σ
(7,3)
3 = (1523)(467)

�

�
The black circles move here from q to p, together with the arrows which pointed at them, while 
the arrows which pointed to the white circles become pointing to the images of the white cir-
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cle in the middle. Underlined are the elements which are re-numbered (shifted by unity) when 
switching from permutation from Sm to those from Sm−1. If p = q then one puts an extra fac-
tor N1, while in the case, where two white circles were connected by an arrow, one puts factors 
N2 or N3.

Example. �K(3)
2,2 =�K(3)

(123),(12)
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We read off from the pictures in the lower lines

�K2,2 =�K(3)
(123),(12) =

= (2N1 +N2N3)K(2)
(12),() + 2K(2)

(),(12) +N3K(2)
(),() + (2N2 +N1N3)K(2)

(12),(12) =
= (2N2 +N1N3)K2 + (2N1 +N2N3)K2 + 2K2 +N3K2

1 (4.12)

which is in full accordance with (7.20) below.

The join operation { , } can be described in exactly the same way, with two operators drawn 
one after another, so that the operation maps two pairs of permutation {(σ2 ⊗ σ3), (σ ′2 ⊗ σ ′3)} ∈
S⊗2

m +m to a sum of permutations in S⊗2 .

1 2 m1+m2−1
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Kernels and cokernels. In the tensor model, there is no clear notion of genus expansion. 
Moreover, there is no obvious characteristic of non-planarity even in application to operators 
themselves. (We remind that the diagram technique for description of gauge-invariant opera-
tors and of Feynman rules for their correlators are distinct: in the former case, the propagators 
are colored lines, while in the latter case, they are r-colored tubes). In the case of operators, 
however, the cut-and-join structure can provide a characteristic of this type. For a given set of 
(primary) keystone operators S, one can consider a join pyramid, a sub-ring R(S)

{,} obtained by 
multiple action of the join operation { }. In variance with matrix models, however, there are con-
nected gauge-invariant operators of the loop type which do not belong to the join pyramid, but 
which arise in the sub-ring R(S)

{,};�. These operators have to be added to the full pyramid as new, 
secondary keystone operators. Thus, for an operator at level m, we actually have

K(m) =�p
(
{K(i),K(j)}

)
(4.13)

where K(i) and K(j) already belong to the join pyramid (and i + j =m + p + 1). The minimal 
value of p for the given operator is referred to as degree of the secondary operator. The first such 
operator in the Aristotelian model of degree one is

K3W ∈�
(
K2,2,2

)
∈�

(
{K2,2,K2}

)
∈�

({
{K2,K2},K2

})
(4.14)

Since � maps all the operators at level m to those at level m − 1, the number of which is 
much less, � inevitably has a huge kernel. In fact, since the multiplication by K1 converts all 
gauge-invariant operators at level m − 1 into independent disconnected operators at level m, the 
dimension of the kernel of � is equal to the dimension of the space of all connected operators at 
level m, plus those disconnected which do not possess a K1 factor:

Ker(�)∼=Rm/Rm−1 (4.15)

where Rm denotes the grading m part of the ring R. More precisely, the basis in the kernel is 
labeled by connected and above-mentioned disconnected operators, but the basis vectors are their 
linear combinations with the K1-multiples.

In fact, from �(K1K(m)) =K1�(K(m)) + (2m + β)K(m), β :=N1N2N3, it follows that

� ◦K1 =K1 ◦�+ (2m+ β) (4.16)

i.e. that K1 is a kind of operator inverse of � (modulo grading twist). Similarly to the case 
of hierarchy of anomalies [58], existence and simplicity of such operator can be a clue to the 
structure of the Virasoro-like constraints.

Very schematically, the CJ structure can be represented as a collection of pyramides, with 
secondary ones separated from the main (parent) join pyramid by a distance, which is the degree 
of secondary keystone operators:
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�
�
�
�
�
�
�
�
�
�
�

join pyramid

�
�

�
�

�
�

�
�

�
�

� � � primary keystones
secondary pyramid

�
�
�
�
�
�

�
�

�
�

�
�

�

secondary keystone

�
�� � operators at level m� � � � � � � �

The upgoing arrow shows the action of operation �, which can be done multiple of times.
In [46], there is an attempt made to describe the ring R of all gauge-invariant operators in an 

invariant way. However, we need more: an invariant description of the full pyramid. Ideally, we 
need this description in the language of symmetric groups, but in this paper we make just a first 
step: compiling tables of the CJ structure constants in particular examples at lower levels m. See 
sec. 7 below.

5. Counting diagrams in the Aristotelian model

Before describing the CJ-structure of the operator ring, we need a description of the operator 
ring itself. While we will proceed to level-by-level analysis in sec. 7, it deserves to present some 
general results on the numbers related to the cosets Sr

m, which is the purpose of the present 
section. This simple issue is a direct application of the Hurwitz (symmetric group) calculus a la
[30], and it has already been partly presented in [10,33,44–46]. We simplify some of the previous 
presentations. We begin from a short summary for the particular case of r = 3 and then go into 
more lengthy comments on these formulas.

Our main goals here are to evaluate at the given level m the numbers of: (i) gauge-invariant op-
erators (i.e. the dimension of Sr

m); (ii) connected gauge-invariant operators; (iii) gauge-invariant 
operators with a given number of red–green cycles (for r = 3, i.e. for the Aristotelian model); 
(iv) orbits of the color permutation group acting on gauge-invariant operators (i.e. gauge-invariant 
operators symmetrized over colors). We proceed in two different gauges, which we also discuss 
in detail.

5.1. Index functions and number of connected operators

The gauge-invariant operators form a graded ring, and the number of independent operators 
at each level m is defined by the index function

η(q)= 1+
∞∑

m=1

#mqm = PE
(
ηconn(q)

)
= PE

( ∞∑
m=1

#conn
m qm

)
=

∞∏
m=1

1

(1− qm)#conn
m

(5.1)

The numbers #conn
m can be read off from the plethystic logarithm

PLog (η(q))=
∞∑

k=1

#conn
k qk =

∞∑
m=1

μ(m)

m
logη(qm) (5.2)

where μ(m) is the Möbius function
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μ(m)=
⎧⎨
⎩

0 m has at least one repeated prime factor
1 m= 1
(−1)n m is a product of n distinct primes

(5.3)

The index functions (5.1), counting the numbers of all and of connected gauge-invariants at 
different levels can be read from (2.1), and for r = 3 they are

ηArist(q)= 1+ q + 4q2 + 11q3 + 43q4 + 161q5 + 901q6 + 5579q7 + 43206q8 + . . .=
= 1

(1− q)(1− q2)3(1− q3)7(1− q4)26(1− q5)97(1− q6)624(1− q7)4163 . . .

(5.4)

ηconn
Arist(q)= q + 3q2 + 7q3 + 26q4 + 97q5 + 624q6 + 4163q7 + . . . (5.5)

These are sequences A110143 and A057005 from [59] respectively, the latter is known to enu-
merate also the unlabeled dessins d’enfants with m edges). A more economic classification is 
provided by the orbits of the Scoloring

r group, which permutes the colorings Ni , and thus relates 
the operators. This consideration applies to any kind of their averages, not limited to Gaussian. 
For r = 3, the corresponding index functions are [44]

ζArist(q)= 1+ q + 2q2 + 5q3 + 15q4 + 44q5 + 199q6 + 1069q7 + . . .=
= 1

(1− q)(1− q2)(1− q3)3(1− q4)9(1− q5)26(1− q6)139(1− q7)814 . . .
(5.6)

ζ̃ conn
Arist (q)= q + q2 + 3q3 + 9q4 + 26q5 + 139q6 + 814q7 + . . .

However, K2
2 should be distinguished from K2K2, and this is not done in the above ζ̃ conn

Arist (q): we 
need ζ conn

Arist (q) = sym(PLog) rather than ζ̃ conn
Arist (q) = PLog(sym). The proper index function has 

been first calculated in [44]:

ζ conn
Arist (q)= q + q2 + 3q3 + 8q4 + 24q5 + 72q6 + . . . (5.7)

Anyhow, the averages of such disconnected operators, even Gaussian, are not factorized beyond 
the planar limit.

5.2. On gauge choices for S3
m

While one can analyze the coset spaces in invariant terms, still sometimes it is useful to use 
more economic descriptions, which break the symmetries, but which allow one to visualize the 
patterns better: invariant descriptions are typically multi-dimensional, while visualizations re-
quire projections into lower dimensions. In the tensor model story, different “projections” begin 
from different ways to represent/draw the operators: we already encountered two absolutely dif-
ferent types of pictures in sec. 4 above, and we will encounter more in sec. 7 below. In this 
subsection, we briefly review description of these “projections” in terms of the gauge-fixing pro-
cedure, the most familiar one in quantum field theory language, and we do this for the case of 
r = 3, to avoid overloading with details.

5.2.1. The double coset
As we already know, the space of operators is a double coset Sr

m = Sm\S⊗r
m /Sm, where the 

original S⊗r
m is just a set of r permutations σ1, . . . , σr from the symmetric group Sm, where m is 

the “level”, the number of fields M in the gauge-invariant operator (the number of the conjugate 
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fields M̄ is also m). For r = 3, we often call the three permutations “red” σ1, “green” σ2 and 
“blue” σ3. The coset is obtained through the equivalence relation of the triple by common left 
and right multiplications:

(σ1, σ2, σ3) ∼= (hL ◦ σ1 ◦ hR, hL ◦ σ2 ◦ hR, hL ◦ σ3 ◦ hR) (5.8)

5.2.2. RG-gauge: enumeration by red–green cycles
If we eliminate σ1 −→ id by left multiplication, selecting hL = h−1

R ◦ σ−1
1 , it converts

σ1 ⊗ σ2 ⊗ σ3 −→ id ⊗ h−1
R ◦ σ−1

1 ◦ σ2 ◦ hR ⊗ h−1
R ◦ σ−1

1 ◦ σ3 ◦ hR (5.9)

In this formula, hR is still unfixed, hence, there is a gauge transformation remaining which pre-
serves the gauge condition σ1 = 1. This can be enough to bring σ2 in id ⊗ σ2 ⊗ σ3 into its 
“canonical” form σ can

2 = (1, . . . , m1)(m1 + 1, . . . , m1 + m2) . . ., with m1 ≥ m2 ≥ . . ., namely, 
into the lexicographically ordered elements in the cycles described by the Young diagram 
[σ2] = {m1 ≥ m2 ≥ . . .}. Invariant under the conjugation is also the class (Young diagram) 
[σ−1

3 ◦ σ2].
We call the gauge σ1 = id , σ2 = σ can

2 RG-gauge (which is derived from “red–green”; it 
should not be mixed with RG for “renormalization group”, hence, boldface). It corresponds to 
representing the gauge-invariant operators by red–green cycles of lengths m1, m2, . . . with ver-
tices, connected by blue contractions. This enumeration was proposed in [10]. Different sets 
of red–green cycles are labeled by #m Young diagrams {m1 ≥ m2 ≥ . . . ≥ ml > 0} of the size 
m =m1 + . . .+ml =∑

kνk . They are identified with cycles in the permutation σ2 in the gauge 
σ1 = id . The maximal number of blue contractions for each set is m!. The actual number is, 
however, much smaller. For example, for the cycles of unit length, the blue contractions form 
from them new blue cycles (with unit red–green cycles playing the role of vertices), and the total 
number of these is again #m ≤m!.

5.2.3. Orbits of Scoloring
3

Permutations from the global symmetry group Scoloring

3 such as

σ1 ⊗ σ2 ⊗ σ3 −→ σ2 ⊗ σ1 ⊗ σ3

or

σ1 ⊗ σ2 ⊗ σ3 −→ σ3 ⊗ σ2 ⊗ σ1

in the RG gauge σ1 = id can be described as follows:

id ⊗ σ2 ⊗ σ3 −→ id ⊗ σ−1
2 ⊗ σ−1

2 σ3

and

id ⊗ σ2 ⊗ σ3 −→ id ⊗ σ−1
3 ◦ σ2 ⊗ σ−1

3

since the RG-gauge is given by the transformation is hL = h−1
R ◦ σ−1

1 , i.e., in this gauge, σ̃2 =
h−1

R ◦σ−1
1 ◦σ2 ◦hR , σ̃3 = h−1

R ◦σ−1
1 ◦σ3 ◦hR ( see (5.9)) so that (σ̃2, σ̃3) → (σ̃−1

2 , σ̃−1
2 σ̃3) under 

permuting σ1 ↔ σ2 and (σ̃2, σ̃3) → (σ̃−1σ̃2, σ̃
−1) under permuting σ1 ↔ σ3.
3 3
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5.2.4. Hurwitz gauge
Instead of fixing σ1 = 1, which breaks the global symmetry Scoloring

3 badly, one can impose 
other conditions, for example:

σ1 ◦ σ2 ◦ . . . ◦ σr = id (5.10)

One could call this gauge Hurwitz, because the Hurwitz numbers NH([σ1], . . . , [σr ]) count the 
number of solutions to this equation for fixed conjugacy classes (Young diagrams) [σ1],. . . ,[σr ].

The problem, however, is that this description is inconvenient for our purposes: it fails to 
distinguish the gauge-invariant operators in any nice way. For example, the admissible triple of 
permutations (123), (123), (123) corresponds to exactly the same operator K3

1 as another triple 
[ ], [, ], [, ]. Of course, the coset Sr

m can be described in any gauge, including (5.10).
Another issue with this gauge is that (5.10) gives rise to a sophisticated non-linear equation 

for hL. The way out suggested is that, instead of (5.10), we consider as the Hurwitz gauge the 
alternating product

σ1 ◦ σ−1
2 ◦ σ3 ◦ σ−1

4 ◦ . . . ◦ σ (−1)r+1

r = id (5.11)

where the l.h.s. is now multiplicatively transformed by the left and right multiplications, so this 
true Hurwitz gauge fixes hL. In exchange, the Scoloring

r symmetry acts non-trivially, not just 
permutating σi , as one expects from (5.10).

5.3. Size of the coset

5.3.1. Symmetric Schur polynomials and the z� factors
If we proceed to exact results for the numbers of operators, then all of the answers will be 

expressed through the single quantity

z� =
∏
i=1

iki · ki ! , (5.12)

where the set of non-negative integers {ki} parameterizes the Young diagram � = [. . . , 4k4, 3k3 ,

2k2, 1k1 ]. This symmetry factor is used to define the symmetric Schur polynomials

Schurm{p} =
∑
��m

p�

z�

(5.13)

where p� =∏
i p

ki

i is a monomial made from the time variables pi = iti , and � �m means that 
size of the Young diagram is m,

|�| =
∑

i

iki =m (5.14)

The symmetric Schur polynomials have a simple generating function

∞∑
m=0

tm · Schurm{p} = exp

(∑
k

tkpk

k

)
(5.15)

The more general Cauchy formula

exp

(∑ tkpkp̄k

k

)
=

∑
t |R| · SchurR{p} · SchurR{p̄} (5.16)
k R
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involves Schur polynomials for arbitrary Young diagrams R, not only for the symmetric ones, 
R = [m], but we do not need them in the present paper.

5.3.2. Estimates of the coset size
Permutations are characterized by their cycle structure: by ki we denote the number of cycles 

of length i. They are divided into conjugacy classes, labeled by Young diagrams �. The class �
contains ||�|| = |�|!

z�
permutations, each left invariant under z� conjugations. Other conjugations 

from Sm, with m = |�| convert one of the permutations in the class into another in the same class.
Accordingly, the size of our double coset is restricted by the two inequalities:

(m!)r−1

m! ≤ ||Sr
m|| ≤ (m!)r−1 (5.17)

Indeed,∑
�

zr−2
� ≥ zr−2

[1]m = (m!)r−2 (5.18)

and ∑
�

zr−2
� ≤ (m!)r−2

(∑
�

1

)
≤ (m!)r−1 (5.19)

since, for each �, z� ≤ m! (and only z[1m] = m! saturates this inequality), and the number of 
Young diagrams, defined by the coefficient of qm in the expansion of 

∏∞
n=1(1 − qn)−1 is smaller 

than the corresponding coefficient in the expansion of (1 −q)−m, which is equal to �(2m)
m!·�(m)

≤m!.
Note that the inequalities (5.17) are sometimes saturated: the right one, at m = 2, and the left 

one, at m →∞.

5.3.3. The lemma that is not Burnside’s
In order to obtain precise formulas for the size of the coset, we need the general expression: 

it is given by the celebrated formula often attributed to W. Burnside, but, in fact, discovered by 
A.-L. Cauchy and later re-discovered by F.G. Frobenius. Afterwards, the lemma is often named 
“the lemma that is not Burnside’s” to emphasize that it is only one of the many important and 
original claims made by W. Burnside in his very important book [60].

If a finite group H acts on a set X, x −→ h ◦ x, then the number of orbits is equal to

||X/H || = 1

||H ||
∑
h∈H

∑
x∈X

δ(h ◦ x, x) (5.20)

For example, if the group does not act at all: h ◦ x = x for all g and x, then ||X/H || = 1
||H || ·||H || · ||X|| = ||X||. On the contrary, if the group acts with no fixed points, i.e. h ◦x = x implies 

h = id , then, ||X/H || = 1
||H || · ||X|| = ||X||

||H || .
In general, (5.20) is proved by the following chain of relations:

||X/H || =
∑

orbits of H

1=
∑
orbits

( ∑
x∈orbit

1

||orbitx ||

)
=

∑
x∈X

1

||orbitx || =

= 1

||H ||
∑
x∈X

||stabilizer subgroup w.r.t. x|| = 1

||H ||
∑
h∈H

∑
x∈X

δ(h ◦ x, x) (5.21)
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5.4. The number of gauge-invariant operators: ||Sr
m||

If we fix the gauge σ1 = id , then Sr
m is just a set of equivalence classes under simultaneous 

conjugations σj −→ hσjh
−1 for h, σj ∈ Sm and j = 2, . . . , r . Eq. (5.20) then implies that the 

size

||Sr
m|| =

1

m!
∑
h∈Sm

∑
σ2,...,σr∈Sm

r∏
j=2

δ(σ−1
j hσj ,h)= 1

m!
∑
h∈Sm

⎛
⎝ ∑

σ∈Sm

δ(σ−1hσ,h)

⎞
⎠r−1

,

(5.22)

where we have substituted all δ(hσjh
−1, σj ) with the equivalent conditions δ(σ−1

j hσj , h). Now, 
if h is a permutation of the type [h] =�, then there are exactly z� conjugations from Sm which 
leave it intact. As a consequence, the number of different permutations of the type [h] =� is 
||�|| = ||Sm||

z�
= m!

z�
. This means that 

∑
σ∈Sm

δ(σ−1hσ, h) = z[h], and, therefore,

||Sr
m|| =

1

m!
∑
h∈Sm

zr−1
[h] = 1

m!
∑
��m

||�|| · zr−1
� =

∑
��m

zr−2
� (5.23)

This is exactly eq. (2.1). In particular, for r = 2, where the operators are 
∏

p Tr (MM̄)mp with 
m =∑

p mp , we obtain ||Sr
m|| =

∑
� 1 = the number of Young diagrams of size m. Similarly, 

for r = 1, i.e., for the vector model, where there is just one operator (MiM̄
i)m at each level, ∑

��m z−1
� = 1.

5.5. The number of connected operators: index function η(q)

The simple form of the formula (5.23) (or (2.1)) implies that the index function η(q) is actually 
factorized:

ηr(q)=
∑
�

zr−2
� q |�| =

∑
{ki }

∏
i

(ir−2qi)ki (ki !)r−2 =
∏
i

η̂r (si) (5.24)

where

η̂r (s)=
∑

k

(k!)r−2sk (5.25)

and si = ir−2qi . The functions η̂1(s) = es and η̂2(s) = 1
1−s

are elementary, and they lead to the 
obvious index formulas

η1(q)=
∞∏
i=1

η̂1(q
i/i)= exp

(∑
i=1

qi

i

)
= 1

1− q
(5.26)

and

η2(q)=
∞∏
i=1

η̂2(q
i)= 1∏∞

i=1(1− qi)
(5.27)

for the vector and matrix models respectively. The latter counts the number of Young diagrams 
of different sizes. For the Aristotelian model with r = 3, we obtain the textbook example of 
divergent and Borel-summable series
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η̂3(s)=
∑

k

k! · sk =
∞∫

0

e−x dx

1− sx
+ const · e−1/s

s
(5.28)

for which we have had a chance to discuss in [61]. This function is well-known for its non-
perturbative ambiguity, which, however, is not seen at the level of the formal series in q . As soon 
as we are interested in the coefficients of the perturbative series, we neglect the non-perturbative 
term so that

η̂3(s)= e− 1
s

s
Ei
(1

s

)
(5.29)

where Ei(x) is the exponential integral [62], and

ηArist (q)= η3(q)=
∞∏
i=1

η̂3(iq
i) (5.30)

The number of connected operators #conn
k is then calculated by taking the plethystic loga-

rithm (5.2)

∞∑
k=1

#conn
k qk =

∞∑
k,i=1

μ(k)

k
log η̂3(iq

ik) (5.31)

The expansion of the logarithm of η̂3(s) is given by

log η̂3(s)=
∞∑

k=1

νk

sk

k
(5.32)

where the set of numbers νk is a sequence A003319 from [59]. Now one immediately ob-
tains (5.4). Generalizations to higher r are straightforward.

5.6. The number of operators with fixed number of the red–green cycles (RG gauge)

Let us evaluate the number of operators with fixed number of the red–green cycles. We start 
from the Aristotelian model at r = 3. In the RG gauge, we fix not only σ1 = id , but also the 
conjugacy class of [σ2], and enumerate the conjugacy classes of σ3 under the condition that the 
conjugations preserve the selected σ2. According to (5.20), the number of such orbits, which 
depends only on the conjugacy class of σ2, is

N [σ2] = 1

z[σ2]

∑
σ3,h

δ(h ◦ σ3 ◦ h−1, σ3) · δ(h ◦ σ2 ◦ h−1, σ2)=

= 1

z[σ2]

∑
h

zh · δ(h ◦ σ2 ◦ h−1, σ2) (5.33)

where we explicitly summed over σ3. We define zR
h , the number of permutations σ ∈ R which 

commute with h, σ−1hσ = h. Like zh, these zR
h depend only on the conjugacy class [h] of h. 

The table of the lowest zR
h can be found in Appendix B.1.

Now we can further take in (5.33) an average over all σ2 of the given type [σ2], which provides 
a factor z[σ2]:
h
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N [σ2] = 1

||σ2|| · z[σ2]

∑
h

zh · z[σ2]
h = 1

||σ2|| · z[σ2]

∑
�

||�|| · z� · z[σ2]
� =

∑
�

z
[σ2]
� (5.34)

The last equality comes from ||�|| · z� = ||σ2|| · z[σ2] =m!. These N [σ2] are exactly the numbers 
in the penultimate line of the table (B.1), and the index function is now

η
(f )
Arist (p)= 1+ p1 +

(
2p[2] + 2p[11]

)
+

(
4p[3] + 4p[21] + 3p[111]

)
+

+
(

10p[4] + 10p[31] + 8p[22] + 10p[211] + 5p[1111]
)
+

+
(

28p[5] + 34p[41] + 26p[32] + 26p[311] + 22p[221] +
+ 18p[2111] + 7p[11111]

)
+ . . . (5.35)

This index function is immediately reduced to (5.4) on the subspace pR = q |R|, i.e. upon sum-
mation of all the coefficients at a given level (which are marked by parentheses in the formula). 
If one realizes the time variables pk through the Miwa variables: pk =∑

i x
k
i , this corresponds 

to leaving just one xi : x1 = q . This case corresponds to the Schur functions non-zero only when 
the Young diagram contains just one line (symmetric representation).

For generic r , the summand contains an additional factor zr−3
� : then the number of operators 

for the pattern of red–green circles specified by [σ2] is

N [σ2]
r =

∑
�

z
[σ2]
� zr−3

� (5.36)

In particular,∑
R�m

NR
r =Nr (5.37)

and

N [1m]
r =Nr−1 (5.38)

since there is just one permutation in the class [1m].

5.7. Symmetrizing operators in colors: the number of orbits of Scoloring
r

The last number that we are going to discuss in this paper is how many essentially different 
gauge-invariant operators are there, i.e. how many after identification of those differing only by 
permutations of colors. To put it differently, we ask how many orbits of the permutation group 
S

coloring
r there are. Here we can again use (5.20).

5.7.1. A toy example: Scoloring
2

As a warm-up example, consider just a set X= Y⊗2. What is the number of symmetric pairs? 
The symmetry group S2 consists of two transformations (y1, y2) −→ (y1, y2) and (y1, y2) −→
(y2, y1), thus according to (5.20),

||Sym(Y⊗2)|| = 1

2

{
δ
(
(y1, y2), (y1, y2)

)
+ δ

(
(y2, y1), (y1, y2)

)}
=

= 1(|Y |2 + |Y |
)
= |Y |(|Y | + 1)

(5.39)

2 2
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Similarly,

||Sym(Y⊗3)|| = 1

3!
{
δ
(
(y1, y2, y3), (y1, y2, y3)

)
+

+ 3δ
(
(y2, y1, y3), (y1, y2, y3)

)
+ 2δ

(
(y2, y3, y1), (y1, y2, y3)

)}
=

= 1

6

(
|Y |3 + 3|Y |2 + 2|Y |

)
= |Y |(|Y | + 1)(|Y | + 2)

6
(5.40)

Coming closer to our problem, if we symmetrize Sr
m w.r.t. the Scoloring

2 permutations of σ2
and σ3, i.e., just over two colors, green and blue,

||Symg,b(S3
m)|| = 1

2!m!
∑

σ2,σ3,h∈Sm

{
δ(h−1σ2h,σ2)δ(h

−1σ3h,σ3)+

+ δ(h−1σ3h,σ2)δ(h
−1σ2h,σ3)

}
=

= 1

2!m!
∑
�

||�|| ·
(
z2
� + z�2

)
= 1

2

∑
�

(
z� + z�2

z�

)
(5.41)

In the second term of the sum, after the substitution σ2 = h−1σ3h into σ3 = h−1σ2h = h−2σ3h
2, 

i.e. h2 = σ3h
2σ−1

3 , we need the number of conjugations (by σ3) which leave invariant h2, not h, 
and this number is z�2 . At the lowest levels (for ξ ’s, see examples in (5.55) below):

m � z� z�2 . . . ξ
(2)

�2 ξ
(3)

�3 . . .

2 [2] 2 z[2] = 2 ξ
(2)
[2] = 2 ξ

(3)
[2] = 1

[11] 2 z[11] = 2 ξ
(2)
[11] = 2 ξ

(3)
[11] = 1

3 [3] 3 z[3] = 3 ξ
(2)
[3] = 1 ξ

(3)
[2] = 3

[21] 2 z[21] = 6 ξ
(2)
[21] = 4 ξ

(3)
[21] = 1

[111] 6 z[111] = 6 ξ
(2)
[111] = 4 ξ

(3)
[111] = 3

(5.42)

and we get

||Symg,b(S3
2 )|| = 1

2

(
2+ 2

2
+ 2+ 2

2

)
= 3 , (5.43)

which is the case: in the set K2, K2, K2, K2
1, the two operators in the middle get identified by 

symmetrization, reducing the total number from 4 to 3. Similarly

||Symg,b(S3
3 )|| = 1

2

(
3+ 3

3
+ 2+ 6

2
+ 6+ 6

6

)
= 8 , (5.44)

which is also true.

5.7.2. Aristotelian model: Scoloring

3

For symmetrization over Scoloring
3 , the problem is a little more complicated:

||Symr,g,b(S3
m)|| = 1

3!(m!)2

∑
hL,hR,σ1,2,3∈Sm

{
δ(hLσ1hR,σ1) · δ(hLσ2hR,σ2)

· δ(hLσ3hR,σ3)+ 3 · δ(hLσ1hR,σ1) · δ(hLσ2hR,σ3) · δ(hLσ3hR,σ2)

+ 2 · δ(hLσ1hR,σ2) · δ(hLσ2hR,σ3) · δ(hLσ3hR,σ1)
}

(5.45)



H. Itoyama et al. / Nuclear Physics B 932 (2018) 52–118 77
In the first two terms of this sum hL = σ1h
−1
R σ−1

1 and we obtain the problem of conjugation of 
σ̃i = σ−1

1 σi by hR , which we already solved. In the last term, hL = σ2h
−1
R σ−1

1 and the other two 
conditions are

σ2h
−1
R σ−1

1 σ2hR = σ3

σ2h
−1
R σ−1

1 σ3hR = σ1 (5.46)

i.e.

σ̃2 = hRσ̃−1
2 σ̃3h

−1
R

σ̃3 = hRσ̃−1
2 h−1

R (5.47)

and substituting σ̃3 from the second equation into the first one, we obtain

σ̃2 = hRσ̃−1
2 hRσ̃−1

2 h−2
R =⇒ σ 3 = h3

R (5.48)

where σ = hRσ̃−1
2 . Thus, what we need here is the number of σ with a given cube, which itself 

is a cube, which we denote by ξ (3)

[h3
R]

(this number actually depends only on the conjugacy class 

of h3
R , not of hR). In all the three cases, the sum over a common factor in σ1,2,3 gives just m!, 

and the answer is

||Symr,g,b(S3
m)|| = 1

3! ·m!
∑
�

||�|| ·
(
z2
� + 3z�2 + 2ξ

(3)

�3

)
= (5.49)

= 1

6

∑
�

(
z� + 3z�3

z�

+ 2ξ
(3)

�3

z�

)
=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m= 2 : 1
6

(
(2+ 2)+ 3 · (2/2+ 2/2)+ 2 · (1/2+ 1/2)

)
= 2 K2

1,K∈

m= 3 : 1
6

(
(3+ 2+ 6)+ 3 · (3/3+ 6/2+ 6/6)+ 2 · (3/3+ 1/2+ 3/6)

)
= 5 K3

1,K2K1,K3,K2,2,K3W

. . .

The corresponding generation function is given by (5.6).

5.7.3. Generic r
In general we need the quantities of two types:

#σ : σhr = hrσ this is z[hr ] (5.50)

and

#σ : σ r = h we denote it ξ
(r)
[h] (5.51)

What is needed to find these quantities is that hr consists of the same cycles as h does, if their 
length is coprime with r . The cycle of the length l, which has a biggest common divisor lr =
BCD(l, r), gets split into l/ lr cycles of length lr , for example:

(1234)2 = (13)(24)

(12)6 = ()

(123456789)6 = (174)(285)(396) (5.52)
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Then, say,

[. . . ,4k4 ,3k3,2k2,1k1 ]2 = [. . . ,42k8 ,3k3+2k6 ,22k4 ,1k1+2k2 ] (5.53)

while ξ (r) is obtained from the re-expansion of the symmetric Schur polynomial

Schurm{p} =
∑
��m

p�

z�

Schurm{prk = pr
k} =

∑
��m

ξ
(r)
�

p�

z�

(5.54)

For example,

Schur3{p2k = p2
k} =

p3

3
+ p2p1

2
+ p3

1

6

∣∣∣∣∣
p2=p2

1

= p3

3
+ 2p3

1

3

=⇒ ξ
(2)
[3] = 1, ξ

(2)
[21] = 0, ξ

(2)
[111] = 4

Schur3{p3k = p3
k} =

p3

3
+ p2p1

2
+ p3

1

6

∣∣∣∣∣
p3=p3

1

= p2p1

2
+ p3

1

2

=⇒ ξ
(3)
[3] = 0, ξ

(3)
[21] = 1, ξ

(3)
[111] = 3 (5.55)

Let us put it differently: define that the Young diagram �1 is r-larger than the Young diagram 
�2, �1 �r �2, if �2 is obtained from �1 (different from �2) by replacing all lines of lengths 
rλi with r lines of lengths λi for each i. For instance, [31] �3 [1111], [91] �3 [3331], [841] �4
[222211111], etc. Then,

ξ
(r)
� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if: 1) there are no diagrams r-larger than �;
2) there is at least one line with length multiple r

1 if: 1) there are no diagrams r-larger than �;
2) there are no lines with lengths multiple r

z� ·∑�′�r�

1

z�′
otherwise

(5.56)

where the sum goes over all r-larger diagrams and does not include the diagram � itself if there 
are diagrams r-smaller than �. Otherwise, the sum includes also �.

Examples.

ξ
(r)
[1r ]

(5.56)= z[1r ]
(

1

z[1r ]
+ 1

z[r]

)
(5.12)= 1+ r!

r
= 1+ (r − 1)!

for r < s < 2r : ξ
(r)
[1s ]

(5.56)= z[1s ]
(

1

z[1s ]
+ 1

z[r,1s−r ]

)
(5.12)= 1+ s!

r · (s − r)!

for 2r ≤ s < 3r : ξ
(r)
[1s ]

(5.56)= z[1s ]

(
1

z[1s ]
+ 1

z[r,1s−r ]
+ 1

z[2r,1s−2r ]

)

(5.12)= 1+ s!
r · (s − r)! +

s!
2r2 · (s − 2r)!

. . . (5.57)

From the last formula we can get, say, ξ (4)
8 = 1681 or ξ (4)

9 = 12097, what is true.
[1 ] [1 ]
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Likewise one obtains

ξ
(4)

[3,16]
(5.56)= z[3,16]

(
1

z[3,16]
+ 1

z[4311]

)
(5.12)= 1+ 3 · 6!

4 · 3 · 2! = 91 (5.58)

and so on.
At last, as an example of (5.56) when the sum does not include the diagram itself, consider

ξ
(r)
[rr ] =

z[rr ]
z[r·r]

= rr r!
r2 = rr−2r! (5.59)

where [rr ] denotes the diagram consisting of r lines with the same length r . For instance, ξ (3)
[333] =

18, which is, indeed, the case.

6. Hurwitz gauges and Hurwitz numbers

In this section, we are going to discuss two issues: 1) how to calculate the number of operators 
in the Hurwitz gauge, which is associated with the Hurwitz numbers; and 2) how to calculate the 
numbers of operators in the true Hurwitz gauge.

6.1. Calculations in the Hurwitz gauge

The Hurwitz gauge is naturally related to the Hurwitz numbers. These latter, in particular, are 
simply related with the structure constants of the ring associated with the center of group algebra 
of the symmetric group. One can construct the numbers of gauge-invariant operators both from 
these structure constants and from the structure constants of the dual ring, which are nothing but 
the Clebsh–Gordan coefficients associated with representations of the symmetric group. Here we 
discuss all these issues.

6.1.1. Hurwitz numbers and Clebsch–Gordon coefficients
The Hurwitz numbers are related to counting the ramified coverings of the connected Riemann 
surface. These numbers are numbers of the permutations of given types, i.e. belong to given 
conjugacy classes, σi ∈�i , and satisfy the condition σ1 ◦ . . . ◦ σr = id , which is nothing but the 
Hurwitz gauge, s. 5.2.4. On the other hand, these numbers enumerate operators in the Hurwitz 
gauge and fixed numbers of the red, green and blue cycles (in fact, the answer is symmetric w.r.t. 
permuting these latter numbers) and are given by the Burnside–Frobenius formula [28,50]

NH (�1, . . . ,�r)=m!
∑
R �m

d2
RϕR(�1) . . . ϕR(�r) (6.1)

where the characters of symmetric group Sm, ψR(�) are related with ϕR(�) via ψR(�) =
dRz�ϕR(�). They can be also considered as the coefficients of the Schur functions

SchurR{p} =
∑
��m

dRϕR(�)p� (6.2)

In these formulas, all the Young diagrams are of the size m (for more general situation see [30]), 
and dR = Schur(pk = δk,1), i.e. is the coefficient in front of p|R|1 = pm

1 , so that ϕR([1|R|]) = 1.

Example. Choose all three conjugacy classes to be one longest cycle for r = 3 and group S3. 
Then, there are only two possible solutions to the equation σ1 ◦ σ2 ◦ σ3 = id : σ1 = σ2σ3 =
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(123) and σ1 = σ2σ3 = (132), i.e. NH ([3], [3], [3]) = 2. Indeed, using the Burnside–Frobenius 
formula, one obtains

NH ([3], [3], [3])= 3! ·
(

23

62 +
(−1)3

32 + 23

62

)
= 3! 9

33 = 2 (6.3)

Similarly, in the case of all three conjugacy classes being [21], one immediately realizes that 
σ1 ◦ σ2 ◦ σ3 = id has no solutions. It agrees with

NH ([21], [21], [21])= 3! ·
(

33

62 +
(−3)3

62

)
= 0 (6.4)

The orthogonality property∑
�

ψR(�)ψR′(�)

z�

= δR,R′ ⇐⇒
∑
�

z�ϕR(�)ϕR′(�)= δR,R′

d2
R

(6.5)

and the relation z�

m! = 1
||�|| imply that

∑
�

1

||�|| ·N
H (�1, . . . ,�r,�) ·NH (�r+1, . . . ,�r+r ′,�)=NH (�1, . . . ,�r+r ′) (6.6)

The orthogonality relation (6.5) also implies that

uR(�)= dR

√
z�ϕR(�)= ψR(�)√

z�

(6.7)

is an orthogonal matrix, in particular, there is an orthogonality relation dual to (6.5):∑
R �m

ψR(�1)ψR(�2)= z� · δ�,�′ ⇐⇒
∑
R �m

d2
RϕR(�)ϕR(�′)= δ�,�′

z�

(6.8)

Using the Cauchy formulas

∑
R

dR · SchurR{p} = ep1 ⇐=
∑
R

SchurR{p} · SchurR{p′} = exp

(∑
k

pkp
′
k

k

)

(6.9)

where sums go over Young diagrams R of all sizes, one obtains from the Burnside–Frobenius 
formula (6.1)

NH (�)= |�|!
∑

R �|�|
d2
RϕR(�)

(6.2)= |�|! · coeffp�

∑
R

dR · Schur{p} =

(6.9)= |�|! · coeffp�ep1 = δ(�, [1|�|]) (6.10)

and

NH (�,�′) = m!
∑
R �m

d2
RϕR(�)ϕR(�′)=m! · coeffp�p′�

∑
R

Schur{p} · Schur{p′} =

(6.9)= m! · coeffp�p′�e
∑

pkp
′
k/k = ||�|| · δ(�,�′) (6.11)
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Commutative ring in the group algebra The multi-point Hurwitz numbers involve R-indepen-
dent structure constants that describe the commutative ring, the center of the group algebra [30]

ϕR(�1)ϕR(�2)=
∑
�3

C
�3
�1,�2

ϕR(�3) (6.12)

for example,

NH (�1,�2,�3)=m!
∑
R �m

d2
RϕR(�1)ϕR(�2)ϕR(�3)

(6.11)= ||�3|| ·C�3
�1,�2

(6.13)

and the product at the r.h.s. is symmetric in all the three diagrams. Triple of the Young diagrams is 
called admissible, if the corresponding three-point Hurwitz number does not vanish, i.e. a Belyi 
function should exist.

Higher Hurwitz numbers are expressed through powers of the matrix ||�|| ·C. The simplest 
structure constants C�3

�1,�2
are listed in the multiplication tables in Appendix B.2. Note the obvi-

ous sum rule

||�1|| · ||�2|| =
∑
�3

||�3|| ·C�3
�1,�2

(6.14)

in each box in these tables, what implies that∑
�3

NH (�1,�2,�3)= ||�1|| · ||�2|| (6.15)

The orthogonality relation (6.8) implies that

C
�3
�1,�2

= z�3 ·
∑
R �m

d2
RϕR(�1)ϕR(�2)ϕR(�3)= z�3

m! ·N
H (�1,�2,�3)=

= 1

||�3|| ·N
H (�1,�2,�3) (6.16)

in accordance with (6.13).

Clebsch–Gordon coefficients From the same (6.8) it follows that

ČR1,R2,R3 = dR1dR2dR3

∑
��m

z2
�ϕR1(�)ϕR2(�)ϕR3(�)=

∑
��m

ψR1(�)ψR2(�)ψR3(�)

z�

(6.17)

serve as the structure constants of the dual algebra∑
R3 �m

ČR1,R2,R3 ·ψR3(�)=ψR1(�)ψR2(�) (6.18)

Hence, they are nothing but the Clebsh–Gordan coefficients for decomposition of representations 
R1 ⊗ R2 ⊗ R3 −→ [1m] in symmetric group Sm (since the permutation [1m] plays the role of 
unity: its composition with any permutation gives that permutation).
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6.1.2. Number of operators in the Hurwitz gauge
In [45], it was demonstrated, using the same lemma that is not Burnside’s, that the number of 

the gauge-invariant operators, is expressed through the Clebsch–Gordan coefficients (6.17). In 
particular, for r = 3,

||S3
m|| =

∑
R1,R2,R3

Č2
R1,R2,R3

(6.19)

Indeed, substituting expression (6.17) and applying the orthogonality relation (6.8) three times, 
we obtain for the r.h.s.

∑
R1,R2,R3

(∑
��m

ψR1(�)ψR2(�)ψR3(�)

z�

)2

=
∑

�,�′ �m

z3
� · δ�,�′

z�z�′
=

∑
�

z� (6.20)

in accordance with (5.23) at r = 3.
In practice, ČR1,R2,R3 are all equal to 1 at the lowest levels, only at level 5 there are a few 

appearances of 2. At the same time, at high levels the number ||S3
m|| grows with m as m!: the 

ratio ||S3
m||/m! is approximately

1,2,1.833,1.792,1.342,1.251,1.107,1.072,1.043,1.031,

1.023,1.019,1.015,1.013,1.011, . . .

for m = 1, . . . , 15.
Note that the same number of gauge-invariant operators can be expressed through the Hurwitz 

numbers:

||Sr
m|| =

∑
�1,...,�r

1

||�1||r−1N
H (�1, . . . ,�r) (6.21)

Indeed, using the orthogonality relation (6.5) and its dual (6.8) and the fact that ψ[r](�) = 1, one 
easily proves that the r.h.s. of (6.21) is equal to the sum 

∑
� zr−2

� .

6.2. Calculations in the true Hurwitz gauge

As we explained in s. 5.2.4, the Hurwitz gauge is not too convenient. In contrast, the true 
Hurwitz gauge looks much simpler. In this section, we enumerate the gauge-invariant operators 
in the Aristotelian r = 3 model in the true Hurwitz gauge and describe the structure of operators 
at first low levels in detail.

The number of gauge-invariant operators In this gauge, we need to count the number of com-
mon conjugation orbits of the permutation triple (σ1, σ2, σ3) constrained by the condition

σ1 ◦ σ2
−1 ◦ σ3 = id ⇐⇒ σ2 = σ3 ◦ σ1 (6.22)

Conjugation freedom allows us to fix a canonical σ1 = σ can
1 in the class [σ1], and it remains 

to enumerate the conjugacy classes of σ3 under the condition that the conjugations of σ3 (and 
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thus, simultaneously, of σ2) preserve the selected σ1
can. According to (5.20), the number of such 

orbits, which depends only on the conjugacy class of σ3, is

1

z[σ1]

∑
σ3,h

δ(h ◦ σ3 ◦ h−1, σ3) · δ(h ◦ σ1 ◦ h−1, σ1)= 1

z[σ1]

∑
h

zh · δ(h ◦ σ1
can ◦ h−1, σ1

can)

(6.23)

Note that we already calculated this sum in (5.33), and we can again take an average over all σ1

of the given type [σ1], which provides a factor z[σ1]
h :

N [σ1] = 1

||σ1|| · z[σ1]

∑
h

zh · z[σ1]
h = 1

||σ1|| · z[σ1]

∑
�

||�|| · z� · z[σ1]
� =

∑
�

z
[σ1]
� (6.24)

Similarly for arbitrary r in the Hurwitz gauge we would get, as in (5.36),

N [σ1]
r =

∑
�

z
[σ1
� zh�

r−3 (6.25)

In other words, the counting is exactly the same as in the RG-gauge, though the pictorial inter-
pretation in terms of the red–green cycles is now that immediate.

Structure of the operators at low levels We explicitly describe the gauge-invariant operators at 
the first five levels m = 1, 2, 3, 4, 5, the tables for the latter two being placed in Appendix B.3. 
The notation for all operators up to level m = 5 can be found in Appendix A.

m= 1 The single triple is admissible (see the definition after formula (6.13)), and it is associated 
with the single gauge-invariant operator

NH ([ ], [ ], [ ])= 1 K[ ],[ ],[ ] =K1 (6.26)

m= 2 There are four admissible triples, and they are in one-to-one correspondence with the 
gauge-invariant operators:

[σ1] [σ2] [σ3] NH ([σ1], [σ2], [σ3]) K[σ1],[σ2],[σ3]

[ ] [ ] [ ] 1 K2
1

[2] [2] [ ] 1 K2
[2] [ ] [2] 1 K2
[ ] [2] [2] 1 K2

(6.27)



84 H. Itoyama et al. / Nuclear Physics B 932 (2018) 52–118
m= 3 A similar table in this case is

[σ1] [σ2] [σ3] NH ([σ1], [σ2], [σ3]) K[σ1],[σ2],[σ3] RG-gauge

[ ] [ ] [ ] 1 K2
1 K[ ],[ ]

[2] [2] [ ] 3 K2K1 K(12),(12)

[2] [ ] [2] 3 K2K1 K[2],[ ]
[ ] [2] [2] 3 K2K1 K[2],[2]

[3] [3] [ ] 2 K3 K[ ],[3]
[3] [ ] [3] 2 K3W K(123),(132)

[ ] [3] [3] 2 K3 K(123),(123)

[2] [2] [3] 6 K2,2 K[3],[2]
[2] [3] [2] 6 K2,2 K[2],[3]
[3] [2] [2] 6 K2,2 K(12),(13)

[3] [3] [3] 2 K3 K[3],[ ]

(6.28)

All other Hurwitz numbers are vanishing. Again we have a one-to-one correspondence 
between operators and admissible triples, with each operator counted exactly once irrel-
atively to the value of non-vanishing Hurwitz number.
At level m = 3, we already need to distinguish between inappropriate (5.10) and ap-
propriate (5.11), when constructing the operators: with (123) ◦ (132) ◦ id = id , one 
associates K(123),(123),[ ] =K3 rather than K(123),(132),[ ] =K3W , and, with (123) ◦(123) ◦
(123) = id , one associates K(123),(132),(123) =K3 rather than K(123),(123),(123) =K3

1 . At 
the same time, for (123) ◦ id ◦ (132) = id the inversion of σ2 plays no role, and the as-
sociated operator is K(123),[],(132) =K3W . Still, an apparent asymmetry between σ2 and 
other two permutations leads to a non-naive placing of K3 and K3W in the table, which 
makes the action of the global symmetry Scoloring

3 less straightforward and signals about 
the problems with this labeling at higher levels.
Still, if σ2 was not inverted, i.e. if we used (5.10) instead of (5.11), the troubles would be 
much stronger: as already mentioned in sec. 5.2.4, the two triples [], [], [] and [3], [3], [3]
would describe the same operator K[],[],[] =K(123),(123),(123) =K3

1.
In the last column, we have added correspondence with operators in the RG-gauge, and 
one can see how the description in terms of [σ2], [σ3] gets degenerate: at least, in two 
cases there are different operators associated with different permutations σ3 from the 
same conjugacy class [σ3].

m= 4 Permutation triples from the subgroup S3 ⊂ S4, listed in table (6.28), are associated with 
the 11 disconnected operators, differing from those in (6.28) by an extra factor K1. The 
new 26 connected operators are (see Appendix B.3):

3× ([4], [4], [3]),3× ([4], [4], [22]),3× ([4], [4], []), 6× ([4], [3], [2]),
6× ([4], [22], [2]),3× ([3], [3], [22]), ([22], [22], [22]), ([3], [3], [3]) (6.29)
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The triple ([3], [3], [3]) appears twice, one being connected, one, disconnected. Also, 
there are 6 disconnected operators K2K2 from the square of table (6.27) associated with 
the subgroup S2 ⊗ S2 ⊂ S4:

3× ([22], [2], [2]),3× ([22], [22], []) (6.30)

The number of new unordered connected operators is 8.
Thus, at level m = 4, there are 42 ordered admissible triples and 43 gauge-invariant op-
erators, the degenerate triple being ([3], [3], [3]). The number of connected operators is 
26, and, out of 17 disconnected operators, there are 11 operators with K1 factors and 6
operators of the type K2K2.
The number of unordered admissible triples is 14, and the number of gauge-invariant op-
erators modulo Scoloring

3 symmetry is 15, the degenerate triple being again ([3], [3], [3]). 
Connected are 8 of these operators, among the disconnected ones there are 5 operators 
with the K1 factor and 2 operators of the type K2K2, one with coincident and one with 
distinct colors.

m= 5 At this level, one admissible triple, ([22], [4], [4]) is triply degenerate.√
There are 28 operators with σ1 ∈ [5] and 19 ordered admissible triples (see ta-

ble B.7). Degenerate are admissible triples ([5], [5], [5]) (four times), ([5], [4], [4])
(three times), ([5], [5], [32]) and ([5], [32], [5]) (two times each), ([5], [4], [32]) and 
([5], [32], [4]) (two times each).√
There are 34 operators with σ1 ∈ [4] and 20 ordered admissible triples (see table B.8). 

Degenerate admissible triples are: the already familiar ([4], [5], [4]) and ([4], [4], [5])
(three times each), and ([4], [5], [32]) and ([4], [32], [5]) (two times each); the new de-
generate triples are: ([4], [4], [22]) and ([4], [22], [4]) (three times each), ([4], [4], [3])
and ([4], [3], [4]) (two times each), ([4], [32], [3]) and ([4], [3], [32]) (two times each).√
There are 26 operators with σ1 ∈ [32] and 20 ordered admissible triples (see ta-

ble B.9). Degenerate admissible triples are: the already familiar ([4], [5], [32]) and 
([4], [32], [5]) (two times each) and ([32], [4], [3]) and ([32], [3], [4]) (two times 
each); only one pair of degenerate triples is new, ([32], [32], [3]) and ([32], [3], [32])
(two times each).√
There are 26 operators with σ1 ∈ [3] and 20 ordered admissible triples (see ta-

ble B.10). Degenerate admissible triples are: the already familiar ([3], [5], [5]), 
([3], [4], [4]), ([3], [32], [32]) ([3], [4], [32]) and ([3], [32], [4]) (two times each); only 
one double-degenerate triple is new, ([3], [3], [3]).√
There are 22 operators and 20 ordered admissible triples with σ1 ∈ [22] (see ta-

ble B.11). This time there is only one triply-degenerate admissible triple, the already 
familiar ([22], [4], [4]).√
For σ1 ∈ [2], there are 18 admissible triples and 18 operators, no triples are degenerate 

(see table B.12).√
For σ1 ∈ [], there are 7 admissible triples and 7 operators, no triples are degenerate 

(see table B.13).
To summarize, at level m = 5, we have 28 + 34 + 26 + 26 + 22 + 18 + 7 = 161 gauge-
invariant operator (97 of them connected), while there are only 19 +20 +20 +20 +20 +
18 + 7 = 124 admissible ordered triples. There are 34 unordered admissible triples and 
44 S

coloring
3 -symmetric operators, 24 of them being connected.
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7. Level-by-level analysis of operator ring and its CJ structure

In this section, we illustrate our considerations by the diagram technique for operators, in-
troduced and explained in detail in [10]. Once again, the gauge-invariant operators are defined 
without any reference to dynamics of the theory, thus these are not the Feynman diagrams in 
the tensor model. The Feynman diagrams arise when one introduces the bilinear action (3.2), 
perturbed by some keystone operators and their RG descendants. Then the diagrams which we 
use in this section turn into various “points”, vertices of the Feynman diagrams, and they are 
connected by Feynman propagators, which are r-colored tubes (cables) made from r thin lines 
of different colors (as is shown in figure below in s. 7.1). One can replace calculations with the 
rule (3.8) by those with the help of such Feynman diagrams, but this is of less practical use. The 
Feynman rules and pictures can be more useful for the study of recursion relations, but this is not 
the subject of the present section.

In this section, we will move up step by step in the “level” m of the gauge-invariant operators, 
with the symmetric group Sm underlying the description of the level m. We attempt to distinguish 
operators with five descriptions:

• by diagrams (see Appendix A);
• as elements of the coset Sr

m from (3.5), which implies a labeling like Kσ1,σ2,σ3 or just K[σ2],σ3

in the RG-gauge σ1 = id , σ2 = [σ2];
• by Gaussian averages (for which the general answer is known from [12]);
• by their place among the trees formed by the triple of keystone operators K2, K2, K2, which 

implies the labeling by bracket words like

K[[2,2],[2,[2,2]]] =
{
{K2,K2}, {K2, {K2,K2}}

}
∈R6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�

� �
�

� � � � �K2 K2 K2 K2 K2

{K2,K2}{K2,K2}

{K2, {K2,K2}}
{
{K2,K2}, {K2, {K2,K2}}

}
(in fact there are plenty of operators, which can not be described this way: the join operation 
has a huge cokernel in the space (Sr

m)conn),
• whether or not they have the same image under the cut operation �.

Immediate results from these five characterizations are often different. They receive more struc-
ture by separation of connected and disconnected operators and by the orbits of the global 
S

coloring
r group. We demonstrate how these organize themselves for the first five levels m ≤ 5

of the Aristotelian r = 3 model. In fact, the first three characterizations of operators can be found 
in Appendices A and B, and, in this section, we mostly concentrate on the CJ structure of opera-
tors, which is essential for the two latter characterizations.
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7.1. Level S1

At this level, there are no permutations and there is a single operator K[1],[1],[1] = K1 =
Mi1i2i3M̄

i1i2i3 . This operator has no distinguished coloring: permutations of colorings leave it 
intact. Pictorially, it is just

�
�

�
��1 1̄K1 =

where 1 and 1̄ refer to the fields M and M̄ , each of which, in this example, appear once. We 
changed directions of the green and blue arrows as compared to [10] to better suit the permutation 
group language, which we use in the present paper.

The Gaussian average in this case is depicted by the Feynman diagram, where the above 
picture turns into the 2-valent vertex with two external legs labeled by 1 and 1̄ connected by a 
thick propagator, a tube which has three colored lines inside:

�
�

�
1 1̄�1 1̄

=
〈〈
K1

〉〉
= = N1N2N3 ≡ β

The cut and join operations act on K1 in the simple way:

�K1 =N1N2N3 = β (7.1)

and

{K1,K1} =K1 (7.2)

Moreover, for any other gauge-invariant operator K of a definite degree,

{K1,K} = degK ·K (7.3)

i.e. K1 acts as a dilatation (grading) operator in the ring. The subring generated by the dilatation 
(grading) operator K1, which consists of operators Km

1 at all levels m, is by itself closed under 
the cut and join operations:

�
(
Km

1

)
=m(m− 1+ β)Km−1

1

{Km
1 ,Kn

1} =mnKm+n−1
1 (7.4)

Also (7.3) generalizes to

{Km
1 ,K} =m · degK ·KKm−1

1 (7.5)

7.2. Level S2

In this subsection, we analyze the structure of gauge-invariant operators in detail, partly re-
peating some issues discussed earlier for illustrative purposes.
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7.2.1. Gauge-invariant operators
In this case, one can draw four different pictures for the gauge-invariant operators: K2

1, K2, 
K2 and K2 (see Appendix A.2). The question is what they have to do with the eight elements 
σ1⊗σ2⊗σ3 ∈ S⊗3

2 . Working in the RG-gauge, i.e. if we fix σ1 = id , the dictionary looks simple:

σ1 σ2 σ3 operator

(1)(2) (1)(2) (1)(2) K2
1

(1)(2) (1)(2) (12) K2
(1)(2) (12) (1)(2) K2
(1)(2) (12) (12) K2

(7.6)

The rule is just that the cycle (12) in the blue column means that the blue arrows go from vertex 
1 to 2̄ and from 2 to 1̄, while the pair of cycles (1)(2) means that the blue arrows go from 1 to 1̄
and from 2 to 2̄.

One can unfix σ1 and obtain the second half of the table:

σ1 σ2 σ3 operator

(12) (12) (12) K2
1

(12) (1)(2) (12) K2
(12) (12) (1)(2) K2
(12) (1)(2) (1)(2) K2

(7.7)

This, certainly restores the symmetry between the three K2, at the price of each operator appear-
ing twice.

The emerging rule is that when all the three permutations are the same, we obtain K2
1, while 

when two are the same, while the third differs, we get K2, colored by the third permutation.
At the same time, the orbits of diagonal S2 are also alike: there are four of the size 2, and they 

are, indeed, in one-to-one correspondence with the four operators.
The coset S3

2 = S2\S⊗3
2 /S2 consists of four classes labeled by pairs of permutations. Since, 

for S2, the permutations are in one-to-one correspondence with the Young diagrams, () ↔[1, 1]
and (1, 2) ↔ [2], an alternative enumeration of the elements is by pairs of the Young diagrams.

In this case, there are four ordered admissible triples, and the corresponding four operators 
are

[11], [11], [11]K[11],[11],[11] =K2
1 =Mi1

1i2
1i3

1Mi1
2i2

2i3
2M̄

i1
1i2

1i3
1
M̄i1

2i2
2i3

2

[2], [11], [2] K[2],[11],[2] =K2 =Mi1
1i2

1i3
1Mi1

2i2
2i3

2M̄
i1

1i2
2i3

1
M̄i1

2i2
1i3

2

[11], [2], [2] K[11],[2],[11] =K2 =Mi1
1i2

1i1
1Mi1

2i2
2i3

2M̄
i1

1i2
1i3

2
M̄i1

2i2
2i3

1

[2], [2], [11] K[2],[2],[11] =K2 =Mi1
1i2

1i3
1Mi1

2i2
2i3

2M̄
i1

1i2
2i3

2
M̄i1

2i2
1i3

1
(7.8)
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The corresponding Gaussian averages are

〈〈K2〉〉 =N1N2N3(N1 +N2N3)= β(N1 +N2N3)

〈〈K2〉〉 =N1N2N3(N2 +N1N3)= β(N2 +N1N3)

〈〈K2〉〉 =N1N2N3(N3 +N1N2)= β(N3 +N1N2)

〈〈K1 K1〉〉 =N1N2N3(N1N2N3 + 1)= β(β + 1) (7.9)

At last, one may not distinguish between the three operators K2, K2 and K2: they are related 
by the action of the group Scoloring

3 , which permutes the three colorings N1, N2, N3. This group 
has just two orbits in the space of operators and, in this case, these are in one-to-one correspon-
dence with the unordered admissible triples of Young diagrams.

From now on, we often omit the tale of 1’s from the Young diagram, i.e., in example of S2, 
write [] instead of [11].

7.2.2. CJ structure at level m = 2
The join operation lifts a pair of the level-two operators to level three, see (7.17) below. Joining 

with K1 just multiplies by 2, in accordance with (7.3).
The cut operation at level 2 takes all operators from level 2 to level 1, where there is only one 

operator, K1:

�
(
K2

1

)
= 2(N1N2N3 + 1)K1 = 2(β + 1)K1 (7.10)

and

�K2 = 2(

α︷ ︸︸ ︷
N1 +N2N3)K1

�K2 = 2(N2 +N1N3)K1

�K2 = 2(N3 +N1N2︸ ︷︷ ︸
α

)K1 (7.11)

Thus, already at this level � has a big kernel (of codimension one):

Ker(2)(�)= span
{
(β + 1)K2 − αK2

1, (β + 1)K2 − αK2
1, (β + 1)K2 − αK2

1,
}

(7.12)

in accordance with (4.15). Even in the sector of connected operators:

Ker(2)
conn(�)= span

{
αK2 − αK2, αK2 − αK2

}
(7.13)

Note that � converts all the four operators at level two into a single one at level one. This is 
what does not happen at r = 2 (for matrix model), where there is just one connected operator 
Tr (MM̄)m at each level, but is necessarily happening in tensor models with r ≥ 3, where the 
number of operators is growing with the level. Thus, � has a huge kernel (which we mentioned as 
CJ “cohomology” in the scheme in section 2). From the point of view of Virasoro-like constraints, 
this means that the ∂2

∂t∂t
part of � is highly degenerate, and there is a large sub-sector, where only 

the t ∂ part is operative, which is fully controlled by the rooted-tree algebra.

∂t
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7.3. Level S3

7.3.1. Operators
Operators at this level are described by the four disconnected diagrams for K2

1 and K2K1, 
K2K1, K2K1 and by seven connected diagrams (see Appendix A.3) already considered in [10]. 
The three diagrams in the last line of s. A.3 are actually the same (topologically equivalent). Note 
the numeration of vertices: according to the RG “gauge fixing” σ1 = id , all red arrows should 
connect vertices with the same numbers: 1 with 1̄, 2 with 2̄ and 3 with 3̄.

This is in full agreement with the size of the coset S3
3 = S3\S⊗3

3 /S3, which contains exactly 
11 elements (conjugacy classes), in one-to-one correspondence with the pictures of operators:

K3
1 [ ] ⊗ [ ] ( )( ) K[ ],[ ] [ ] 1

K3 [3] ⊗ [3] (123)⊗ (123), (132)⊗ (132) K(123),(123) [ ] 2
K3 [ ] ⊗ [3] ( )⊗ (123), ( )⊗ (132) K[ ],[3] [3] 2
K3 [3] ⊗ [ ] (123)⊗ ( ), (132)⊗ ( ) K[3],[ ] [3] 2

K3W [3] ⊗ [3] (123)⊗ (132), (132)⊗ (123) K(123),(132) [3] 2

K2K1 [2] ⊗ [2] (12)⊗ (12), (13)⊗ (13), (23)⊗ (23) K(12),(12) [ ] 3
K2K1 [ ] ⊗ [2] ( )⊗ (12), ( )⊗ (12), ( )⊗ (12) K[ ],[2] [2] 3
K2K1 [2] ⊗ [ ] (12)⊗ ( ), (13)⊗ ( ), (23)⊗ ( ) K[ ],[2] [2] 3

K2,2 [2] ⊗ [2] (12)⊗ (13), (12)⊗ (23), (13)⊗ (12), (13)⊗ (23), (23)⊗ (12), (23)⊗ (13) K(12),(13) [3] 6
K2,2 [2] ⊗ [3] (12)⊗ (123), (12)⊗ (132), (13)⊗ (123), (13)⊗ (132), (23)⊗ (123), (23)⊗ (132) K[2],[3] [2] 6
K2,2 [3] ⊗ [2] (123)⊗ (12), (132)⊗ (12), (123)⊗ (13), (132)⊗ (13), (123)⊗ (23), (132)⊗ (23) K[3],[2] [2] 6

36

(7.14)

The m! = 3! = 6 permutations from S3 are classified according to 3 conjugacy classes [111] =
[ ], [21] = [2], and [3]. In the penultimate column, we show the conjugacy class of the compo-
sition (product) σ−1

3 ◦ σ2, which is an invariant of the conjugation (3.7). The last column is the 
size of the class, the sum of sizes is (m!)2 = 36.

The first column lists the operators from diagrams, in attempt to reflect their features seen pic-
torially, such as the “wheel” for K3W . This will become less and less systematic with increase of 
the level. The fourth column lists operators mostly referring the pair of the conjugacy classes for 
the green–blue permutations in the gauge. Sometimes, however, more close information on the 
relative permutation σ−1

3 ◦σ2 is required, and, for these cases, we provide representative (σ2, σ3), 
in the lexicographic ordering such as (12345)(67)(89), which is one-to-one correspondence with 
an element of the coset S3

m. In the present case of level 3, the third label [σ−1
3 ◦ σ2] is adequate 

to the classification. We will see, however, that this is not the case at higher levels.
The action of the group Scoloring

r , which permutes r = 3 colorings, is non-transparent in the 
gauge σ1 = id . Its 5 orbits are, however, easily seen in the above table. For example,

K3 =Kid,(123),(123)
r←→g−→ K(123),id,(123)

∼=Kid,(123)−1,(123)−1◦(123)

∼=Kid,(132),id
∼=Kid,(123),id =K3

while

K3W =Kid,(123),(132)
r←→g−→ K(123),id,(132)

∼=Kid,(123)−1,(123)−1◦(132)

∼=Kid,(132),(123)
∼=Kid,(123),(132) =K3W
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All averages (not obligatory Gaussian) of any two elements belonging to the same orbit differ just 
by the permutations of N1, N2, and N3. In particular, this is the case for the Gaussian averages, 
and we need to list only five:

[ ], [ ], [ ] K3
1 1 β(β + 1)(β + 2)

[2], [2], [ ] K2K1 3 β(β + 2)(N2N3 +N1)

[3], [3], [ ] K3 3 β
(
N2

2 N2
3 + 3β +N2

1 + 1
)

[2], [2], [3] K2,2 3 β
(
N1(β +N2

2 +N2
3 )+ 2N2N3 +N1

)
[3], [3], [3] K3W 1 β

(
3β +N2

1 +N2
2 +N2

3

)
(7.15)

We also show in these table that the five orbits are in one-to-one correspondence with the 5
admissible non-ordered triples. Indeed, one can observe this already in the table (7.14): each of 
the five groups there is characterized by its own triple of Young diagrams, and one check that 
these five triples are indeed the five admissible ones (those for which the Hurwitz numbers are 
non-vanishing). Note, however, that, for this identification to work, one needs to consider the 
class of σ2 ◦ σ−1

3 , not that of σ2 ◦ σ3: otherwise, the entries of the penultimate column for the 
lines K3 and K3W in (7.14) would interchange places and break the rule.

Summary. At level m = 3, there are 5 orbits of Scoloring
3 in S3

3 = S3\S⊗3
3 /S3, the latter being 

of size 11. The 3 independent connected operators, representing the orbits of the symmetrized 
coset at level m = 3 are

K3, K2,2, K3W (7.16)

All the three can be made from a single RG circle.

7.3.2. CJ structure at level m = 3
The join operation lifts the operators from level 2 to level 3

{K2
1,K2

1} = 4K3
1

{K2
1,K2} = 4K2K1

{K2,K2} = 4K3

{K2,K2} = 4K2,2 (7.17)

Note that the wheel operator K3W is not produced in this way, namely, it does not belong to the 
image of join operation:

CoKer(3)({ })= span(K3W) (7.18)

In other words, it has no labeling in the tree (bracket word) systematics. We obtain the following 
dictionary for the seven connected operators at level m = 3, translating into the keystone-trees 
notation:
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graphs permutations keystone trees

K3 K(123)(123) K{2,2}

K3 K[3],[ ] K{2,2}

K3 K[ ],[3] K{2,2}

K2,2 K[3],[2] K{2,2}

K2,2 K[2],[3] K{2,2}

K2,2 K[2],[2] K{2,2}

K3W K(123),(132) −

(7.19)

The action of cut operation takes operators from level 3 to level 2:

�
(
K3

1

)
= 3(β + 2)K2

1

�
(
K2K1

)
= (β + 4)K2 + 2(N1 +N2N3)K2

1

�K3 = 3(N1 +N2N3)K2 + 3K2
1

�K2,2 = (2N2 +N1N3)K2 + (2N1 +N2N3)K2 + 2K2 +N3K2
1

�K3W = 3
(
N1K2 +N2K2 +N3K2

)
(7.20)

Seven connected operators from level 3 are mapped by � into just a 4-dimensional space, con-
sisting of three connected and one disconnected, all what is there at the level 2, i.e. � has a 
(11-4=)7-dimensional kernel in S3

3 , spanned by the deformations of connected operators, as ex-
plained around (4.15):

Ker(3)(�)= span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3(β + 4)(β + 2)K2,2 − 3(β + 2)
(
(N1 + α)K2K1 + (N2 + α)K2K1 + 2K2K1

)
+

+
(
β(12− 5N3)− 4N1N2 + 2(2+N3

2)(N1 +N2)
2
)
K3

1

3(β + 4)(β + 2)K2,2 − 3(β + 2)
(
(N1 + α)K2K1 + (N2 + α)K2K1 + 2K2K1

)
+

+
(
β(12− 5N3)− 4N1N2 + 2(2+N3

2)(N1 +N2)
2
)
K3

1

3(β + 4)(β + 2)K2,2 − 3(β + 2)
(
(N1 + α)K2K1 + (N2 + α)K2K1 + 2K2K1

)
+

+
(
β(12− 5N3)− 4N1N2 + 2(2+N3

2)(N1 +N2)
2
)
K3

1

(β + 4)(β + 2)K3 − 3α(β + 2)K2K1 + (2α2 − β − 4)K3
1

(β + 4)(β + 2)K3 − 3α(β + 2)K2K1 + (2α2 − β − 4)K3
1

(β + 4)(β + 2)K3 − 3α(β + 2)K2K1 + (2α2 − β − 4)K3
1

(β + 4)(β + 2)K3W − 3(β + 2)(N1K2K1 +N2K2K1 +N3K2K1)+
+2(N1α+N2α +N3α)K3

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.21)

Already in this example, we see that not only the dilatation operator K1, but also the entire set of 
Km operators of one definite coloring forms a sub-ring closed under the cut and join operations:
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�

(∏
s

Kms

)
=

∑
s′

ms′

⎛
⎝αKms′−1 +

ms′−1∑
k=1

KkKms′−k−1

⎞
⎠ ∏

s �=s′
Kms

+
∑
s′<s′′

ms′ms′′Kms′+ms′′−1

∏
s �=s′,s′′

Kms (7.22)

and {∏
s

Kms ,
∏
t

Knt

}
=

∑
s′,t ′

ms′nt ′ Kms′+nt ′−1

∏
s �=s′

Kms

∏
t �=t ′

Knt (7.23)

This is what allowed us to introduce an RG-closed “red” tensor model in [10], which is actually 
the rectangular complex matrix model (RCM) with a rectangular matrix of size N1 ×N2N3.

The general situation in the presence of all three keystone operators K2, K2, K2 is much more 
involved and interesting. What we see at the level 3 is that K3 and K2,2 are generated from the 
keystones with the help of the join operation { , } i.e. are the tree operators in the CJ-ring, while 
K3W is not. As we will see at the consideration of the level 4, it appears as the loop operator, i.e. 
as a result of the action of � on the tree-operators emerging at that level. Because of this, it has 
to be attached to the CJ pyramid in order to have the Ward identities (2.2) closed.

The very top of the join operation pyramid looks as follows:

K1

�
�

�
�

�
��

�
�
�
�
�
��

�

K2 K2
K2

�
�

�
�

�
�

��

�
�
�
�
�
�
��

�

K3 K3

K3�

�
�
�

�
�

���
K2,2

�

 
 
 
 
 
  !
K2,2

 
 
 
 
 
 
 
 !

�
�
�

�
�

�
�
��

K2,2

K3W��
	


Note that, in principle, this pyramid does not include the operator K3W at all. It is added here 
as an isolated point, and it should appear pleno jure only in the full CJ pyramid, which would 
contain also up-going arrows describing the operation �. Then, K3W would be coming from 
higher levels of the join operation pyramid and further would go to the three operators at level 2.

7.4. Level S4

7.4.1. Operators
At this level, in addition to disconnected and to already familiar connected K4 and K3,2, 

we encounter six new types of connected operators (up to the permutations of colorings), not 
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considered in [10], see Appendix A.4. Shown under the name of the operator in each diagram 
are σ2 ◦σ3 and σ−1

3 ◦σ2. The two first diagrams in the last line differ by colorings, say, of vertical 
lines: there are two colors in the first case and three, in the second.

“C” in the last picture stands for “cube”, while an alternative notation can be “WW” from 
double wheel. Topologically, K22W is also a cube, but with a non-equivalent coloring: each of 
the six faces in K4C has edges of two different colorings, while, in K22W , there are faces with 
edges of three colorings. As to K222, it is symmetric under the permutations of three colorings.

There are 4! = 24 permutations and 5 conjugacy classes [4], [31] −→ [3], [22], [211] −→
[2], [1111] −→ [].

Coset S3
4 = S4\S⊗3

4 /S4 consists of 43 elements, divided into 15 orbits of coloring permuta-

tions Scoloring
3 . In particular, there are 15 different Gaussian averages (modulo permutations of 

three colorings). At the same time, the number of unordered admissible triples is 14, which is 
smaller by one. This degeneracy at level m = 4 occurs between K3WK1 and K222 for [3], [3], [3]
and can be lifted by looking at σ3 ◦ σ2. This gives the total number of operators 14 + 1 = 15.

σ2 σ3 [σ−1
3 ◦ σ2] [σ3 ◦ σ2] K S3

〈〈
K

〉〉
() () [] [] K4

1 1 β(β + 1)(β + 2)(β + 3)

(12) (12) [] [] K2K2
1 3 αβ(β + 2)(β + 3)

(12) (23) [3] [3] K2,2K1 3 β(β + 3)
(
N1(β +N2

2 +N2
3 )+ 2N2N3 +N1

)
(123) (132) [3] [] K3WK1 1 β(β + 3)

(
3β +N2

1 +N2
2 +N2

3

)
(123) (123) [] [3] K3K1 3 β(β + 3)

(
N2

2 N2
3 + 3β +N2

1 + 1
)

(123) (142) [22] [3] K2,2,2 3 G1
(123) (124) [3] [22] K222 1 G2

(12)(34) (12)(34) [] [] K2
2 3 β

(
α2(β + 4)+ 2(β + 1)

)
(12)(34) (12) [2] [2] K2K2 3 β

(
N3β

2 +N3(N
2
1 +N2

2 )(β + 4)+ (N1N2 + 4N3)β + 6N1N2 + 2N3

)
(1234) (1432) [22] [] K22W 3 G3
(1234) (12)(34) [2] [2] K2,2,2 6 G4
(13) (124) [4] [4] K3,2 6 G5

(12)(34) (13)(24) [22] [22] K4C 1 G6

(1234) (1234) [] [22] K4 3 αβ
(
N2

2 N2
3 + 5β +N2

1 + 5
)

(1234) (1342) [3] [3] K31W 3 G7

43

G1 = β
(
β2 + (N2

1 +N2
2 +N2

3 )β + 2N2
1 N2

2 + 2N2
1 N2

3 +N2
2 N2

3 + 9β +N2
1

+ 2N2
2 + 2N2

3 + 1
)

G2 = β
(
β2 + (N2

1 +N2
2 +N2

3 )(β + 1)+ 2(N2
1 N2

2 +N2
1 N2

3 +N2
2 N2

3 )+ 9β + 2
)

G3 = β
(

2β(N2N3 + 3N1)+N3
2 N3 +N2N

3
3 +N3

1 + 4N1N
2
2 + 4N1N

2
3 + 4N2N3 +N1

)
G4 = β

(
N2

3 N2β +N2
3 N3

2 + (2N1N3 + 5N2)β +N3
1 N3 + 3N2

3 N2 + 4N2N
2
1

+ 5N1N3 + 2N2

)
G5 = β

(
N2

1 N2β +N2
1 N3

2 + (3N1N3 + 5N2)β +N1N
3
3 + 2N2

1 N2 + 3N2N
2
3

+ 5N1N3 + 3N2

)
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G6 = β
(
(N2

1 +N2
2 +N2

3 )(β + 2)+ 2(N2
1 N2

2 +N2
1 N2

3 +N2
2 N2

3 )+ 9β

+ 2N2
1 + 2N2

2 + 2N2
3

)
G7 = β

(
3β(N2N3 + 2N1)+N3

2 N3 +N2N
3
3 +N3

1 + 3N1N
2
2 + 3N1N

2
3 + 4N2N3 + 2N1

)
Note that the six operators K2K2 can be of two types: those with coincident and those with dif-
ferent colorings. They are not related by coloring permutations and have different Gaussian and 
any other averages. Despite these operators are reducible (composite), their Gaussian averages 
do not factorize. The terms, surviving the planar limit are double-underlined: they are the terms 
with the highest possible power of any of N1, N2 and N3 (see [10]). They from factorizable 
combinations. The Gaussian average of 〈 〈K4〉 〉 has an accidental factor (N1 +N2N3) (underlined 
once).

Thus, we have obtained 43 operators with 43 different averages. Modulo permutations of 
colorings, there are just 15 different operators with 15 different averages, i.e. 15 different orbits 
of the coloring permutation group Scoloring

3 .

Summary. At level m = 4, there are 15 orbits of Scoloring

3 in S3
4 = S4\S⊗3

4 /S4 of total size 43. 
This gives 15 different operators, and 8 of them are independent connected operators:

K4, K3,2, K22W, K31W, K2,2,2, K222, K2,2,2,K4C (7.24)

The first 5 operators contain a single RG circle, the last 3 are made from two RG circles. Note 
that the operator K2,2,2 is red–green symmetric and Scoloring

3 interchanges this one into two 
others of this kind to form an orbit, while K2,2,2 and five others of this kind get interchanged also 
by Scoloring

3 .
For σ2 ⊗ σ3 ∈ [3] ⊗ [3] with σ−1

3 ◦ σ2 ∈ [3], for the first time, there is a new phenomenon: 
multiplication can take place inside S3 or can be essentially in S4. In the both cases, (132)−1 ◦
(123) = (132) ∈ [3] and (124)−1 ◦ (123) = (413) ∈ [3] we obtain elements from the class [31]
in S4, but in the former case it is also the class [3] in S3, and it corresponds to the disconnected 
operator K3WK1, while, in the latter case, we obtain the connected operator K222. This is the 
origin of 15 operator classes instead of 14.

For S5, the same phenomenon takes place: (1234) ◦ (1234) = (13)(24) ∈ [22] ∈ S4 ⊂ S5 while 
(1325) ◦ (1234) = (14)(25) ∈ S5, etc.

7.4.2. CJ structure
The join operation can lift the operators from level 3 to level 4. We list here the join operations 

among the connected operator representatives which belong to the symmetrized coset by the 
action of the Scoloring

3 :

{K3,K2} = 6K4

{K3,K2} = 6K3,2

{K2,2,K2} = 2K2,2,2 + 4K3,2

{K2,2,K2} = 4K2,2,2 + 2K222

{K3W,K2} = 6K31W

. . . (7.25)
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It follows, for representative of the symmetrized cosets, the following classification table:

graphs permutations keystone trees

K4 K(1234)(1234) K{{2,2},2}

K3,2 K(1234),(123) K{{2,2},2}

K31W K(1234),(1342) K{3W,2}

K22W K(1234),(1432) −

K2,2,2 K(1234),(12)(34) 3K{{2,2},2} − 2K{{2,2},2}

K2,2,2 K(12)(34),(123) −

K222 K(123),(124) −

K4C K(12)(34),(13)(24) −

(7.26)

Here, in variance with level m = 3, most of descendants of K2’s turn out to be linear com-
binations in the ring basis associated with elements of the coset S3

m. In particular, the four-
dimensional sub-ring of R4 that consists of K2,2,2, K2,2,2, K2,2,2 (taking into account the sym-
metry of K2,2,2 w.r.t. permutations of red and green) and K222 intersects with the join pyramid 
only at a subspace of dimension three (through {K2,2, K2}, {K2,2, K2} and {K2,2, K2}), i.e. the 
coker of the join operation in this sub-ring has dimension 1. At the same time, K31W is obtained 
from the secondary operator of the first degree K3W :

K3W ∈�
(
K2,2,2

)
∈�

(
{K2,2,K2}

)
∈�

({
{K2,K2},K2

})
(7.27)

The operators K22W , K4C are new secondary operators at level m = 4.
The action of cut operation at level m = 4 is

�(K(1234),(1234)
4 )= 4(N1 +N2N3)K(123),(123)

3 + 8K(12),(12)
2 K1

�(K(1234),(123)
3,2 )= (2N2 +N1N3)K(123),(123)

3 + (3N1 + 2N2N3)K(123),(12)
2,2 +

+ 4K(12),(123)
2,2 +N3K(12),(12)

2 K1 + 3K(12),()
2 K1

�(K(1234),(1342)
31W )= 2N1K(123),(123)

3 + (2N1 +N2N3)K(123),(132)
3W + 3N2K(123),(12)

2,2 +
+ 3N3K(12),(123)

2,2 + 4K(12),(23)
2,2 +K(12),(12)

2 K1

�(K(1234),(1432)
22W )= 4N1K(123),(132)

3W + 4N2K(123),(12)
2,2 + 4N3K(12),(123)

2,2 + 4K(12),(23)
2,2

�(K(1234),(12)(34)
2,2,2 )= 2(2N1 +N2N3)K(123),(12)

2,2 + 6K(12),(123)
2,2 + 2N2K(123),(123)

3 +
+ 2N3K(12),(12)

2 K1

�(K(12)(34),(123)
2,2,2 )= (2N1 +N2N3)K(12),(23)

2,2 + (2N2 +N1N3)K(12),(123)
2,2 +

+ 2N3K(123),(12)
2,2 + 2K(123),()

3 + 2K(123),(123)
3 + 2K(123),(132)

3W +
+N1K(12),(12)K1 +N2K(12),()K1
2 2
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�(K(123),(124)
222 )= (2N1 +N2N3)K(12),(23)

2,2 + (2N2 +N1N3)K(12),(123)
2,2 +

+ (2N3 +N1N2)K(123),(12)
2,2 + 2K(123),(123)

3 +
+ 2K(123),()

3 + 2K(),(123)
3 +K3

1

�(K(12)(34),(13)(24)
4C )= 4 ·

(
N1K(12),(23)

2,2 +N2K(12),(123)
2,2 +N3K(123),(12)

2,2 +K(123),(132)
3W

)
(7.28)

The kernel of � in this case is 26-dimensional.

7.5. Level S5

At this level, there are 5! = 120 permutations and 7 conjugacy classes, which we abbreviate 
as [5], [41] −→ [4], [32], [311] −→ [3], [221] −→ [22], [2111] −→ [2], [11111] −→ [].

The coset S3
5 = S5\S⊗3

5 /S5 consists of 161 elements divided into 44 orbits of coloring per-

mutations Scoloring
3 . The number of admissible unordered triples is 34.

At this level, there are 97 connected operators, which we do not draw all and restrict our-
selves only with an essential set, all remaining being easily restorable by permuting colors, see 
Appendix A.5. The set of all pictures is divided into two sets: those with one red–green cycle 
(28 operators), and those with more red–green cycles (7 operators). Note that the operators with 
a single reg-green cycle (the first group) are all connected.

Let us start from the first group of Appendix A.5. The red–green symmetry from Scoloring

3
leaves 6 of these 28 operators (##5, 7, 14, 19, 25, 28) intact and interchanges the remaining op-
erators within the 11 remaining pairs (9 ↔ 4, 11 ↔ 3, 15 ↔ 2, 16 ↔ 12, 17 ↔ 13, 20 ↔ 18, 
21 ↔ 1, 22 ↔ 8, 23 ↔ 10, 24 ↔ 6, 27 ↔ 26).

The red–blue and green–blue symmetries can change the number of red–green cycles, but 
not always: in the above list, operators 6, 8, 10 have also a single blue–green cycle, 22, 23, 24, 
a single blue–red cycle, and 25, 27, 28 have a single cycle of each pair of colors. They are, 
however, left intact by the corresponding GB and RB symmetries.

This gives 17 independent connected operators with a single circle:

KI ,KII ,KIII ,KIV ,KV ,KV I ,KV II ,KV III ,KX,KXII ,KXIII ,KXIV ,KXV III ,KXIX,

KXXV ,KXXV I ,KXXV III

I II III IV V V I V II V III X XII XIII XIV XV III XIX XXV XXV I XXIII

    −  −     −  − −  −
XXI XV XI IX XXIV XXII XXIII XV I XV II XX XXV II

The remaining 24 −17 = 7 orbits in Scoloring

3 (the second group in Appendix A.5) have several 
cycles in every channel (RG, GB and RB). Actually, five are of the type 4 + 1, and two of the 
type 3 + 2 (or 3 + 1 + 1, depending on the choice of the channel, RG , GB or RB).

All other operators with several GB cycles are either disconnected or related to I-XXXV by
RGB symmetry (Scoloring

3 ).
We now elaborate on these 24 connected operators from the point of view of the three 

conjugacy classes [σ2], [σ3] and [σ−1
3 ◦ σ2], which are, in fact, conjugation invariants of 

the double cosets S3
5 in our RG gauge, and can be used to label the operators. Among the 

34 unordered admissible triples designated by a set of three Young diagrams, which can 
be read off from the table of Appendix B.2, there are 12 ones that contain [5] and that 
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are associated with connected operators: these are ([5], [], [5]), ([5], [2], [32]), ([5], [2], [4]), 
([5], [22], [22]), ([5], [22], [3]), ([5], [22], [5]), ([5], [3], [3]), ([5], [3], [5]), ([5], [32], [32]), 
([5], [32], [4]), ([5], [4], [4]), ([5], [5], [5]). Out of these, we have found that, in each of the 
cases ([5], [3], [5]), ([5], [32], [4]), ([5], [4], [4]), there are two distinct connected operators as-
sociated: namely, they are doubly degenerate. In addition, we have found that there are three 
connected operators associated with ([5], [5], [5]): they are triply degenerate. There are, in fact, 
17 distinct connected operators of this kind.

Likewise, there are 6 unordered admissible triples that do not contain [5] and that are as-
sociated with connected operators: these are ([4], [22], [32]), ([4], [22], [4]), ([4], [3], [32]), 
([4], [3], [4]), ([32], [22], [32]), ([32], [3], [32]). We have found that the case ([4], [3], [32]) is 
doubly degenerate.5 There are, in fact, 7 distinct connected operators of this kind. The figure 
for each of the first four cases contains one RG-cycle of length 4 and one RG-cycle of length 
1, while the figure for each of the last two cases contains of one RG-cycle of length 3 and one
RG-cycle of length 2.

Let us explain briefly how we have managed to identify these degenerate operators. As we 
have already noted in the case of S3

4 , one may consider [σ3 ◦ σ2] in contrary to [σ−1
3 ◦ σ2]. 

This one [σ3 ◦ σ2], unlike [σ−1
3 ◦ σ2], is not a conjugation invariant of the double coset, but one 

can study the automorphism of the elements of the table in Appendix B.2 (which encodes the 
elements of the center of the group algebra for the symmetric group S5 with proper normaliza-
tion) under σ−1

3 ↔ σ3 to be able to tell which elements of the table correspond to degenerate 
operators.

Let us take an example to demonstrate this phenomenon. The element of the lowest right 
corner of the table for S5 in Appendix B.2 is read

[5][5] = 24[] + 8[22] + 12[3] + 8[5]. (7.29)

By studying the transformation of operators under σ−1
3 ↔ σ3, we see that this is grouped into

(24[] + [5])+ (8[22] + 6[3])+ (6[3] + 5[5])+ 2[5]. (7.30)

Here, the first and the second terms inside each of the three parentheses have the same number of 
elements and get interchanged under σ−1

3 ↔ σ3. Eq. (7.30) tells us that ([5], [5], [3]) splits into 
two pieces and corresponds to doubly degenerate operators, while ([5], [5], [5]) splits into three 
pieces and corresponds to triply degenerate operators.

Let us note that the last four entries at level 5 with cycles of length 5 belong to four different 
conjugacy classes (are different elements of the coset S3

5 ), but have the same Gaussian average. 
They still coincide in the background of K1 and K2

1, but start getting separated already by K2.
Similarly the last two entries at level 5 with cycles of length 4 have the same Gaussian averages 

as (1243), but belong to different conjugacy classes. They remain un-separated by insertions of 
K2 and K3, but (1253) gets separated from (1243) in the background of K2,2, while (1254), 
which differs from (1243) just by the arrow inversion (and it is the first case when this changes 
the conjugacy class, i.e. the point in (3.5)), only in that of K(12345),(1243) =KXV III .

5 Actually, the case ([32], [3], [32]) is doubly degenerate as well, but one of them obviously gives a disconnected 
operator K3W K2.
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The number of different Gaussian averages in different sectors (the number of independent 
operators can be bigger) is given by the following table:

NG[σ2] =

σ2 m= 1 2 3 4 5 6 . . .

() 1+ 1+ . . .+ 1︸ ︷︷ ︸
m

−→ 1 2 3 5 7 11 . . . = #(m)

(12) −→ 2 3 10 18 34 . . .

(123) −→ 4 10 26 55 . . .

(1234) −→ 10 28 88 . . .

(12345) −→ 23 100 . . .

(123456) −→ 98 . . .

(12)(34) −→ 8 21 62 . . .

(123)(45) −→ 26 102 . . .

(1234)(56) −→ 89 . . .

(123)(456) −→ 55 . . .

(12)(34)(56) −→ 34 . . .

1 4 11 43 149 728 . . .

needed 161 901 . . .

unseparated 12 173 . . .

(7.31)

In various backgrounds, we get instead:

background 1 K1 K2
1 K2 K3

() 7 7 7 7 7
(12) 18 18
(123) 26 26
(1234) 28 29 29
(12345) 23 23 23 25 25
(12)(34) 21 21
(123)(45) 26 26

149 152

(7.32)

Summary. At level m = 5, there are 44 orbits of Scoloring

3 in S3
5 = S5\S⊗3

5 /S5 of size 161. The 
24 independent connected operators representing the orbits at level m = 5 are:

KI ,KII ,KIII ,KIV ,KV ,KV I ,KV II ,KV III ,KX,KXII ,KXIII ,KXIV ,KXV III ,KXIX,KXXV ,KXXV I ,KXXV III ,

KXXIX,KXXX,KXXXI ,KXXXII ,KXXXIII ,KXXIV ,KXXV

The first 17 operators contain a single RG cycle, the last 7 operators are made from two RG
cycles.

8. Conclusion

Like eigenvalue matrix models, the rainbow tensor models have a good chance of being a kind 
of superintegrable. Usually, superintegrability is understood as an explicit knowledge of more 
than N integrals of motion in phase space of dimension 2N , while the complete integrability 
requires exactly N . Extra integrals often allow one to solve the system explicitly. The best known 
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example in ordinary mechanics is the existence of closed orbits. The 2-dimensional harmonic 
oscillator has two commuting Hamiltonians, Ha = p2

a + ω2
aq

2
a , a = 1, 2, but it has closed orbits 

only when the frequencies are rationally related, mω1 = nω2 with some integer m and n. In these 
cases, there are additional conservation laws like

ω2 = ω1 : p1q2 − p2q1 & p1p2 +ω2q1q2

ω2 = 2ω1 : ω1ω2p1q1q2 + (p2
1 −ω2

1q
2
1 )p2 & (p2

1 −ω2
1q

2
1 )q2 − p1p2q1

. . . (8.1)

Another example is the Runge–Lenz conservation law for motion in the Coulomb potential.
For matrix models, the superintegrability would mean that the partition functions are not just 

generic τ -functions, but some very special ones, in some sense, “better”, “simpler” and “more 
explicit”. This feeling is, indeed, present in everybody who studied the problem, and this is 
reflected in the peculiar notion of “matrix-model τ -functions” widely used since [57]. Techni-
cally, what is special about them is the large variety of Ward identities (Virasoro constraints and 
alike), which, in the space of τ -functions, usually reduces to just one “string equation”. A much 
stronger manifestation of hidden superintegrability should be the existence of explicit formulas 
for all matrix model correlators in the Gaussian phase recently discovered in [11,31,32]. This 
fact leaves not many doubts that superintegrability is the pertinent feature of matrix models. 
Still, it remains to understand this phenomenon in the more standard terms of the Hamiltonian 
dynamics.

Remarkably, this understanding is not needed to discover that the same explicit formulas for 
the Gaussian correlators are straightforwardly lifted from matrix to tensor models [10,12,33,
45], where even the complete integrability is far from being observed. This observation gives 
a hope to bypass all the seeming difficulties in developing the tensor models theory: they look 
like superintegrable, and this should stimulate further investigations and guarantee a fast ad-
vance.

In the present paper, we considered different ways to describe the operator ring in the simplest 
Aristotelian model with complex tensor of rank r = 3 and with the gauge symmetry U(N1) ⊗
U(N2) ⊗ U(N3). They are originally labeled by points of the double coset S3

m = Sm\S⊗3
m /Sm

made from the symmetric group Sm, i.e. by the conjugacy classes σ1 ⊗ σ2 ⊗ σ3 w.r.t. the left and 
right multiplication by diagonal Sm in S⊗3

m .

(a) We considered various “gauge choices” and pictorial descriptions of the operators, found the 
number of connected operators and dimensions of the orbits of the colorings-permutation 
group S3 for m ≤ 5.

(b) We demonstrated that, starting from m = 5, the Gaussian correlators do not distinguish all 
independent operators, and complexity of the backgrounds needed to lift the degeneracies 
strongly depends on the operator.

(c) We began analysis of the action of cut and join operations � and { , } on the operator ring, 
which is necessary to efficiently formulate the Ward identities (Virasoro-like constraints).

One of the issues to address in the close future is the dependence of operator classification 
and of the Gaussian calculus on the choice of rainbow model. Two directions are most important 
from this point of view: the single-tensor model of arbitrary rank r and the starfish models with 
|I | = r + 1 different tensors.
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Appendix A

In this Appendix, we draw all connected operators emerging at the given level. Only at level 
m = 5 we list only part of operators, all remaining being easily obtained by permuting colors. 
The notation of operator pictures throughout the paper refers to this Appendix.
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A.5. m = 5

A.5.1. Connected operators with one red–green cycle
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A.5.2. Connected operators with two red–green cycles
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Appendix B

This Appendix contains various tables discussed in the main body of the text.

B.1. Tables of lowest zR
h

R : [2] [11] [3] [21] [111] [4] [31] [22] [211] [1111] [5] [41] [32] [311] [221] [2111] [11111]
h ||h|| zh

(12) 1 2 1 1

() 1 2 1 1

(123) 2 3 2 0 1

(12) 3 2 0 1 1

() 1 6 2 3 1

(1234) 6 4 2 0 1 0 1

(123) 8 3 0 2 0 0 1

(12)(34) 3 8 2 0 3 2 1

(12) 6 4 0 0 1 2 1

() 1 24 6 8 3 6 1

(12345) 24 5 4 0 0 0 0 0 1

(1234) 30 4 0 2 0 0 1 0 1

(123)(45) 20 6 0 0 2 2 0 1 1

(123) 20 6 0 0 2 2 0 1 1

(12)(34) 15 8 0 2 0 0 3 2 1

(12) 10 12 0 0 2 2 3 4 1

() 1 120 24 30 20 20 15 10 1

∑
� zR

�
2 2 4 4 3 10 10 8 10 5 28 34 26 26 22 18 7

4 11 43 161

(B.1)

It can be made symmetric by multiplication of each line with ||h|| = |h|!
zh

, because the both sides 
of

||�|| · zR
� = ||R|| · z�

R (B.2)

count the number of commuting permutations, one of the type R, the other one of the type �. 
The entries in the row sum into zh =∑

R �|h| zR
h , the entries in the columns sum into the numbers 

in the bottom of the table.
Comment on the boxed entry of the table: the four permutations of the type [5], which com-

mute with (12345) are: (12345), its inverse (15432) and (13524) with its inverse (14253).
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B.2. Multiplication tables for the structure constants in the center of the group algebra, (6.16)

1 1

[11] [2]
[2] [11]

(B.3)

1 3 2

[111] [21] [3]
[21] 3[111] + 3[3] 2[21]
[3] 2[21] 2[111] + [3]

(B.4)

1 6 3 8 6

[1111] [211] [22] [31] [4]
[211] 6[1111] + 2[22] + 3[31] [211] + 2[4] 4[211] + 4[4] 4[22] + 3[31]
[22] [211] + 2[4] 3[1111] + 2[22] 3[31] 2[211] + [4]
[31] 4[211] + 4[4] 3[31] 8[1111] + 8[22] + 4[31] 4[211] + 4[4]
[4] 4[22] + 3[31] 2[211] + [4] 4[211] + 4[4] 6[1111] + 2[22] + 3[31]

(B.5)

1 10 15 20 20 30 24

[11111] [2111] [221] [311] [32] [41] [5]

[2111] 10[] + 2[22] + 3[3] 3[2] + 3[32] + 2[4] 6[2] + [32] + 4[4] 4[22] + [3] + 5[5] 4[22] + 6[3] + 5[5] 6[32] + 4[4]

[221] 3[2] + 3[32] + 2[4] 15[] + 2[22] + 3[3] + 5[5] 4[22] + 6[3] + 5[5] 6[2] + 6[32] + 4[4] 6[2] + 6[32] + 9[4] 8[22] + 6[3] + 5[5]

[311] 6[2] + [32] + 4[4] 4[22] + 6[3] + 5[5] 20[] + 8[22] + 7[3] + 5[5] 2[2] + 7[32] + 8[4] 12[2] + 12[32] + 8[4] 8[22] + 6[3] + 10[5]

[32] 4[22] + [3] + 5[5] 6[2] + 6[32] + 4[4] 2[2] + 7[32] + 8[4] 20[] + 8[22] + 7[3] + 5[5] 8[22] + 12[3] + 10[5] 12[2] + 6[32] + 8[4]

[41] 4[22] + 6[3] + 5[5] 6[2] + 6[32] + 9[4] 12[2] + 12[32] + 8[4] 8[22] + 12[3] + 10[5] 30[] + 18[22] + 12[3] + 15[5] 12[22] + 12[32] + 12[4]

[5] 6[32] + 4[4] 8[22] + 6[3] + 5[5] 8[22] + 6[3] + 10[5] 12[2] + 6[32] + 8[4] 12[22] + 12[32] + 12[4] 24[] + 8[22] + 12[3] + 8[5]

We used the abbreviated notation inside the table, omitting all 1’s from the Young diagram, i.e. 
substituting

[11111] −→ [], [2111] −→ [2], [221] −→ [22], [311] −→ [3], [41] −→ [4].
The first columns list both the diagrams �1 and their products with � = [1m] = [ ], likewise 
the second lines contain both �2 and their products with � = [1m] = [ ]. The top lines list the 
multiplicities ||�2|| (the number of permutations of the given type) for the diagrams in the second 
line.

B.3. The Hurwitz gauge: operators at levels m = 4, 5

These tables describe computations in the Hurwitz gauge, see s. 6. Here σ3 and thus σ2 are 
chosen randomly among the representatives of the conjugacy class.
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Operators at level m = 4

[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[4] [4] [3] (1234) (1324) (123) 24
[4] [3] [4] (1234) (243) (1423) 24
[4] [4] [22] (1234) (1432) (13)(24) 6
[4] [22] [4] (1234) (13)(24) (1234) 6
[4] [4] [] (1234) (1234) () 6

10 [4] [] [4] (1234) () (1432) 6
[4] [3] [2] (1234) (124) (23) 24
[4] [2] [3] (1234) (14) (132) 24
[4] [22] [2] (1234) (14)(23) (13) 12
[4] [2] [22] (1234) (24) (14)(23) 12

[3] [4] [4] (123) (1432) (1423) 24
[3] [4] [2] (123) (1423) (14) 24
[3] [2] [4] (123) (14) (1432) 24
[3] [3] [22] (123) (142) (14)(23) 24
[3] [22] [3] (123) (12)(34) (234) 24

10 [3] [3] [3] (123) (132) (123) 32
[3] [3] [3] (123) (124) (243) 32
[3] [2] [2] (123) (23) (13) 24
[3] [3] [] (123) (123) () 8
[3] [] [3] (123) () (132) 8

[22] [4] [4] (12)(34) (1324) (1423) 6
[22] [4] [2] (12)(34) (1432) (13) 12
[22] [2] [4] (12)(34) (13) (1432) 12
[22] [3] [3] (12)(34) (143) (132) 24

8 [22] [22] [22] (12)(34) (13)(24) (14)(23) 6
[22] [2] [2] (12)(34) (34) (12) 6
[22] [22] [] (12)(34) (12)(34) () 3
[22] [] [22] (12)(34) () (12)(34) 3

[2] [4] [3] (12) (1234) (234) 24
[2] [3] [4] (12) (143) (1432) 24
[2] [4] [22] (12) (1423) (14)(23) 12
[2] [22] [4] (12) (14)(23) (1423) 12
[2] [3] [2] (12) (132) (13) 24

10 [2] [2] [3] (12) (13) (132) 24
[2] [22] [2] (12) (12)(34) (34) 6
[2] [2] [22] (12) (34) (12)(34) 6
[2] [2] [] (12) (12) () 6
[2] [] [2] (12) () (12) 6

[] [4] [4] () (1423) (1423) 6
[] [3] [3] () (132) (132) 8

5 [] [22] [22] () (14)(23) (14)(23) 3
[] [2] [2] () (13) (13) 6
[] [] [] () () () 1

(B.6)
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Operators at level m = 5

[σ1 ] [σ2 ] [σ3 ] σ can
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1 , σ2 , σ3 ])

[5] [5] [5] (12345) (15243) (14235) 192

[5] [5] [5] (12345) (15432) (14253) 192

[5] [5] [5] (12345) (14253) (13524) 192

[5] [5] [5] (12345) (13524) (12345) 192

[5] [5] [3] (12345) (13245) (123) 240

[5] [5] [3] (12345) (12453) (235) 240

[5] [3] [5] (12345) (354) (15342) 240

[5] [3] [5] (12345) (253) (15243) 240

[5] [5] [22] (12345) (15342) (14)(25) 120

[5] [22] [5] (12345) (24)(35) (15234) 120

[5] [4] [4] (12345) (1253) (2435) 360

[5] [4] [4] (12345) (1254) (2453) 360

[5] [4] [4] (12345) (2354) (1534) 360

[5] [4] [32] (12345) (1432) (13)(254) 240

[5] [4] [32] (12345) (1354) (12)(345) 240

[5] [32] [4] (12345) (124)(35) (2345) 240

[5] [32] [4] (12345) (12)(354) (2534) 240

[5] [4] [2] (12345) (1245) (23) 120

[5] [2] [4] (12345) (12) (2543) 120

[5] [3] [3] (12345) (145) (132) 120

[5] [32] [32] (12345) (153)(24) (14)(235) 120

[5] [32] [2] (12345) (145)(23) (13) 120

[5] [2] [32] (12345) (13) (12)(354) 120

[5] [3] [22] (12345) (134) (12)(45) 120

[5] [22] [3] (12345) (12)(34) (254) 120

[5] [22] [22] (12345) (15)(24) (14)(23) 120

[5] [5] [] (12345) (15432) () 24

[5] [] [5] (12345) () (12345) 24

(B.7)

[σ1 ] [σ2 ] [σ3 ] σ can
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1 , σ2 , σ3 ])

[4] [5] [4] (1234) (12543) (2534) 360

[4] [5] [4] (1234) (15423) (1534) 360

[4] [5] [4] (1234) (12435) (2354) 360

[4] [4] [5] (1234) (1543) (15342) 360

[4] [4] [5] (1234) (1532) (15243) 360

[4] [4] [5] (1234) (1542) (15324) 360

[4] [5] [32] (1234) (14532) (13)(245) 240

[4] [5] [32] (1234) (14253) (134)(25) 240

[4] [32] [5] (1234) (153)(24) (15234) 240

[4] [32] [5] (1234) (15)(243) (15423) 240

[4] [5] [2] (1234) (15234) (15) 120

[4] [2] [5] (1234) (15) (15432) 120

[4] [4] [3] (1234) (1324) (123) 240

[4] [4] [3] (1234) (1235) (354) 240

[4] [3] [4] (1234) (125) (2543) 240

[4] [3] [4] (1234) (243) (1432) 240

[4] [4] [22] (1234) (2534) (14)(25) 270

[4] [4] [22] (1234) (2354) (14)(35) 270

[4] [4] [22] (1234) (1432) (13)(24) 270

[4] [22] [4] (1234) (12)(35) (2435) 270

[4] [22] [4] (1234) (12)(45) (2453) 270

[4] [22] [4] (1234) (13)(24) (1234) 270

[4] [32] [3] (1234) (125)(34) (254) 240

[4] [32] [3] (1234) (125)(45) (345) 240

[4] [3] [32] (1234) (135) (12)(354) 240

[4] [3] [32] (1234) (354) (142)(35) 240

[4] [32] [22] (1234) (14)(253) (13)(25) 120

[4] [22] [32] (1234) (24)(35) (14)(235) 120

[4] [3] [2] (1234) (124) (23) 120

[4] [2] [3] (1234) (14) (132) 120

[4] [22] [2] (1234) (14)(23) (13) 60

[4] [2] [22] (1234) (24) (14)(23) 60

[4] [4] [] (1234) (1234) () 30

(B.8)
[4] [] [4] (1234) () (1432) 30
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[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[32] [5] [4] (123)(45) (12534) (2435) 240
[32] [5] [4] (123)(45) (14532) (1523) 240
[32] [4] [5] (123)(45) (1435) (15342) 240
[32] [4] [5] (123)(45) (1432) (15423) 240

[32] [5] [32] (123)(45) (15342) (14)(235) 120
[32] [32] [5] (123)(45) (142)(35) (15234) 120
[32] [5] [2] (123)(45) (15423) (14) 120
[32] [2] [5] (123)(45) (14) (15432) 120

[32] [4] [3] (123)(45) (1243) (254) 240
[32] [4] [3] (123)(45) (1254) (243) 240
[32] [3] [4] (123)(45) (125) (2453) 240
[32] [3] [4] (123)(45) (145) (2532) 240

[32] [4] [22] (123)(45) (1542) (14)(23) 120
[32] [22] [4] (123)(45) (14)(23) (1543) 120

[32] [32] [3] (123)(45) (132)(45) (123) 140
[32] [32] [3] (123)(45) (12)(354) (234) 140
[32] [3] [32] (123)(45) (132) (123)(45) 140
[32] [3] [32] (123)(45) (253) (13)(245) 140

[32] [32] [22] (123)(45) (153)(24) (14)(25) 120
[32] [22] [32] (123)(45) (14)(35) (152)(34) 120

[32] [3] [2] (123)(45) (123) (45) 20
[32] [2] [3] (123)(45) (45) (132) 20

[32] [22] [2] (123)(45) (23)(45) (13) 60
[32] [2] [22] (123)(45) (23) (13)(45) 60

[32] [32] [] (123)(45) (123)(45) () 20
[32] [] [32] (123)(45) () (132)(45) 20

(B.9)

[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[3] [5] [5] (123) (15432) (15423) 240
[3] [5] [5] (123) (15342) (15234) 240

[3] [4] [4] (123) (1245) (2453) 240
[3] [4] [4] (123) (1532) (1523) 240

[3] [32] [32] (123) (142)(35) (14)(235) 140
[3] [32] [32] (123) (132)(45) (123)(45) 140

[3] [3] [3] (123) (132) (123) 140
[3] [3] [3] (123) (124) (243) 140

[3] [22] [22] (123) (23)(45) (13)(45) 60

[3] [2] [2] (123) (23) (13) 60

[3] [5] [3] (123) (12543) (254) 120
[3] [3] [5] (123) (154) (15432) 120

[3] [5] [22] (123) (14253) (14)(25) 120
[3] [22] [5] (123) (15)(34) (15342) 120

[3] [4] [32] (123) (2453) (13)(245) 240
[3] [4] [32] (123) (1534) (152)(34) 240
[3] [32] [4] (123) (154)(23) (1543) 240
[3] [32] [4] (123) (124)(35) (2435) 240

[3] [4] [2] (123) (1423) (14) 120
[3] [2] [4] (123) (15) (1532) 120

[3] [32] [2] (123) (123)(45) (45) 20
[3] [2] [32] (123) (45) (132)(45) 20

[3] [3] [22] (123) (142) (14)(23) 120
[3] [22] [3] (123) (12)(34) (234) 120

[3] [3] [] (123) (123) () 20

(B.10)
[3] [] [3] (123) () (132) 20
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[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[22] [5] [5] (12)(34) (15324) (15423) 120
[22] [4] [4] (12)(34) (1235) (2435) 270
[22] [4] [4] (12)(34) (1254) (2534) 270
[22] [4] [4] (12)(34) (1324) (1423) 270
[22] [32] [32] (12)(34) (135)(24) (14)(235) 120
[22] [3] [3] (12)(34) (143) (132) 120
[22] [22] [22] (12)(34) (13)(24) (14)(23) 30
[22] [2] [2] (12)(34) (34) (12) 30
[22] [5] [3] (12)(34) (12534) (254) 120
[22] [3] [5] (12)(34) (154) (15342) 120
[22] [5] [22] (12)(34) (13425) (14)(25) 120
[22] [22] [5] (12)(34) (13)(45) (14532) 120
[22] [4] [32] (12)(34) (1425) (134)(25) 120
[22] [32] [4] (12)(34) (123)(45) (2453) 120
[22] [4] [2] (12)(34) (1432) (13) 60
[22] [2] [4] (12)(34) (13) (1432) 60
[22] [32] [2] (12)(34) (152)(34) (15) 60
[22] [2] [32] (12)(34) (45) (12)(345) 60
[22] [3] [22] (12)(34) (345) (12)(45) 60
[22] [22] [3] (12)(34) (12)(45) (345) 60
[22] [22] [] (12)(34) (12)(34) () 15
[22] [] [22] (12)(34) () (12)(34) 15

(B.11)

[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[2] [5] [4] (12) (12435) (2435) 120
[2] [4] [5] (12) (1534) (15342) 120
[2] [5] [32] (12) (14235) (14)(235) 120
[2] [32] [5] (12) (154)(23) (15423) 120
[2] [4] [3] (12) (1254) (254) 120
[2] [3] [4] (12) (154) (1542) 120
[2] [4] [22] (12) (1423) (14)(23) 60
[2] [22] [4] (12) (15)(23) (1523) 60
[2] [32] [3] (12) (12)(345) (345) 20
[2] [3] [32] (12) (345) (12)(345) 20
[2] [32] [22] (12) (142)(35) (14)(35) 60
[2] [22] [32] (12) (15)(34) (152)(34) 60
[2] [3] [2] (12) (132) (13) 60
[2] [2] [3] (12) (13) (132) 60
[2] [22] [2] (12) (12)(34) (34) 30
[2] [2] [22] (12) (45) (12)(45) 30
[2] [2] [] (12) (12) () 10
[2] [] [2] (12) () (12) 10

(B.12)

[σ1] [σ2] [σ3] σcan
1 σ2 = σ3 ◦ σ1 σ3 NH ([σ1, σ2, σ3])

[] [5] [5] () (12345) (12345) 24
[] [4] [4] () (1234) (1234) 30
[] [32] [32] () (123)(45) (123)(45) 20
[] [3] [3] () (123) (123) 20
[] [22] [22] () (12)(34) (12)(34) 15
[] [2] [2] () (12) (12) 10
[] [] [] () () () 1

(B.13)
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B.4. The RG-gauge: operators with fixed conjugacy class of σ2

In this Appendix, we list the operators with fixed numbers of red–green cycles, see secs. 5.2.2
and 5.6.

B.4.1. Operators with one red–green cycle
Here the first column labels the level, in the second column there are lengths of the red–green 

cycle, in the third column there is total number of operators at given σ2, and the 9th column 
describes the symmetry under permutations of the red and green colorings. The numbers NG

count numbers of the distinct Gaussian correlators.

m Length number σ2 σ3 equivalent σ3 ||σ3 || = m!
z[σ3 ]

N[σ2 ],[σ3 ] r ↔ g operator

1 1 1 () () 1 N[1],[1] = 1 self K1

2 2 N[2] = 2 (12) () 1 N[2],[11] = 1 self K2

(12) 1 N[2],[2] = 1 self K2

3 3 N[3] = 4 (123) () 1 N[3],[111] = 1 (123) K3

(12) (13), (23) 3 N[3],[21] = 1 self K2,2

(123) 2 N[3],[3] = 2 () K3

(132) self K3W

4 4 N[4] = 10 (1234) () 1 N[4],[14 ] = 1 (1234) K4

(1234) (12) (23), (34), (14) 6 N[4],[211] = 2 (123) K2,3

(1234) (13) (24) (12)(34) K2,2,2

(1234) (12)(34) (14)(23) 3 N[4],[22] = 2 (13) K2,2,2

(1234) (13)(24) (1432) K22W

(1234) (123) (234), (134), (124) 8 N[4],[31] = 2 (12) K2,3

(1234) (132) (243), (143), (142) (1243) K31W

(1234) (1234) 6 N[4],[4] = 3 () K4

(1234) (1243) (1324), (1342), (1423) (132) K31W

(1234) (1432) (13)(24) K22W

5 5 N[5] = 28 (12345) () 1 1 N[5],[15 ] = 1 (12345) K5 =KI

(12345) (12) 5 10 N[5],[2111] = 2 KII

NG
[5] = 23 (12345) (13) 5 KIII

(12345) (12)(34) 5 15 N[5],[221] = 3 KIV

(12345) (12)(35) 5 KV

(12345) (13)(25) 5 KV I

(12345) (123) 5 20 N[5],[311] = 4 KV II

(12345) (132) 5 KV III

(12345) (124) 5 KIX

(12345) (142) 5 KX

(12345) (12)(345) 5 20 N[5],[32] = 4 KXI

(12345) (12)(354) 5 KXII

(12345) (13)(245) 5 KXIII

(12345) (13)(254) 5 KXIV

(12345) (1234) (1235), (1245), (1345), (2345) 30 NG
[5],[41] = 4 KXV

(12345) (1324) (1352), (1354), (1524), (2435) KXV I

(12345) (1432) (1532), (1542), (1543), (2543) KXV II

(12345) (1243) (1325), (1452), (1534), (2354) KXV III

(12345) (1253) (1423), (1425), (1453), (2534) N[5],[41] = 6 KXIX

(12345) (1254) (1342), (1435), (1523), (2453) KXX

(12345) (12345) 1 24 NG
[5],[5] = 5 () K5 =KXXI

(12345) (12354) 5 KXXII

(12345) (12453) 5 KXXIII

(12345) (15423) 5 KXXIV

(12345) (13254) 5 KXXV

(12345) (15432) 1 N[5],[5] = 8 KXXV I

(12345) (13524) 1 KXXV II

(12345) (14253) 1 KXXV III

6 6 NG
[6] = 98 (123456) () (123456) K6

(123456) () K6

. . .

(B.14)
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B.4.2. Operators with several red–green cycles
Here the second column describes the lengths of cycles.

m Length number σ2 σ3 operator

2 1+ 1 N[11] = 2 () () K2
1

1+ 1 () (12) K2

3 1+ 1+ 1 N[111] = 3 () () K3
1

1+ 1+ 1 () (12) K2K1
1+ 1+ 1 () (123) K3

2+ 1 N[21] = 4 (12) () K2K1
2+ 1 (12) (12) K2K1
2+ 1 (12) (23) K2,2
2+ 1 (12) (123) K2,2

4 1+ 1+ 1+ 1 N[14] = 5 () () K4
1

1+ 1+ 1+ 1 () (12) K2K2
1

1+ 1+ 1+ 1 () (12)(34) K2
2

1+ 1+ 1+ 1 () (123) K3K1
1+ 1+ 1+ 1 () (1234) K4

2+ 1+ 1 N[211] = 10 (12) () K2K2
1

2+ 1+ 1 (12) (12) K2K2
1

2+ 1+ 1 (12) (23) K2,2K1
2+ 1+ 1 (12) (34) K2K2
2+ 1+ 1 (12) (12)(34) K2K2
2+ 1+ 1 (12) (13)(24) K2,2,2
2+ 1+ 1 (12) (123) K2,2K1
2+ 1+ 1 (12) (134) K2,3
2+ 1+ 1 (12) (1234) K2,3
2+ 1+ 1 (12) (1324) K2,2,2

2+ 2 N[22] = 8 (12)(34) () K2
2

2+ 2 (12)(34) (12) K2K2
2+ 2 (12)(34) (13) K2,2,2
2+ 2 (12)(34) (12)(34) K2

2
2+ 2 (12)(34) (13)(24) K4C

2+ 2 (12)(34) (123) K2,2,2
2+ 2 (12)(34) (1234) K2,2,2
2+ 2 (12)(34) (1423) K22W

3+ 1 N[31] = 10 (123) () K3K1
3+ 1 (123) (12) K2,2K1
3+ 1 (123) (14) K2,3
3+ 1 (123) (12)(34) K2,2,2
3+ 1 (123) (123) K3K1
3+ 1 (123) (132) K3WK1
3+ 1 (123) (124) K222
3+ 1 (123) (1234) K2,3
3+ 1 (123) (143) K2,2,2
3+ 1 (123) (1324) K31W

(B.15)

In the table for m = 5, we do not list the operators at the rightmost column, since, at this level, 
part of operators is not drawn in Appendix A, and is obtained from those drawn by permutations 
of colorings.
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m Length number σ2 σ3 equivalent σ3 operator

5 1+ 1+ 1+ 1+ 1 N[15] = 7 () () 1 K5
1

1+ 1+ 1+ 1+ 1 () (12) 10 K2K3
1

1+ 1+ 1+ 1+ 1 NG
[15] = 7 () (12)(34) 15 K2

2K1

1+ 1+ 1+ 1+ 1 () (123) 20 K3K2
1

1+ 1+ 1+ 1+ 1 () (123)(45) 20 K3K2

1+ 1+ 1+ 1+ 1 () (1234) 30 K4K1

1+ 1+ 1+ 1+ 1 () (12345) 24 K5

2+ 1+ 1+ 1 N[2111] = 18 (12) () 1

2+ 1+ 1+ 1 (12) (12) 1

2+ 1+ 1+ 1 NG
[2111] = 18 (12) (13) 6

2+ 1+ 1+ 1 (12) (34) 3

2+ 1+ 1+ 1 (12) (12)(34) 3

2+ 1+ 1+ 1 (12) (13)(24) 6

2+ 1+ 1+ 1 (12) (13)(45) 6

2+ 1+ 1+ 1 (12) (123) 6

2+ 1+ 1+ 1 (12) (134) 12

2+ 1+ 1+ 1 (12) (345) 2

2+ 1+ 1+ 1 (12) (123)(45) 6

2+ 1+ 1+ 1 (12) (135)(24) 12

2+ 1+ 1+ 1 (12) (345)(12) 2

2+ 1+ 1+ 1 (12) (1234) 12

2+ 1+ 1+ 1 (12) (1324) 6

2+ 1+ 1+ 1 (12) (1324) 12

2+ 1+ 1+ 1 (12) (12345) 12

2+ 1+ 1+ 1 (12) (13425) 12

2+ 2+ 1 N[221] = 22 (12)(34) () 1

2+ 2+ 1 (12)(34) (12) 2

2+ 2+ 1 NG
[221] = 21 (12)(34) (13) 4

2+ 2+ 1 (12)(34) (15) 4

2+ 2+ 1 (12)(34) (12)(34) 1

2+ 2+ 1 (12)(34) (13)(24) 2

2+ 2+ 1 (12)(34) (12)(35) 4

2+ 2+ 1 (12)(34) (13)(25) 8

2+ 2+ 1 (12)(34) (123) 8

2+ 2+ 1 (12)(34) (125) 4

2+ 2+ 1 (12)(34) (135) 8

2+ 2+ 1 (12)(34) (123)(45) 8

2+ 2+ 1 (12)(34) (125)(34) 4

2+ 2+ 1 (12)(34) (135)(24) 8

2+ 2+ 1 (12)(34) (1234) 4

2+ 2+ 1 (12)(34) (1324) 2

2+ 2+ 1 (12)(34) (1235) 8

2+ 2+ 1 (12)(34) (1325) 8

2+ 2+ 1 (12)(34) (1532) 8

2+ 2+ 1 (12)(34) (12345) 8

2+ 2+ 1 (12)(34) (12354) 8

2+ 2+ 1 (12)(34) (13245) 8
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m Length number σ2 σ3 equivalent σ3 operator

5 3+ 1+ 1 N[311] = 26 (123) () 1

3+ 1+ 1 (123) (12) 3
3+ 1+ 1 NG

[311] = 26 (123) (14) 6

3+ 1+ 1 (123) (45) 1

3+ 1+ 1 (123) (12)(34) 6
3+ 1+ 1 (123) (12)(45) 3
3+ 1+ 1 (123) (14)(25) 6

3+ 1+ 1 (123) (123) 1
3+ 1+ 1 (123) (132) 1
3+ 1+ 1 (123) (124) 6
3+ 1+ 1 (123) (142) 6
3+ 1+ 1 (123) (145) 6

3+ 1+ 1 (123) (123)(45) 1
3+ 1+ 1 (123) (132)(45) 1
3+ 1+ 1 (123) (124)(35) 6
3+ 1+ 1 (123) (142)(35) 6
3+ 1+ 1 (123) (145)(23) 6

3+ 1+ 1 (123) (1234) 6
3+ 1+ 1 (123) (1324) 6
3+ 1+ 1 (123) (1245) 6
3+ 1+ 1 (123) (1425) 6
3+ 1+ 1 (123) (1452) 6

3+ 1+ 1 (123) (12345) 6
3+ 1+ 1 (123) (13245) 6
3+ 1+ 1 (123) (12435) 6
3+ 1+ 1 (123) (13425) 6

3+ 2 N[32] = 26 (123)(45) () 1

3+ 2 (123)(45) (12) 3
3+ 2 NG

[32] = 26 (123)(45) (14) 6

3+ 2 (123)(45) (45) 1

3+ 2 (123)(45) (12)(34) 6
3+ 2 (123)(45) (12)(45) 3
3+ 2 (123)(45) (14)(25) 6

3+ 2 (123)(45) (123) 1
3+ 2 (123)(45) (132) 1
3+ 2 (123)(45) (124) 6
3+ 2 (123)(45) (142) 6
3+ 2 (123)(45) (145) 6

3+ 2 (123)(45) (123)(45) 1
3+ 2 (123)(45) (132)(45) 1
3+ 2 (123)(45) (124)(35) 6
3+ 2 (123)(45) (142)(35) 6
3+ 2 (123)(45) (145)(23) 6

3+ 2 (123)(45) (1234) 6
3+ 2 (123)(45) (1324) 6
3+ 2 (123)(45) (1245) 6
3+ 2 (123)(45) (1425) 6
3+ 2 (123)(45) (1452) 6

3+ 2 (123)(45) (12345) 6
3+ 2 (123)(45) (13245) 6
3+ 2 (123)(45) (12435) 6
3+ 2 (123)(45) (13425) 6

(B.16)
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m Length number σ2 σ3 equivalent σ3 operator

5 4+ 1 N[41] = 34 (1234) () 1

4+ 1 (1234) (12) 4

4+ 1 NG
[41] = 28 (1234) (13) 2

4+ 1 (1234) (15) 4

4+ 1 (1234) (12)(34) 2

4+ 1 (1234) (13)(24) 1

4+ 1 (1234) (12)(45) 4

4+ 1 (1234) (13)(45) 4

4+ 1 (1234) (14)(25) 4

4+ 1 (1234) (123) 4

4+ 1 (1234) (132) 4

4+ 1 (1234) (345) 4

4+ 1 (1234) (245) 4

4+ 1 (1234) (354) 4

4+ 1 (1234) (123)(45) 4

4+ 1 (1234) (132)(45) 4

4+ 1 (1234) (345)(12) 4

4+ 1 (1234) (245)(13) 4

4+ 1 (1234) (354)(12) 4

4+ 1 (1234) (1234) 1

4+ 1 (1234) (1432) 1

4+ 1 (1234) (1243) 4

4+ 1 (1234) (1245) 4

4+ 1 (1234) (1235) 4

4+ 1 (1234) (1253) 4

4+ 1 (1234) (1325) 4

4+ 1 (1234) (1352) 4

4+ 1 (1234) (1452) 4

4+ 1 (1234) (12345) 4

4+ 1 (1234) (12435) 4

4+ 1 (1234) (12453) 4

4+ 1 (1234) (12543) 4

4+ 1 (1234) (13245) 4

4+ 1 (1234) (14325) 4

References

[1] F. David, Nucl. Phys. B 257 (1985) 45;
V.A. Kazakov, I.K. Kostov, A.A. Migdal, Phys. Lett. B 157 (1985) 295;
J. Ambjorn, B. Durhuus, T. Jonsson, Mod. Phys. Lett. A 6 (1991) 1133–1146;
N. Sasakura, Mod. Phys. Lett. A 6 (1991) 2613;
P. Ginsparg, arXiv :hepth /9112013;
M. Gross, Nucl. Phys. Proc. Suppl. 25A (1992) 144–149.

[2] E. Witten, arXiv :1610 .09758.
[3] R. Gurau, Nucl. Phys. B 916 (2017) 386, arXiv :1611 .04032; arXiv :1702 .04228.
[4] I. Klebanov, G. Tarnopolsky, Phys. Rev. D 95 (2017) 046004, arXiv :1611 .08915;

S. Carrozza, A. Tanasa, Lett. Math. Phys. 106 (11) (2016) 1531–1559, arXiv :1512 .06718.
[5] D. Gross, V. Rosenhaus, J. High Energy Phys. 02 (2017) 093, arXiv :1610 .01569, J. High Energy Phys. 05 (2017) 

092, arXiv :1702 .08016; arXiv :1706 .07015; arXiv :1710 .08113;
Ch. Krishnan, S. Sanyal, P.N. Bala Subramanian, J. High Energy Phys. 03 (2017) 056, arXiv :1612 .06330;
F. Ferrari, arXiv :1701 .01171;
V. Bonzom, L. Lionni, A. Tanasa, J. Math. Phys. 58 (2017) 052301, arXiv :1702 .06944;

http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E736F72s6
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib74656E6669727374s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4775726175706F7374576974s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4B6C65546172s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4B6C65546172s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s4


116 H. Itoyama et al. / Nuclear Physics B 932 (2018) 52–118
M. Beccaria, A.A. Tseytlin, arXiv :1703 .04460.
[6] S. Sachdev, Y. Ye, Phys. Rev. Lett. 70 (1993) 3339, arXiv :cond -mat /9212030;

J. Polchinski, V. Rosenhaus, J. High Energy Phys. 04 (2016) 001, arXiv :1601 .06768;
W. Fu, D. Gaiotto, J. Maldacena, S. Sachdev, Phys. Rev. D 95 (2017) 026009, arXiv :1610 .08917;
M. Berkooz, P. Narayan, M. Rozali, J. Simon, arXiv :1610 .02422.

[7] A. Kitaev, A simple model of quantum holography, http://online .kitp .ucsb.edu /online /entangled15 /kitaev/, http://
online .kitp .ucsb.edu /online /entangled15 /kitaev2/. Talks at KITP, April 7, 2015 and May 27, 2015;
S. Sachdev, Phys. Rev. X 5 (2015) 041025, arXiv :1506 .05111;
A. Jevicki, K. Suzuki, J. Yoon, J. High Energy Phys. 07 (2016) 007, arXiv :1603 .06246;
J. Maldacena, D. Stanford, arXiv :1604 .07818;
D. Bagrets, A. Altland, A. Kamenev, Nucl. Phys. B 911 (2016) 191–205, arXiv :1607 .00694;
A. Jevicki, K. Suzuki, J. High Energy Phys. 11 (2016) 046, arXiv :1608 .07567.

[8] Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak, C. Xu, arXiv :1701 .07081;
S.-K. Jian, H. Yao, arXiv :1703 .02051;
S. Carrozza, V. Lahoche, D. Oriti, arXiv :1703 .06729;
Ch. Krishnan, K. Pavan Kumar, S. Sanyal, J. High Energy Phys. 06 (2017) 036, arXiv :1703 .08155;
M. Casali, P. Cristofori, S. Dartois, L. Grasselli, arXiv :1704 .02800;
Ch. Peng, J. High Energy Phys. 05 (2017) 129, arXiv :1704 .04223;
S. Das, A. Jevicki, K. Suzuki, arXiv :1704 .07208;
Ch. Krishnan, K.V. Pavan Kumar, arXiv :1706 .05364;
Ch. Krishnan, K.V. Pavan Kumar, D. Rosa, arXiv :1709 .06498.

[9] H. Itoyama, A. Mironov, A. Morozov, Phys. Lett. B 771 (2017) 180–188, arXiv :1703 .04983.
[10] H. Itoyama, A. Mironov, A. Morozov, J. High Energy Phys. 06 (2017) 115, arXiv :1704 .08648.
[11] A. Mironov, A. Morozov, Phys. Lett. B 771 (2017) 503–507, arXiv :1705 .00976.
[12] A. Mironov, A. Morozov, arXiv :1706 .03667.
[13] H. Kyono, S. Okumura, K. Yoshida, arXiv :1704 .07410;

J. Yoon, arXiv :1706 .05914;
Ch. Peng, M. Spradlin, A. Volovich, arXiv :1706 .06078;
T. Azeyanagi, F. Ferrari, F. Schaposhnik Massolo, arXiv :1707 .03431;
K. Bulycheva, I. Klebanov, A. Milekhin, G. Tarnopolsky, arXiv :1707 .09347.

[14] R. Gurau, Commun. Math. Phys. 304 (2011) 69–93, arXiv :0907 .2582, Ann. Henri Poincaré 11 (2010) 565–584, 
arXiv :0911 .1945;
Class. Quantum Gravity 27 (2010) 235023, arXiv :1006 .0714, Ann. Henri Poincaré 13 (2012) 399–423, arXiv :
1102 .5759;
J.B. Geloun, R. Gurau, V. Rivasseau, Europhys. Lett. 92 (2010) 60008, arXiv :1008 .0354.

[15] R. Gurau, V. Rivasseau, Europhys. Lett. 95 (2011) 50004, arXiv :1101 .4182;
R. Gurau, J.P. Ryan, SIGMA 8 (2012) 020, arXiv :1109 .4812.

[16] V. Bonzom, R. Gurau, V. Rivasseau, Phys. Rev. D 85 (2012) 084037, arXiv :1202 .3637;
R. Gurau, V. Rivasseau, S. Gielen, L. Sindoni, J.P. Ryan, V. Bonzom, S. Carrozza, T. Krajewski, R. Toriumi, 
A. Tanasa, SIGMA 12 (2016), Special issue on tensor models, formalism and applications, http://www.emis .de /
journals /SIGMA /Tensor _Models .html.

[17] V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, Nucl. Phys. B 853 (2011) 174–195, arXiv :1105 .3122;
R. Gurau, Nucl. Phys. B 852 (2011) 592, arXiv :1105 .6072.

[18] R. Gurau, arXiv :1203 .4965;
V. Bonzom, arXiv :1208 .6216.

[19] V. Bonzom, J. High Energy Phys. 06 (2013) 062, arXiv :1211 .1657;
V. Bonzom, F. Combes, arXiv :1304 .4152;
V. Bonzom, R. Gurau, J.P. Ryan, A. Tanasa, J. High Energy Phys. 09 (2014) 05, arXiv :1404 .7517;
R. Gurau, A. Tanasa, D.R. Youmans, Europhys. Lett. 111 (2015) 21002, arXiv :1505 .00586.

[20] A. Tanasa, J. Phys. A, Math. Theor. 45 (2012) 165401, arXiv :1109 .0694; SIGMA 12 (2016) 056, arXiv :1512 .02087;
S. Dartois, V. Rivasseau, A. Tanasa, Ann. Henri Poincaré 15 (2014) 965–984, arXiv :1301 .1535.

[21] D. Garner, S. Ramgoolam, Nucl. Phys. B 875 (2013) 244–313, arXiv :1303 .3246.
[22] V. Bonzom, L. Lionni, V. Rivasseau, arXiv :1508 .03805.
[23] P. Cristofori, E. Fominykh, M. Mulazzani, V. Tarkaev, arXiv :1609 .02357.
[24] V. Bonzom, S. Dartois, arXiv :1612 .04624.
[25] Materials of the 2nd French-Russian conference on random geometry and physics, http://www.th .u -psud .fr /RGP16/, 

2016.

http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4772s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5359s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5359s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5359s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5359s4
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4Bs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4Bs3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4Bs4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4Bs5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4Bs6
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s6
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s7
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s8
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5231s9
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib494D4D74656E31s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib494D4D74656E32s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D6D616D6Fs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D74656Es1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib706879736C617374s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib706879736C617374s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib706879736C617374s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib706879736C617374s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib706879736C617374s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4247526669727374s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4247526669727374s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4247526669727374s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4247526669727374s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4247526669727374s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib477572s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib477572s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib426F6E7As1
http://www.emis.de/journals/SIGMA/Tensor_Models.html
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib56697274726565s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib56697274726565s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib477572566972s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib477572566972s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6D6F7265s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6D6F7265s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6D6F7265s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6D6F7265s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib756E636Cs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib756E636Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib52616Ds1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib424C52s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib43726973746Fs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4244s1
http://www.th.u-psud.fr/RGP16/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://www.emis.de/journals/SIGMA/Tensor_Models.html


H. Itoyama et al. / Nuclear Physics B 932 (2018) 52–118 117
[26] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 
1994; Leningr. Math. J. 2 (3) (1991) 499–505;
V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Scientific, 2007, arXiv :hep -th /0609022;
A. Morozov, Sh. Shakirov, arXiv :0911 .5278.

[27] J. Harer, D. Zagier, Invent. Math. 85 (1986) 457–485;
C. Itzykson, J.-B. Zuber, Commun. Math. Phys. 134 (1990) 197–208;
A. Morozov, Sh. Shakirov, J. High Energy Phys. 0912 (2009) 003, arXiv :0906 .0036; arXiv :1007 .4100.

[28] S.K. Lando, A.K. Zvonkin, Embedded Graphs, Preprint Series, vol. 63, Max-Plank-Institut für Mathematik, 2001.
[29] A. Morozov, Sh. Shakirov, J. High Energy Phys. 0904 (2009) 064, arXiv :0902 .2627;

A. Alexandrov, Nucl. Phys. B 851 (2011) 620–650, arXiv :1005 .5715; Mod. Phys. Lett. A 26 (2011) 2193–2199, 
arXiv :1009 .4887;
A. Morozov, Theor. Math. Phys. 162 (2010) 1–33, Teor. Mat. Fiz. 161 (2010) 3–40, arXiv :0906 .3518;
A. Balantekin, arXiv :1011 .3859.

[30] A. Mironov, A. Morozov, S. Natanzon, Theor. Math. Phys. 166 (2011) 1–22, arXiv :0904 .4227; J. Geom. Phys. 62 
(2012) 148–155, arXiv :1012 .0433; J. High Energy Phys. 11 (2011) 097, arXiv :1108 .0885.

[31] R. de Mello Koch, S. Ramgoolam, arXiv :1002 .1634.
[32] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, J. High Energy Phys. 11 (2014) 080, arXiv :1405 .1395.
[33] P. Diaz, S.J. Rey, arXiv :1706 .02667.
[34] T. Morris, Nucl. Phys. B 356 (1991) 703–728;

Yu. Makeenko, Pis’ma v ZhETF 52 (1990) 885–888;
Yu. Makeenko, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B 356 (1991) 574–628.

[35] C. Kristjansen, J. Plefka, G.W. Semenoff, M. Staudacher, Nucl. Phys. B 643 (2002) 3–30, arXiv :hep -th /0205033;
S. Corley, A. Jevicki, S. Ramgoolam, Adv. Theor. Math. Phys. 5 (2002) 809–839, arXiv :hep -th /0111222.

[36] A. Alexandrov, A. Mironov, A. Morozov, J. High Energy Phys. 0912 (2009) 053, arXiv :0906 .3305.
[37] A. Alexandrov, A. Mironov, A. Morozov, Physica D 235 (2007) 126–167, arXiv :hep -th /0608228; J. High Energy 

Phys. 12 (2009) 053, arXiv :0906 .3305;
B. Eynard, N. Orantin, Commun. Number Theory Phys. 1 (2007) 347–452, arXiv :math -ph /0702045;
N. Orantin, arXiv :0808 .0635.

[38] G. Belyi, Math. USSR Izv. 14 (2) (1980) 247–256;
A. Grothendieck, Sketch of a programme, Lond. Math. Soc. Lect. Note Ser. 242 (1997) 243–283; Esquisse d’un 
Programme, in: P. Lochak, L. Schneps (Eds.), Geometric Galois Action, Cambridge University Press, Cambridge, 
1997, pp. 5–48;
G.B. Shabat, V.A. Voevodsky, The Grothendieck Festschrift, Vol. III, Birkhäuser, 1990, pp. 199–227.

[39] C. Itzykson, J.B. Zuber, Commun. Math. Phys. 134 (1990) 197;
T.W. Brown, Phys. Rev. D 83 (2011) 085002, arXiv :1009 .0674.

[40] N. Adrianov, N. Amburg, V. Dremov, Yu. Levitskaya, E. Kreines, Yu. Kochetkov, V. Nasretdinova, G. Shabat, 
arXiv :0710 .2658.

[41] A. Levin, A. Morozov, Phys. Lett. B 243 (1990) 207–214.
[42] Dirk-Jan Smit, Commun. Math. Phys. 143 (1992) 253–285.
[43] R. Gopakumar, arXiv :1104 .2386.
[44] J. Ben Geloun, S. Ramgoolam, arXiv :1307 .6490.
[45] R. de Mello Koch, D. Gossman, L. Tribelhorn, J. High Energy Phys. 2017 (2017) 011, arXiv :1707 .01455.
[46] J. Ben Geloun, S. Ramgoolam, arXiv :1708 .03524.
[47] F. David, Mod. Phys. Lett. A 5 (1990) 1019;

A. Mironov, A. Morozov, Phys. Lett. B 252 (1990) 47–52;
J. Ambjørn, Yu. Makeenko, Mod. Phys. Lett. A 5 (1990) 1753;
H. Itoyama, Y. Matsuo, Phys. Lett. B 255 (1991) 20.

[48] H. Itoyama, Y. Matsuo, Phys. Lett. B 262 (1991) 233–239;
A. Marshakov, A. Mironov, A. Morozov, Mod. Phys. Lett. A 7 (1992) 1345–1360;
A. Mironov, A. Morozov, G. Semenoff, Int. J. Mod. Phys. A 10 (1995) 2015, arXiv :hep -th /9404005;
A. Alexandrov, A. Mironov, A. Morozov, Int. J. Mod. Phys. A 19 (2004) 4127, arXiv :hep -th /0310113; Int. J. Mod. 
Phys. A 21 (2006) 2481–2518, arXiv :hep -th /0412099; Fortschr. Phys. 53 (2005) 512–521, arXiv :hep -th /0412205;
A. Mironov, A. Morozov, arXiv :1701 .03057.

[49] W. Fulton, Young Tableaux: with Applications to Representation Theory and Geometry, London Mathematical 
Society, 1997;
T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Representation Theory of the Symmetric Groups, Cambridge Stud-
ies in Advanced Mathematics, vol. 121, Cambridge University Press, 2010;

http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4E4C41s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4E4C41s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4E4C41s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4E4C41s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib485As1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib485As2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib485As3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4C5As1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6368617263616Cs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6368617263616Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6368617263616Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6368617263616Cs3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib6368617263616Cs4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D4E31s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D4E31s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4B52s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib414D4D4E687572s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4469s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib52434Ds1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib52434Ds2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib52434Ds3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434D636F7272s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434D636F7272s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434D6D6F64s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib414D4D726563s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib414D4D726563s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib414D4D726563s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib414D4D726563s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42656Cs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42656Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42656Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42656Cs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42656Cs3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42484Ds1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib42484Ds2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib416D62s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib416D62s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4C65764D6F72s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib444A536D6974s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib476F70616Bs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4752s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4B4754s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib476552616D67s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D566972s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D566972s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D566972s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D566972s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4D4D57s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s2


118 H. Itoyama et al. / Nuclear Physics B 932 (2018) 52–118
I.M. Isaacs, Character Theory of Finite Groups, Corrected reprint of the 1976 original, published by Academic 
Press, ed., Dover, ISBN 0-486-68014-2, 1994.

[50] G. Frobenius, Sitzberg. Königlich Preuss. Akad. Wiss. Berlin (1896) 985–1021;
A.D. Mednykh, Sib. Math. J. 25 (1984) 606–625;
R. Dijkgraaf, E. Witten, Commun. Math. Phys. 129 (1990) 393–429;
D. Freed, F. Quinn, Commun. Math. Phys. 156 (1993) 435–472;
R. Dijkgraaf, in: The Moduli Spaces of Curves, in: Prog. Math., vol. 129, Brikhäuser, 1995, pp. 149–163.

[51] I. Goulden, D. Jackson, Proc. Am. Math. Soc. 125 (1997) 51–60, arXiv :math /9903094.
[52] D. Kreimer, Adv. Theor. Math. Phys. 2 (1998) 303–334, arXiv :hep -th /9707029; Commun. Math. Phys. 204 (1999) 

669, arXiv :hep -th /9810022;
A. Connes, D. Kreimer, Commun. Math. Phys. 199 (1998) 203–242; Lett. Math. Phys. 48 (1999) 85–96, arXiv :
hep -th /9904044; J. High Energy Phys. 9909 (1999) 024, arXiv :hep -th /9909126; Commun. Math. Phys. 210 (2000) 
249–273, arXiv :hep -th /9912092; arXiv :hep -th /0003188.

[53] A. Gerasimov, A. Morozov, K. Selivanov, Int. J. Mod. Phys. A 16 (2001) 1531–1558, arXiv :hep -th /0005053.
[54] M. Raasakka, A. Tanasa, Sémin. Lothar. Comb. 70 (2014) B70d, arXiv :1306 .1022.
[55] R.C. Avohou, V. Rivasseau, A. Tanasa, arXiv :1507 .03548.
[56] D.E. Littlewood, The Theory of Group Characters, Oxford University Press, Oxford, 1940;

E. Getzler, M.M. Kapranov, arXiv :dg -ga /9408003.
[57] A. Morozov, Phys. Usp. (UFN) 37 (1994) 1, arXiv :hep -th /9502091; arXiv :hep -th /0502010;

A. Mironov, Int. J. Mod. Phys. A 9 (1994) 4355, arXiv :hep -th /9312212; Phys. Part. Nucl. 33 (2002) 537; arXiv :
hep -th /9409190.

[58] A. Morozov, Sov. Phys. Usp. 29 (1986) 993–1039.
[59] The On-Line Encyclopedia of Integer Sequences, founded by N.J.A. Sloane, http://oeis .org.
[60] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897.
[61] H. Itoyama, A. Mironov, A. Morozov, Theor. Math. Phys. 184 (1) (2015) 891–923, arXiv :1406 .4750.
[62] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, 1980.

http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5347s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib46726F44s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib46726F44s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib46726F44s3
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib46726F44s4
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib46726F44s5
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib474As1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434Bs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434Bs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434Bs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434Bs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib434Bs2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib474D53656Cs1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib5241s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib415254s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4C6974746C65s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4C6974746C65s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib55464E33s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib55464E33s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib55464E33s2
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib55464E31s1
http://oeis.org
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib4275726E73s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib494D4D6362s1
http://refhub.elsevier.com/S0550-3213(18)30131-7/bib47726164s1

	Cut and join operator ring in tensor models
	1 Introduction
	2 Logic and the structure of the paper
	3 Models, operators and Gaussian averages
	4 Cut and join operations and Virasoro-like recursions: a primer
	5 Counting diagrams in the Aristotelian model
	5.1 Index functions and number of connected operators
	5.2 On gauge choices for S3m
	5.2.1 The double coset
	5.2.2 RG-gauge: enumeration by red-green cycles
	5.2.3 Orbits of S3coloring
	5.2.4 Hurwitz gauge

	5.3 Size of the coset
	5.3.1 Symmetric Schur polynomials and the zΔ factors
	5.3.2 Estimates of the coset size
	5.3.3 The lemma that is not Burnside's

	5.4 The number of gauge-invariant operators: ||Smr||
	5.5 The number of connected operators: index function η(q)
	5.6 The number of operators with ﬁxed number of the red-green cycles (RG gauge)
	5.7 Symmetrizing operators in colors: the number of orbits of Srcoloring
	5.7.1 A toy example: S2coloring
	5.7.2 Aristotelian model: S3coloring
	5.7.3 Generic r


	6 Hurwitz gauges and Hurwitz numbers
	6.1 Calculations in the Hurwitz gauge
	6.1.1 Hurwitz numbers and Clebsch-Gordon coefﬁcients
	The Hurwitz numbers
	The orthogonality property
	Commutative ring in the group algebra
	Clebsch-Gordon coefﬁcients

	6.1.2 Number of operators in the Hurwitz gauge

	6.2 Calculations in the true Hurwitz gauge

	7 Level-by-level analysis of operator ring and its CJ structure
	7.1 Level S1
	7.2 Level S2
	7.2.1 Gauge-invariant operators
	7.2.2 CJ structure at level m=2

	7.3 Level S3
	7.3.1 Operators
	7.3.2 CJ structure at level m=3

	7.4 Level S4
	7.4.1 Operators
	7.4.2 CJ structure

	7.5 Level S5

	8 Conclusion
	Acknowledgements
	References


