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FOREWORD

This thesis is written in completion of Master’s Program in Business Adminis-
tration at Istanbul Aydin University. At first the thesis studies the history of the
problem since its introduction in the 1950s by defining the problem, discussing
its effect on our daily lives and its variations. Afterwards, the thesis studies the
main approaches in which the problem has been approached since its introduc-
tion. The three approaches which are (1) Exact methods, (2) Heuristics, and (3)
Metaheuristics are then studied in details along with their different variations and
implementations as well as their pros and cons.
The thesis then describes the new algorithm that has been developed to address
the issue using a hybrid of metaheuristics and exact methods to take advantage
of both methods and overcome their shortcomings. Afterwards, the algorithm
is tested using real world data with two sets of configurations and the test runs
are compared to one another. The algorithm is then benchmarked against (VRP
Spreadsheet Solver) to test its asses how the algorithm performs when compared
to other utilities and tools available in the market today.
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ARAÇ ROTALAMA PROBLEMI

HİBRİT YÖNTEMLERİ İLE SEKTÖRIZASYON

ÖZET

1959 yılında ilk olarak ortaya atılan Araç Rotalama Problemi, geçen yıllarda önem
kazanmaya devam etmiştir. Buna karşılık bu problemin en uygun sonucunu tam
olarak bulan bir algoritma henuz geliştirilmemistir. Bu araştırmamızda ilk Araç
Rotlama Problemi’nin tanıtımına yer verilmiştir. Bununla Araç Rotalama Prob-
lemi’nin iş dünyasındaki önemi, bu problemin sozumesnin. Gözükesinin sağlay-
acağı faydalar ve problemin sınırlamalarından bahsedilmektedir.
O tezde, geçmişte bu konuyla ilgili olarak yapılan tüm araştırmalar hakkında
bilgilere verilmiş ve tiplerine göre ayrıştırılmıştır. Sonrasında ise en uygun so-
nucu bulan kesin ve bir amaca yönelik sezgisel yöntemleri kullanan bir algoritma
tarafımızdan oluşturmuştk. Bu algoritma, sezgisel yöntemler kullanılarak müş-
teriler küçük gruplara ayırmaktadır. Her bir grupta olan müşteri, bir araca ait
olup, sonrasında yapılan kesin metotlar ile bütün müşterilerden, her aracın de-
podan çıkış bölümünden geçip, tekrar depoya dönme yolu bulunmaktadır. Bu
bölümde müşteri adedi az olduğundan dolayı kesin metotlar kullanılmaktadır.
Bu nedenle bulunan yol planının, en iyi plan olduğu kesindir. Sonrasında algor-
itmanın bulduğu sonuç, geçmişte bulunan sonuçlar ile karşılaştırılmış ve ona göre
ya (1) aynı sonuç ile yoluna devam eder, ya (2) yolu değişir, ya da (3) şu ana
kadar en iyi bulunan sonucu vererek tamamlanır. Bu tezi, söz konusu algoritmayı
test etmek için, merkez Ankara seçilmiş olup, Ankara’dan başlayarak sekiz (8)
araç ile Türkiye’nin diğer kalan seksen (80) ilinden geçerek, yeniden Ankara‘ya
dönmesi için en az masraflı olan yol planı bulunmaya çalışılmıştır. Belirtilen bu
bilgiler iki (2) kez test edilmiş olup, her defasında farklı ayarlar kullanılmıştır.
Sonrasında ise aynı ayarlar ile 2017 yılında Prof. Güneş Erdoğan‘nın tarafından
Microsoft Ofis Programı olan Excel kullanılarak geliştirmiş olan uygulama ile per-
formansları karşılaştırılmıştır. Performans çıktı sonuçlarının analizi yapılıp, her
aracın avantajları, dezavantajları, faydaları, kusurları ve bu kusurların sebepleri
anlatılarak açıklanmaya çalışılmıştır. Yapılan bu testler, Microsoft Excel kul-
lanılan bu uygulama ile aynı ayarla, aynı zamanda ve çok daha iyi ve başarılı
sonuçlar verdiğini göstermiştir.

Anahtar Kelimeler: VRP, Araç Rotlama Problemi, Exact Methodları, Me-
taheuristics, Heuristics, Lojistik, Algoritma.
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VEHICLE ROUTING PROBLEM

SECTORIZATION USING HYBRID METHODS

ABSTRACT

VRP (Vehicle Routing Problem) is a problem that was first introduced in the late
1950s and has been since studied thoroughly. However there are no algorithms
that have the ability to conclude an optimum solution for the problem yet.
In this paper a brief introduction is given to familiarize the reader with the prob-
lem. Afterwards scope of the study along with its limitations, and assumptions
are expressed briefly. Motivations are explained as well to indicate the importance
of the problem and its effects in our everyday lives. A summary of previously
done researches along with their types of solutions are studied throughout this
paper.
Then a new algorithm that uses a combination of exact methods and metaheur-
istics to find the solution closest to the optimum one is introduced. The algorithm
in question uses metaheuristics to divide the clients population into smaller pop-
ulations called sections where each section represents a group of clients that will
be served by one of the available vehicles. The algorithm then finds the best
route within each of the sections using exact methods which have the advantage
of guaranteeing best solutions for small numbers of clients within acceptable time
windows. The algorithm then compares newly found solutions with previous ones
and decides accordingly whether it must (1) continue in the same path, (2) change
it, or (3) stop processing and outputs the best solution that has been found until
this moment as the best solution possible.
Afterwards, the algorithm is tested using two different sets of configurations to
find the best way to visit all 80 cities in the Republic of Turkey with 8 vehicles
starting and ending at Ankara with the lowest possible cost. The algorithm is
then benchmarked against a tool that has been developed by Dr. Erdoğan Güneş
and makes use of Microsoft Excel to find the optimal solution for the same prob-
lem with the exact same configurations and circumstances and then both tools
are compared to one another stating advantages of each of them. The comparison
shows Dr. Güneş’s excel tool was more successful in finding the better solution
within the same time window allowed for processing the given data. At the end
of the paper, applications of the algorithm, along with suggestions for further
improvements are suggested.

Keywords: VRP, Vehicle Routing Problem, Exact Methods, Metaheuristics,
Heuristics, Logistics, Delivery, Pick-up, Supply chain.
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1. INTRODUCTION

This chapter helps better introduce the problem via its 6 sections, which help

divide the introduction into its respective categories as follows; Scope of Study,

Problem Definition, Limits, Assumptions, Hypothesis, and Motivation respect-

ively.

1.1 Scope of Study

This thesis studies the history of VRP (Vehicle Routing Problem), its impact in

our lives, and approaches which were taken to solve it along with a new algorithm

that combines metaheuristics and exact methods to solve it.

1.2 Problem Definition

The problem can be defined as the problem of finding the closest solution to

optimum solution for a VRP, following constraints bound the problem:

• There is one depot from which all trips will originate and end after making

a full trip. The depot vertex will be the vertex with index 0, V0

• There is a definite number of vehicles m > 0

• There is a definite number of vertices (clients) to be visited which is at least

equal to the number of vehicles n ≥ m

• All vertices (clients) should be visited exactly once, by exactly one vehicle.

• The runtime time window is defined prior to execution start.

• The coordinates for the vertices are provided.
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• The costs of trips between vertices are provided with regards to at least one

cost factor.

• There is an importance factor associated for each cost factor and is provided

beforehand.

• The sum of importance factors must be equal to one
∑CN

i=0 CFi = 1

1.3 Limits

Theoretically speaking the size of data is unlimited, although it should be taken

into account that a single vehicle has a maximum visits number (tour capacity)

of a 100 vertices (clients) since it is the maximum limit for the TSP solving

algorithm being used.

The algorithm is limited to one depot, and works in accordance with the constraint

that all vehicles will make trips that originate and terminate at the depot.

1.4 Assumptions

Since the algorithm was designed with logistic companies in mind, it is assumed

that it will have a time window in which it will be able to find the best possible

solution for the problem provided, it is also assumed that the time available would

be known beforehand.

Also because of the same design purpose, it is assumed that the data and locations

would be provided before hand and would not change during runtime.

The Algorithm takes into consideration whatever cost data fed to it and makes

the best use out of it.

1.5 Hypothesis

The method in question is supposed to take advantage of exact methods’ precision

but will overcome their performance issues by depending heavily on metaheurist-

ics to divide the clients’ population into smaller groups groups that can be run

using exact methods within acceptable run times.

Using a combination of both exact methods and metaheuristics means that the al-

gorithm will be able to perform with performance close to metaheuristics’ without

2



suffering from the precision drawback associated with metaheuristics because it

uses exact methods as well to keeps precision in check. The hypothesis can be

summed as follows:

• H1: Our algorithm is faster than exact methods

• H2: Our Algorithm is more accurate than Metaheuristics.

1.6 Motivation

Logistics takes part in almost every single aspect of human lives, from the deliv-

ery of final products to the consumer to transportations of raw and half-ready

materials necessary for production. With such importance in our lives and being

such a vital component of the production cycle we can only expect it to have as

much effect on our lives.

Logistics problems do not stop at being small problems since they are becoming

bigger and more vital day by day. Our constantly changing lives mean that our

cities are becoming bigger, number of packages being sent and received is getting

bigger, and the demand for faster more reliable logistics (next day delivery, or

even same day delivery are now available in some parts of the world) is always

on the rise.

Here are 6 of the most important issues that each logistics company faces on daily

bases and would benefit a lot from the improvement or solutions introduced to

the problem:

1.6.1 Greenhouse gas emissions (CO2 footprint)

Although it is hard to estimate the greenhouse gas emissions of the transporta-

tion and logistics sector, it has been estimated that freight transportation alone

produced 33.7M tons of CO2 in the year 2004 in the UK alone, which accounts

for 6% of the total CO2 emissions in the UK in the same year. (Mckinnon, 2007).

1.6.2 Big amounts of goods, big numbers of clients

At the year 2016 it was announced that the total trade volume in the world

was 16.2 Trillion U.S Dollars (World Trade Organization, 2016), this number is
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expected to rise to a whopping 27 Trillion U.S Dollars (Reuter, 2010). Moreover

at the year 2015 there were 7.3 Billion people on the face of earth, but this number

is projected to grow to 8.5 Billion people by the year 2030 and continue to rise

until it reaches 9.725 Billion people by the year 2050 (United Nations, 2015).

Looking at these number we can understand the importance that the logistics

sector will hold in the near future.

1.6.3 Struggle with human resources

In India at the year 2011 it was estimated by The National Skill Development

Organization of India that 7.3 Million people were employed by the logistics sec-

tor, but that number is going to rise to a 25 Million by the year 22, this means

that logistic firms will have to find 17 Million qualified employees in just 11 years.

suffices to say there will be a huge pressure on the sector.

A similar example can be found in the United States where 400 Thousands truck

drivers were needed at 2010 alone, and because of retiring professional drivers

in the United States the market should supply itself with 1 Million professional

truck drivers between the years 2012, and 2027.

Not only land transportation is facing such problems as according to The Ocean

Policy Research Foundation up to 364,000 seafarers shortfall is estimated by 2050.

Airlines will also suffer from 460,000 pilots and 650,000 technicians and mainten-

ance employees shortage as well (PwC, 2015).

1.6.4 Time importance

According to Consumer Intelligence Research Partners Amazon has an estimate

of 80 Million Prime subscribers in the United States alone(Dunn, 2017) which

is double what Amazon has expected only two years before, Each of these sub-

scribers spends double the normal spending on Amazon annually (Dunn, 2017).

Prime, which is a service that among many of its promises promises delivery of

goods purchased on Amazon within one day (Amazon, 2017).

All of these figures mean there is a growing huge number of clients expecting their

products to be delivered in almost real-time on daily bases all around the world,

thus the demand for flexible fast and reliable logistics will increase as well.
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1.6.5 Planning and unexpected scenarios

When the airport of Bangkok was forced to close because of the protests in the

year 2008, the Thai economy suffered a loss of 8.5 Billion US Dollars, not only

the tourism and airline businesses were hit by the closure, but exports were hit as

well, an example of that would be the orchid export business which contributes

to 80% of the orchid export business in the world and suffered a 9 Million US

Dollars as a consequence of the closure.

Another incident of an unexpected scenarios is the eruption of a volcano in Iceland

which happened in 2010 that forced airlines to cancel 100,000 flights in the course

of 6 days causing a loss of 1.6 US Dollars for the airlines industry which was felt

most by airliners that operate in Europe (Ruske et al., 2011).

1.6.6 Big resources in use

Given all the reasons and studies given before in section 1.6, it can be easily

assumed that the logistics sector is among the most resources-demanding sectors,

and given that it comes to direct contact with most if not all of the industries it

can be only assumed that with time it is going to get more pressing, important,

and demanding unless new game-changing technologies are introduced into the

business. We are starting to see some of these technologies surfacing at the time

being but not on a large scale or for big amounts of goods, but rather for the

delivery of package to the final consumer. An example of new technologies being

used is the usage of drones by online shopping firms such as Amazon Inc. to de-

liver purchases to clients, but such technologies are yet too far from introducing

a real change in the industry.

Looking at the figures and statistics mentioned above in section 1.6, it can be con-

cluded that the role of logistics in the global market is only going to get bigger

and more important, so it makes sense to constantly work on making the sector

better and more efficient.

5



2. LITERATURE REVIEW

In this chapter some resources and previous studies in the field are looked at

according to the field (sectorization, and routing)

2.1 Sectorization

Sectorization (or districting) problems consist of partitioning a large region into

smaller sub-regions (sectors), to facilitate the management of some activities

(Mourão et al., 2009).

2.1.1 Graphs

A graph G consists of a finite nonempty set V of p points together with a set X

of q unordered pairs of distinct points of V . Each pair X = {u, v} in X is a line

of G, and if {u, v} ∈ X, then u and v are said ot be adjacent in G. Moreover, if

X = {u, v} ∈ X, then x is said to be incident with the points u and v. (Alba,

1973).

Graphs have many usages in demonstrating real-life problems like demonstrat-

ing roads and conjunctions between the roads, while showing some important

information about the roads and the vertices between them. other usages might

be in chemical problems to demonstrate the chemical compounds and the way

they being produced.

2.1.1.1 Graphs and multigraphs

The difference between graphs and multigraphs is that multigraphs are basically

graphs that have at least two nodes that are connected to each others using more

than one edge. However multigraphs cannot have loops in them (loops are nodes

that are connected to themselves using an edge).
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The set V (G) is called the vertex set where E(G) is called edge set of the multi-

graph G.

The number of vertices in a multigraph v(G) is referred to as the order of the

multigraph, while the number of edges in a multigraph e(G) is referred to as the

size of the multigraph.

2.1.1.2 Matrices and multigraphs

As multigraphs consist of sets of vertices and nodes we can represent them using

matrices which is very helpful in finding solutions for problems using computers

as matrices are easy to deal with in computers.

It helps as well that in graphs the size of dots and the shapes of the edges do not

demonstrate real-life characteristics of our problem.

To demonstrate a multigraph using a matrix, a square matrix should be defined

with each adjacent representing the number of edges connecting two vertices to

each other given that the column of the adjacent represents one vertex and the

row of it represents another vertex (it is the same vertex when it is a diagram

adjacent).

2.1.1.3 Vertex degree

Two vertices u and v in a G are said to be adjacent if they are joined by an

edge, say, e in G. In the case when e is the only edge joining u and v, we also

write e = uv, and we say that: (1) u is a neighbour of v and vice versa. (2) the

edge e is incident with the vertex u (and v). (3) u and v are the two ends of

e. (Koh et al., 2007).

Given a vertex v in G, the degree of v in G, denoted by dG(v), is the defined as

the number of edges incident with v.(Koh et al., 2007).

A vertex v is called an isolated-vertex if d(v) = 0; it is called an end-vertex

if d(v) = 1.(Koh et al., 2007).

An end−vertex in a multigraph G is a vertex v with a degree d(v) = 1. Although

an end− vertex has nothing to do with the end of an edge.(Koh et al., 2007).

In general the sum of vertices degree is double the multigraph degree. (Koh

et al., 2007).
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A vertex v in a graph G can be either odd or even and that would be determined

by its degree d(v).(Koh et al., 2007).

Each multigraph G has a maximum degree ∆(G) and a minimum degree

δ(G) which are defined by the maximum degree of vertices and the minimum

degree of vertices in the multigraph G (Koh et al., 2007).

2.1.1.4 Regular graphs

A graph G is referred to as a regular graph if the degree of all the vetrices in

the graph are of the same degree. If a graph G is regular and all of its vertices

are of the degree K it is referred to as K-regular graph (Koh et al., 2007).

It should be noted that given a regular graph G, the maximum degree, and

the minimum degree of G will be equal and both will be equal to K, thus

∆(G) = δ(G) = K. There are three special types of multigraphs:

2.1.1.4.1 Null graphs A graph G is called a null graph (empty graph)

if E(G) is empty, or K = 0. Which translates to a graph that has no edges at

all. A null graph of order n is denoted by Nn.(Koh et al., 2007).

2.1.1.4.2 Complete graph A graph G is called a complete graph if every

vertex is a neighbor for all the other vertices in the graph. It is denoted by

Kn.(Koh et al., 2007).

Complete graphs are always (n− 1)− regulargraphs.

2.1.1.4.3 Cycles A graph G, where V (G) = {v1, v2, v3, ..., vn} is called a

cycle if any given vertex vi is an adjacent to vi−1 and vvi+1. A cycle of the

order n is referred to as Cn and is called an n− cycle.(Koh et al., 2007).

2.1.1.5 Paths and walks

A walk in a multigraph G is an alternating sequence of vertices and edges that

begins and ends at vertices and is referred to as (#) and would be written as:

(#) v0e0v1e1v2...vk−1ek−1vk
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where k ≥ 1 and ei is incident with vi and vi+1 for each i = 0, 1, ..., k − 1. The

walk (#) is also called a v0− vk, v0 is called the initial vertex, while vk is called

the terminal vertex. The length of the walk (#) is defined as k which is the

number of edge occurrences in the sequence.(Koh et al., 2007).

A walk is called a trail if no edge in it is traveressed more than once.

A trail is called a path if no vertex in it is visited more than once.

A walk is called a closed walk if it starts and ends at the same node, such as

initialvertex = terminalvertex.

A closed walk of length at least two with no repeated edges is called a circuited.

A circuit is called a cycle if no vertex is repeated (except the initial and terminal

vertices).

We call the shortestpath between two vertices a and b the distance between

them, and referred to as d (a, b).

In a graph G the diameter is defined by the greatest distance between any two

vertices in the graph.

2.1.1.6 Connectedness of a graph

A graph can consist of one or more components where each component is a set

of vertices connected to each other (using edges).

A component can consist of any number of nodes k ≥ 1.

A connected graph is a graph that consists of one component, thus a walk can

be done between any two vertices in the graph.

A graph is called disconnected if it is not a connected one. In other words, if it

consists of more than one component.(Koh et al., 2007).

2.2 Routing - VRP

VRP (Vehicle Routing Problem) is a well-known problem that was first formally

introduced in the year 1959 (Laporte, 2009).

The Vehicle Routing Problem (VRP) can be defined as a problem of finding the

optimal routes of delivery or collection from one or several depots to a number of

cities or customers, while satisfying some constraints (Yeun et al., 2008). Because

of the different scenarios that are being faced in practice it might be more useful
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to consider VRP as a class of problems rather than a problem. But no matter

what we consider it this problem (class of problems) is being faced on daily

basis at delivery posts and logistics companies, and is a central problem for load

distribution departments at each firm. This might give an indication to the reason

that it has been studied for such a long time and captured as much attention.

The classical VRP would be defined as follows. Let G(V,A) be a directed graph

where V = {0, ...., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the

arc set. Vertex 0 represents the depot while the rest of the vertices in the set

represent the clients (locations that should be visited or make a delivery to). A

fleet of m identical vehicles of load limit Q is based in the depot. Each customer

has a specified demand (load) qi. A cost matrix cij represents the cost for travel

between vertices in the set V . The VRP can solved such as designing m vehicle

routes that start and end at the depot while fulfilling the goal of operation which

is visiting each client once and only once by exactly one vehicle, the solution is

subject to two constraints: (1) the total demand of a route cannot exceed Q, and

(2) the total length of the route cannot exceed a preset limit L (Laporte, 2009).

In principle the VRP generalizes the well-known Travelling Salesman Problem

(TSP) but with the generalization process it made the problem so much more

complex for there exists exact algorithms capable of solving TSP with sizes that

can reach hundreds or even thousands of vertices, while the maximum number

of vertices contained in a VRP that can be solved is near a hundred vertices.

Because the number of vertices in practices more often than never exceeds the

specified constraint heuristics and metahueristics are more commonly used to

solve VRP Laporte, 2009.

As it has been mentioned earlier in chapter 2.2 VRP solving algorithms are divided

into three main categories each differs by the way it tackles the problem, and by

the approach the algorithm takes to find the best solution (when possible).

2.2.1 Exact algorithms

Exact algorithms were first introduced for VRP almost 50 years ago with the

basic branch-and-bound scheme that later evolved to the complex mathematical

programming algorithms. Following is a general trace of their development.
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2.2.1.1 Branch-and-bound algorithms

The original Branch-and-Bound algorithm was introduced in the year 1959 by

Dantzig and Ramser, then it was slightly improved by Christofides and Eilon

in 1969 (Laporte, 2009). In the latter algorithm, m is an input parameter, the

given graph is then extended by m − 1 artificial depots and setting inter-depot

arc costs equal to infinity. Then an m-TSP is solved on this graph by branching

on arcs, as by (Little et al. (1963)) TSP algorithm, except that the shortest tree

bound is calculated at each note, instead of relaxed assignment problem. The

side constraints of the VRP are being handled by simple fathoming rules. A new

algorithm was proposed by Laporte, Mercure, and Nobert in 1986 in which an

improvement on the branch-and-bound algorithm was made based on the modi-

fication of the Carpaneto and Toth in 1980 TSP algorithm (Laporte, 2009).

Probably the first paper ever to introduce the name ”vehicle routing problem”

was the one proposed Christofides in the year 1976. In the paper the branch-

and-bound algorithm it describes branches rather than arcs, which resulted in a

a search tree that has a limited depth of m but was rather wide. Nevertheless

neither of the fore mentioned algorithms were of any success except for when used

on small or easy instances (Laporte, 2009).

Various improvements were later introduced to the field, starting from the second

lower bound which was based on the concept of q-route that’s been put forward

by Houck et al. (1980). Christofides, Mingozzi, and Toth (1981) could success-

fully solve instances that were 10 ≤ n ≤ 25 with these lower bounds.

Later on Hadjiconstantinou, Christofides, and Mingozzi (1995) developed an im-

proved branch-and-bound algorithm that was capable of solving n ≤ 50. Fishes

(1994) later was able to incorporate the k-DCT lower bound within a branch-and-

cut algorithm for VRP with a restriction such as return trips between customers

and depot were not allowed, the result was an algorithm capable of finding a route

for up to 134 vertices (Laporte, 2009).

2.2.1.2 Dynamic programming

Unlike branch-and-bound, dynamic programming approach for solving VRP does

not seem to have attracted much of attention for its development started and
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ended within 10 years only.

Eilon, Watson-Gandy, and Christofides (1971) formulated the VRP as dynamic

programming as follows. Let c(S) be the optimal cost of a single vehicle route

through the vertices of S ⊆ V \{U}. The objective is to minimize
∑m

r=1 > c(Sr)

over all feasible partitions {S1, ..., Sm} of V \{0}. Let fk(U) be the least cost

achievable using k vehciles and delivering to a subset U of V \{0}. Then

fk(U) =

{c(U) (k = 1),

minU∗⊆U⊆V \{0} {fk−1(U ⊆ u∗) + c(U∗)}(K > 1).

(2.1)

The solution cost is fm(V \{0}) and the optimal partition corresponds to the op-

timizing subsets in (2.1). The state space can be reduced by using the feasibility

or dominance criteria. A state-space relaxation algorithm was applied by Chris-

tofides, Mingozzi, and Toth (1981). They reported their ability to solve instances

with 10 ≤ n ≤ 25.

2.2.1.3 Vehicle flow formulations and algorithms

Extending the classical TSP formulation of Dantzig, Fulkerson, and Johnson

(1954), each of Laporte and Nobert (1983), and Laporte, Nobert, and Desrochers

(1985) proposed a two-index vehicle flow formulations for the VRP (Laporte,

2009).

According to Neddef and Rinaldi (2002), VF model can be reinforced by includ-

ing a set of inequalities. such as generalized capacity constraints, frame capacity

constraints, VRP comb inequalities, and some other inequalities that are based on

the stable set problem. The authors mentioned formally developed a branch-and-

cut algorithm through which they were able to solve six instance (22 ≤ n ≤ 45)

without branching, and nine others (51 ≤ n ≤ 135) with some branching. more

recent branch-and-cut algorithms based on the VF can be found thought the work

of Lysgaard, Letchford, and Eglese (2004) (Laporte, 2009).

A number of not-so-successful three-index vehicle flow formulations were also pro-

posed. As proposed by the name they use three-indexed variables such as xijk

which would be equal to 1 if and only if the arc (i, j) is traversed by vehicle k.
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However, as mentioned earlier on, because of two-index vehicle flow formulations

being more successful, three-index VF formulations did not catch as much in-

terest. Examples can be found in the works of Golden, Magnanti, and Nguyen

(1977), as well as Fisher and Jaikumar (1982) (Laporte, 2009).

2.2.1.4 Commodity flow formulations and algorithms

In commodity flow formulations, a set of variables yij (or yijk in the case of

multi-vehicle solutions) define the load of a vehicle on a the arc (i, j). Gavish

and Graves (1979) set an early example of it but with no computational results.

Based on the TSP model of Finke, Claus, and Gunn (1984), a formulation was

proposed by Baldacci, Hadjiconstantinou, and Mingozzi (2004). The formulation

works on an extended graph Ḡ = (V̄ , Ē), where V̄ = V ∪n+ 1, n+ 1 is a copy of

the depot, and Ē = E ∪ (i, n+ 1) : i ∈ V . A vehicle route is defined as a direced

path from 0 to n+ 1. Binary variables xij will be equal to 1 only if edge (i, j) is

used in the solution, variables yij represent the vehicle load on (i, j), and variables

yji = Q− yij represent the empty vehicle space on (i, j) whenever xij = 1.

The formulation is:

(CF) minimize
∑

(i,j)∈Ē

cijxij (2.2a)

subject to
∑
j∈V̄

(yji − yij) = 2qi (i ∈ V \0), (2.2b)

∑
j∈V \0

y0j =
∑
i∈V \0

qi, (2.2c)

∑
j∈v\0

yj0 = mQ−
∑
i∈V \0

qi, (2.2d)

∑
j∈V \0

yn+1,j = mQ, (2.2e)

yij + yji = Qxij ((i, j) ∈ Ē), (2.2f)∑
i<k

xik +
∑
j>k

xkj = 2 (k ∈ V \0), (2.2g)

yij ≥ 0, yji ≥ 0 ((i, j) ∈ Ē), (2.2h)

xij = 0, 1 ((i, j) ∈ Ē). (2.2i)
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Constraints (2.2b)-(2.2e) and (2.2h) define consistent flows from 1 to n+ 1, con-

straints (2.2f) ensures that the yij and yji variables are feasible, and constraints

(2.2g) are degree constraints.Using inequalities expressed in terms of xij vari-

ables, this problem was solved by branch-and-cut. Optimally, several instances

were solved with 16 ≤ n ≤ 135. However, the success rate was very high for cases

where 30 ≤ n ≤ 60 and 3 ≤ m ≤ 5 (Laporte, 2009).

2.2.1.5 Set partitioning formulations and algorithms

Let r denote a route, let air be a binary coefficient which value is equal to 1 only

in the case of vertex i ∈ V \0 belongs to route r, let c∗ be the optimal cost of

route r, and let yk be a binary variable which value would be 1 in the case of

route r being in used in the optimal solution. The problem then can be defined

as follows:

(SP) minimize
∑
r

c∗ryr (2.3a)

subject to
∑
r

air = 1 (i ∈ V \0), (2.3b)

∑
r

yr = m, (2.3c)

yr = 0, 1 (all r). (2.3d)

By definition constraint (2.3c) is not part of the standard SP (Set Partitioning)

formulation, but most authors use it for VRP.

The formulation mentioned above is considered a straightforward SP formulation

for VRP and was proposed by Balinski and Quandt (1964).

Because of the large number of potential routes encountered in most nontrivial

instances and the computing difficulty being c∗r coefficients which in turn requires

solving an exponential number of instances of an NP-hard problem, directly ap-

plying this formulation is not considered practical.

Later on a number of column generation algorithms were proposed to solve this

problem, such as Rao and Zionts (1968) which does not seem to have been prac-

tically tested, it was succeeded by Foster and Ryan (1976) which generates routes

by dynamic programming which again was not run to completion. Full column
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generation algorithm was later on developed by Agarwal, Mathur, and Salkin

(1989) which was able to solve instances with 15 ≤ n ≤ 25 successfully at last.

Two of the most successful VRP algorithms that were developed in recent years

make partial use of SP formulations. The first was proposed by Fukasawa et

al. (2006), which combines SP and branch-and-cut-and-price algorithm, and it

successfully solved instances containing u to 135 vertices.

The second algorithm was proposed by Baldacci, Christofides, and Mongozzi

(2008), which again combines SP formulations with some inequalities valid for

VF. In short, this algorithm uses SP some constraints, then compute lower bounds

on the dual of the linear relaxation of this problem, obtained by applying three

ascent heuristics. The final dual solution is used to generate a reduced problem

containing columns of reduced cost between the upper bound and the lower bound

achieved. The problem is then solved by an integer linear programming solver.

The algorithm was capable of instances with 37 ≤ n ≤ 121 and is slightly better

than that of Fukasawa et al. (2006) (Laporte, 2009).

2.2.2 Classical heuristics

As it has been constructed earlier on, the most basic difference between exact

algorithms and heuristics/metaheuristics. Although, exact algorithms have the

ability to find optimal solutions, they only work on relatively small sets of data

(134 instances at most), and the computational power needed for them is so high,

therefor they need more time than the other two approaches.

Heuristics (and metaheuristics) sacrifice the optimal solution for a nearly optimal

solution in exchange for better computational time, bigger sets of data and in

general more convenience. The problem however is that the results although

usually near optimal or are pretty good there is no way to prove that they are

not bad (Pop et al., 2011).

Three classes of heuristics are going to be mentioned as follows:

• Constructive heuristics: Nearest Neighbor and a Clarke-Wright based heur-

istic.

• Improvement heuristics: String Cross (SC), String Exchange (SE), String

Relocation (SR), and String Mix (SM).

15



2.2.2.1 Constructive heuristics

A constructive heuristic is a type of heuristics which starts with an empty solution

and builds it from scratch step by step until a full solution is obtained. Koulamas,

1998

2.2.2.1.1 Nearest neighbor The algorithm runs as follows: First the al-

gorithm will find the closest neighbor to the depot and visit it, from there it

will visit the nearest unvisited neighbor as long as the route capacity has not yet

exceeded that of the vehicle Q. When route capacity reaches the limit specified

earlier Q, the algorithm will start again from the depot and create another route

where again it will not visit vertices that has been visited by earlier routes. When

all the vertices has been visited the algorithm will terminate.

The cons of this algorithm include easy implementation and relatively short exe-

cution time. It should be noted that due to the greedy nature of the algorithm,

it tends to miss shorter routes some times. The complicity of the algorithm is

O(n2). Pop et al., 2011.

2.2.2.1.2 A Clarke-Wright based heuristic algorithm Where the num-

ber of vehicles is a decision-variable usually the Clarke and Write algorithm is

used and considered one of the more famous algorithms.

The algorithm consists of two steps as follows:

Step 1 (Savings computation): In this steps (as the name suggests) the algorithm

simply calculates the possible savings of the routes, through the following way:

For each i ∈ Vl and j ∈ Vp, where l 6= p and l, p ∈ 1, ...., k compute:

sij = ci0 + c0j − cij. (2.4)

As it can be seen from the equation (2.4) sij ≥ 0 and sij = sji. The savings are

then ordered in a decreasing order.

As a beginning the algorithm creates k routes (0, il, 0), l ∈ 1, ..., k as folows for

each cluster vl the algorithm defines c0il = min{c0j|j ∈ Vl}.

By doing so there will be as many routes as there are clusters and the total dis-

tance would be:
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d = c0i1 + c0i2 + ...+ c0ik . (2.5)

Step 2 (Route extension): Determine the savings sui or sjv for each route

(0, i, ..., j, 0) which (savings) can be used to merge the current route with an-

other one that ends with (u, 0) or starts with (0, v) for any u ∈ Vl and v ∈ Vp

where l 6= p and l, p ∈ {1, ..., k} and Vl and Vp are clusters not visited by the

route (0, i, ..., j, 0). It should be noted that whenever more than one saving is

available the algorithm will choose the one with the biggest impact on the total

cost (biggest general reduction in cost).

The algorithm will keep repeating the operation until no further merges are avail-

able.

This algorithm is considered easy to implement and has a running time ofO(n2log n).

(Pop et al., 2011)

2.2.2.2 Improvement heuristics

Improvement heuristics for VRP basically work on producing the best result

possible by first proposing any set of routes and then improving the routes as

the name suggests. The improvement process can be approached in two different

manners, either (1) sequentially meaning that each route will be improved as

a single route alone, or (2) in parallel in which case the improvements will be

introduced to the graph as a whole and improvements can effect more than one

route at each step (Pop et al., 2011).

Due to the complexity of the improvement process heuristics are used to propose

the best routes possible, four of the proposed heuristics are as follow:

2.2.2.2.1 String cross (SC) In this method a string or chain is exchanged

in sides between two routes as illustrated in figure (2.1).

2.2.2.2.2 String exchange (SE) Two strings one from each route with a

maximum of k vertices in each string are exchanged between the two routes as

shown in figure (2.2)
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2.2.2.2.3 String relocation (SR) In this method a number of vertices k is

moved to another route. Usually k = 1 or 2. An example is shown in figure (2.3)

Figure 2.1: String Cross example

Figure 2.2: String Exchange example

Figure 2.3: String Relocation ex-
ample

2.2.2.2.4 String mix (SM) This

method selects the methods that yields

the best results out of SE and SR, to

achieve that the algorithm takes two

steps: (1) First Improvement (FI):

applies the first move that can present

an improvement to the objective. and

(2) Best Improvement (BI): all

possible moves are evaluated but only

the one with the best improvement is

applied (Pop et al., 2011).

2.2.3 Metaheuristics

Most metaheuristics can be regarded as

improvement algorithms. While most of

them perform well and are considered

robust, they usually start from a low-

quality solution first and then improve

upon it (Laporte, 2009).

Following are some of the most popular metaheuristic algorithms when talking

about VRP.

2.2.3.1 Ant colony optimization (ACO)

Inspired by ants in the real world, the ant colony optimization uses artificial ants

to mimic the behavior of those in the real world.

Ants in nature leave traces of a chemical compound called the pheromone be-

hind them on the ground, so when an ant is looking for a route it starts out

by wandering randomly leaving behind it the trace of pheromone, each successor
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ant will then either follow the pheromone (traces) it has found from previous

ants or create its own new route on which it will leave new traces of pheromone

with a degree of randomness that decreases the stronger the pheromone is. Since

the shortest routes tend to accumulate more pheromone than others they would

slowly become the favorite. Traces of pheromone decay with time, thus weaken-

ing less used routes and emitting them eventually, while consistent activities and

usage of the favorite routes keep the pheromone fresh and at high rate on them.

As stated earlier the algorithm mimics nature in the way it works, where the

artificial ants try to find the best solution starting randomly and trying to find

better solutions from there. Each artificial ant starts from a point and with a

specific rate of randomness either selects earlier discovered and visited solutions

(next vertices in VRP) or starts a new route, the pheromone is represented by

memory in the computer and each time a solution is visited again by a new ant its

score is strengthened, at the same time on each cycle all of the solutions weakened

at a similar rate to represent the effect of decaying pheromone in real life.

ACO is widely implemented in TSP (Traveling Salesman Problem) due to the

similarity of the problem and the way ants react when fetching food. However

ACO has been adapted to the VRP in recent years (Gendreau et al., 2008).

2.2.3.2 Genetic algorithms

Genetic algorithms are usually used to mimic the process of evolution of creatures

in nature as described by the Darwinian principle of natural selection.

Simply put the algorithm starts from a population of solutions (often encoded as

strings of bits which represent chromosomes) which improve by producing new

generations over and over again, each generation improves upon the previous

one using by either selection of the fittest, genetic crossover, or mutation. In

each cycle only the fittest solutions are selected to have offspring solution thus

making sure improving the probability of getting a better solution in the next

generation. Moreover, other generation generating methods are used as well,

such as mutation of a solution randomly or the selection of the fittest as well.

The process is repeated a number of times and then the best solution is found

and returned back as a result of the algorithm.
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When GA is used with VRP, it is usually specifically encoded to accommodate

the VRP (by either ignoring the solution encoding into chromosomes or applying

the various operators directly on the solution) (Gendreau et al., 2008).

2.2.3.3 Greedy randomized adaptive search procedure

Basically what GRASP (Greedy Randomized Adaptive Search Procedure) does

is using a randomized greedy heuristic to construct a variety of solution. At each

step of the construction heuristic run, the solutions that has not yet been added

to the partial solution group are evaluated with a heuristic function, the best of

the evaluated solutions are added to a restricted solutions group called candidate

list. From the candidate list one randomly chosen solution is added to the partial

solution group.

The construction process is then completed and the solution is improved using a

local search. After getting a final solution the algorithm is restarted a number

of times to get a group of solutions just like mentioned before and then the best

solution from the finalists (final solution of each restart) is selected and returned

at the end (Gendreau et al., 2008).

2.2.3.4 Simulated annealing

Simulated Annealing is inspired by actions that are performed in the real physical

world just like ACO (Ant Colony Optimization) as described in section (2.2.3.1).

In physics Annealing can be defined as the process which aims at generating

solids with low-energy states. This is achieved by first melting down the solid to

liquid by increasing the temperature, and then gradually and carefully decreasing

the temperature in a way that assures that the matter achieves equilibrium by

holding the temperature at a specific level for a specific time carefully. The result

of this process is a more regular structures associated with solids with low-energy

states.

The algorithm on the other hand is basically a modification on the local search

algorithm where the modification over the current search can be accepted with a

degree of randomness in case of increasing the cost. The randomness is determined

by a criterion called the temperature criterion (like physics annealing process).
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The algorithm randomly modifies the current solution, in the case of the new

solution having a lower cost, it is accepted as a current solution, otherwise, the

probability of accepting it depends on the temperature criterion which has a value

that decreases over iterations until it gets to the point where it no longer allows

for cost increases to be accepted any more.

By implementing the principals mentioned above, SM avoids bad local optima,

and with time it reaches the global optima as the temperature criterion’s value

becomes lower. Tests has shown that SA successfully traverses to global optima

just like it is the case with other local search based algorithms.

The success of SA triggered development of similar algorithms like: Threshold

Accepting, Record-to-Record Travel, and THe Great Deluge Algorithm which all

had similar successful results (Gendreau et al., 2008).

2.2.3.5 Tabu search

TS (Tabu Search) is another algorithm based on local search like SA. It basically

searches for the best solution in the current neighborhood, and moves it even if

the cost increases. This allows the algorithm to avoid bad local optima cases as

well. The algorithm holds a short-term memory where it holds a list of the solu-

tions last visited and thus avoids visiting them again, by doing so the algorithm

avoids short-term cycling.

The algorithm stops when reaches a specific number of iterations or when a spe-

cific number of searches fail to yield a solution with a better cost compared to

the best known solution.

2.2.3.6 Variable neighborhood search

Just like Tabu Search, Simulated Annealing, Variable Neighborhood Search (VNS)

is another metaheuristic algorithm based on local search.

This algorithm deploys a new approach to escape the bad local search optima by

working on many multiple (often nested) neighborhoods at once. When a local

optima is reached in a specific neighborhood another one is selected and used for

the next iteration.

The algorithm then restarts from the first neighborhood when either all neigh-
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borhoods had been tried or when no new better solution has been found.

Another known variation of VNB is Variable Neighborhood Descent (VND) (Gendr-

eau et al., 2008).
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3. SOLUTION

This chapter describes the algorithm we developed by details and points out the

strengths and weaknesses of the algorithm.

3.1 Overview

The solution being discussed in this paper can be best described through its flow-

chart (figure: 3.1).

The flowchart describes how the algorithm works in a broad way, The algorithm

starts with the sectorization which basically breaks down the graph into a number

of smaller sectors which makes it possible to use exact methods to solve the rout-

ing problem in each sector. After the sectorization is done, routing algorithms

are applied to find the best route in each of the sectors we obtained already in

the first step.

The algorithm then evaluates the solution obtained and stores the evaluation res-

ult in the memory for later referencing. Afterwards, it checks the time window

the program was given for execution, in the case of running out of time, the al-

gorithm will search the memory looking for the best solution found (according to

the evaluation results) and output it to the user, or else a resectorization process

will be called to work on the sectors and change their combination in order to

find a new combination that might have a better potential in being an optimum

(or near optimum) solution.
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Figure 3.1: General flowchart for the whole solution
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3.2 Sectorization

The whole solution is based on the first phase which is the sectorization, although

it altered throughout the solution findings, but it is the milestone upon which

everything is based and the better the initial sectors are, the faster it would be

to get the best results.

Figure 3.2: In-depth flowchart

3.2.1 Sector seeds selection

In order to find the best combination of sectors for each particular graph the

program works on, it is vital to find a good starting point (seed) for each sector

which is done by calling MaxDist method (Mourão et al., 2009).

MaxDist is an algorithm which tries to distribute the sectors along the graph in
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a way which makes their seeds as far as possible from each other. The first sector

seed is the vertex with the maximum euclidean-distance from the depot vertex.

max
1≤i≤n

√
(Vix − Vdepotx)2 + (Viy − Vdepoty)2

Next sector seed Si will be the one with the biggest sum of euclidean-distances

from the existing sector seeds and the depot

max
1≤i≤n

i−1∑
j=0

√
(Vix − Vjx)2 + (Viy − Vjy)2 +

√
(Vix − Vdepotx)2 + (Viy − Vdepoty)2

where s : number of initialized sectors

By the end of sectorization initiation process, the graph will have M sector

seeds that are the furthest vertices from each other and the depot at the same

time. Other than that the graph will have N −M − 1 free vertices (1 stands for

the depot vertex) waiting to be obtained by the already-established sectors in the

graph.

3.2.2 Obtaining free vertices

This process has the goal of leaving no free vertices in the graph by adding each

free vertex to the sector that suits it best. It is this process’s responsibility to

make sure that no sector exceeds its size limit as well.

This is done by finding the smallest euclidian-distance between pairs of free and

sectorized vertices and adding it to the corresponding sector and then repeating

the same process over and over again until no free vertices are left in the graph.

min
d

d =
√

(Vix − Vjx)2 +
√

()Viy − Vjy)2

s.t. Sectork ≤ SectorMaxSize

where Vi ∈ free vertices

Vj ∈ vertices included in sectors

By the end of this process the graph will have all of it vertices included in the

sectors that were initialized in the previous step while maintaining the sizes of

the sectors within the limit specified beforehand.
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3.3 Routing

Routing phase comes right after the sectorization phase, which means that by

the beginning of the routing phase, the program will have a set of sectors with a

known start and end vertex (the depot). In other words, the program will have

a set of directed graphs, and the application’s job is to find the best route inside

each of the graphs. If the program succeeds in finding the best combination of

sectors and the best routes inside each of the sectors, it will be guaranteed that

the current solution is an optimum one.

Given that the graphs which represent the sectors are significantly smaller in

size than the whole graph (a sector cannot contain more than 130 vertices), it

is viable to use exact methods to find the best routes, that way the application

will have the optimal set of routes for any set of sectors, so the better the sectors

distribution is, the better the solution will be.

The routing itself for each sector is considered an asymmetric traveling salesman

problem (ATSP) in which the goal is to find the least cost Hamiltonian circuit (a

circuit that traverse all the vertices in the graph), that’s satisfied by solving the

following formulas:

minimize
∑

(i,j)∈A

CijXij, (3.1a)

subject to
∑

i∈V :(i,j)∈A

Xij = 1∀j ∈ V, (3.1b)

∑
j∈V :(i,j)∈A

Xij = 1∀i ∈ V, (3.1c)

(i, j) ∈ A : xij = 1 (3.1d)

xij ∈ 0, 1 ∀(i, j) ∈ A, (3.1e)

It must be noted that the constraint 3.1d has been added to make sure the tour

does not contain subtours. Where xij is a binary variable that is equal to 1 if arc

(i, j) is in the tour, or is equal to 0 otherwise. (Bekta?? and Gouveia, 2014).

A known extend of ATSP is the TMZ (Miller, Tucker, and Zemlin) alternation

which was proposed in 1960 adding the following sub-tour elimination constraints:
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Ui − Ij + (n− 1)xij ≤ n− 2 ∀i 6= j = 2, ..., n, (3.2a)

Ui ∈ R ∀i = 2, ..., n. (3.2b)

Constraint 3.1d is replaced by 3.2a and 3.2b hence the new formula is referred

to as F(MTZ). The addition of the variable Ui in these constraints is used for

ordering the vertices in the tour except for the depot to prevent the formation of

illegal subtours. That’s ensured by having Uj ≥ Ui + 1 when xij = 1. Constraint

3.2b can be replaced with:

0 ≤ ui ≤ n− 2 ∀i = 2, ..., n, (3.3a)

The constraints 3.3a help find a precise meaning to each variable ui, in other

words, the value of ui indicates the position of the vertex i in the tour, or to be

precise, the number of vertices between the vertex i and the start vertex in the

optimal tour.

An improvement over the MTZ constraints is the addition of the constraint 3.4a

which was introduced by Desrochers and Laporte (1991) which replaces the 3.2a

constraint

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2∀i 6= j = 2, ..., n. (3.4a)

The new constraint 3.4a serves two reasons: (i) it makes the relation between ui

and xij variables stronger because when xij = 1, a combined use of constraints

3.4a for pairs (i, j) and (j, i) imply uj = ui + 1, and (ii) they imply the CLIQUE

constraints for sets S with two vertices. This is easy to see by adding two DL

inequalities, one for a given pair (i, j) and the other for the reversed pair (j, i),

which results in the CLIQUE constraint for the set i, j. (Bekta?? and Gouveia,

2014)
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3.4 Sectors Optimization

The Optimization process is inspired by the ACO (Ant colony Optimization).

However unlike conventional optimization algorithms, the optimization here is

done to the sectors and their alignment in the graph rather than optimizing the

routes themselves.

The idea is to give the program some freedom to randomly exchange vertices

between sectors while keeping some influence over that freedom to shape it into

a kind of experience that the program will gain with each execution iteration.

3.4.1 Optimization initiation

At the beginning of this phase the program will already have a viable solution

which meets the criteria specified, but the solution might not be the best solution

available. It should be noted that the optimality of the solution falls as the graph

size and criteria associated with it rise in complexity. For this reason it is vital to

try to optimize the solution that has been achieved in quest to find the optimal

one.

This is done by specifying a connection strength between each vertex and sector

in the graph (from now on it will be referred to as pheromone), the sum of all

the pheromones associated with each vertex will be 1 at the initiation of the

optimization given that the closer a vertex is to a sector’s centroid the stronger

the connection is hence the higher the pheromone value is.

By the end of this process the program will have a 2D pheromone matrix P that

represents the pheromones needed for the optimization process to go on.

It should be noted that the optimization initiation process is done only once

in the execution cycle of the program.

3.4.2 Optimization iterations

With each iteration the program will first go through all the sectors in the graph,

and whenever there would be a sector with a size less than the size limit specified

in the program it will try to acquire new vertices to that specific sector. For that

to be possible two steps have to be processed: (1) local, and (2) global
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3.4.2.1 Local

Local processes are done for each sector individually and they are done in the

following order:

3.4.2.1.1 Neighborhood definition For a sector s ∈ S to obtain a vertex

v ∈ V , it must be an attractive move and that translates into the vertex v being

close to the borders of sector s or included inside of them. That’s where the

idea of neighborhood definition originated from, the algorithm should be able to

decide which vertices v ∈ V are attractive and sound like a good move and which

ones are not.

First the algorithm calculates the diameter (φ) of the sector (s) which is the

maximum euclidean-distance between a vertex in the sector and the centroid of

it.

φ = max
√

(Vix − centroidx)2 + (Viy − centroidy)2

After finding the diameter φ of the sector s, it is multiplied by neighborhood area

percentage factor p which specifies whether the algorithm will try to minimize

the area of sectors or let them grow in size to look for new possibilities outside of

the current borders.

At that point the algorithm will try to look for vertices that lie within the neigh-

borhood limits but are not already obtained by the sector s. However, vertices

that lie within sectors with small sizes (smaller than a specified limit) will be

excluded from the neighborhood.

Finding Z the set of vertices that represent attractive moves for the algorithm is

considered the last step of neighborhood definition.

3.4.2.1.2 Experience and randomness In the case of the algorithm find-

ing one or more attractive moves for the current sector s, it moves to the second

step which is, combining the experience and knowledge we already have for this

sector which is stored in the pheromone matrix P with randomness generated by

the algorithm.

For each vertex v ∈ Z in the neighborhood list the algorithm multiplies the pher-

omone from the pheromone matrix P that corresponds to the sector s and the
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vertex v by a random number between 0 and 1. It then finds the biggest number

among the results of the multiplications and selects it to obtain its vertex v to

the sector s.

The last step (obtaining vertices) is repeated until the sector s obtains the num-

ber of vertices specified.

After the algorithm is done with obtaining vertices, the pheromone p correspond-

ing for each vertex v and its respective sector is incremented by a fixed amount

that is specified by the user variables.

At the end of each the process new vertices that have acquired are locked so they

won’t be analyzed for obtainment by other sectors at the same iteration.

3.4.2.2 Global

By the end of the previous steps the optimization iteration would come to an end

and at that point the experience of the algorithm should be updated. This is

done by decrementing each pheromones p ∈ P by a fixed specific amount that is

specified by the user variables beforehand.

3.5 Solution Inspection

The algorithm is a combination of EM (Exact Methods) and heuristics. One

of EM’s famous shortcomings is process time, which means that the algorithm

process the EM parts only when needed.

One way to ensure that this is how the algorithm works is by inspecting each

solution after each optimization iteration to find out whether it is a solution

that needs the EM part to be processed or not.

The inspection has two steps: (1) finding whether this is a totally new and unique

solution and (2) guessing by studying its properties that it can make up for a good

solution.

3.5.1 Uniqueness inspection

This process finds out whether the solution it is working on is a totally new and

unique solution that has never been studied before. This is achieved by first

comparing the sizes of the sectors of the new solution by the sizes of sectors in
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each of the old solutions. In case there are no equalities found, that would make

for a new unique solution, otherwise the new solution move to next step.

Next step is deep comparison between each set of sectors in the new solution and

each set of sectors in each of the previous solutions. Two sectors are identical

if they both have the same set of vertices included in them, otherwise they are

different.

For a solution Ti to be considered the same as an old solution Tj, all of the sectors

of the old solution Tj must be identical to those of the new solution Ti.

If a solution passes the uniqueness inspection it will move to the next steps in

the process, otherwise, it will be optimized over and over again until a unique

solution is found.

3.5.2 Diameters inspection

After a solution passes the uniqueness inspection it moves to the diameters

inspection which has the goal of guessing whether the new solution has the

potential to be a good solution or not.

At first the new solution’s sectors’ diameters are calculated and then summed

together and compared to the sum of diameters of the best solution available at

until the moment, if the new solution has a combined size of diameters smaller or

acceptably bigger (a percentage defined by the user variables) than the combined

diameters of the best solution, it passes the diameter inspection and moves to

the routing calculation step again. otherwise, it is considered a long shot and the

time of finding the routes for it is saved in an attempt to find better solutions

withing the given execution time-window.

3.6 Solutions Evaluation

The last step in the algorithm is finding the best solution out of the solutions

that it has already found. This is done by calculating scores for each solution and

then comparing them to one another.

It should be noted that the scores are being calculated according to the different

criteria specified for the solution and the importance of each criterion. The al-

gorithm can as well find out which solution is the best if the user decides to take
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only one criteria into consideration.

After the algorithm calculates the routes of each solution it sums the cost of tra-

versing each route from the depot and making the full circle back to the depot for

each type of costs. Afterwards it sums the costs of the same type for all routes.

It then calculates a combined cost which is a defined as the weighted cost of the

routes combined (given that the user defines the weights of costs).

The solution with the lowest combined cost is the global best solution that the

algorithm has achieved. other best solutions will be available as well, which are

the best solutions according to each of the costs specified for the algorithm be-

forehand.

It should be noted that due to the nature of the algorithm (demanding time), the

algorithm keeps updating its best solution array to be able to output the data at

anytime in case of emergencies.
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4. TESTS AND BENCHMARKS

This chapter we will focus on the results of running the algorithm in real life

and how it performs when benchmarked against other established and tested

algorithms in similar environments.

4.1 Test Data

For reasons related to availability of data and test results, Turkish cities were

selected for testing and benchmarking the algorithm.

4.1.1 Assumptions

To make sure the data fits into the use cases of the algorithm the following

assumptions were made:

• Each city center represents one client that must be visited

• Each client (city center in this case) must be visited once and only once

• Ankara city center is considered the depot from which all the trips should

originate from and end at.

• The trips are going to made by 8 vehicles

• Each client (city in this case) is going to be visited by one vehicle only.

• To represent a payload limit, each vehicle is constrained to visiting 12 clients

at most.

• The only cost associated with trips between the depot and clients or between

clients is the distance.

• Distance importance (weight) is 100 percent.
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4.1.2 Technical specifications

For testing, a laptop with the following specifications is being used:

• CPU: Intel Core i5 2350U, 2.3GHz, 3MB cache

• RAM: 8GB DDR3

• Storage: 250GB SSD

• Graphics: AMD Radeon Graphics 3660 w/1GB of DDR3 VRAM

• OS: Microsoft Windows 7 64-bit

• Softwares: Python 2.3, IBM CPLEX Studio 12.6, Microsoft Office 2016

4.1.3 Used data

For the algorithm to work as designed, different types of data should be supplied,

including the coordinates of clients, drive distances between them, and other cost

related parameters.

Data fed to the algorithm is split into different essential parts, starting from

Turkish cities coordinates, which are specified in (table A.1).

In order to yield realistic results, the algorithm is fed distances between each pair

of the cities specified in the table above as well.

The algorithm can be fed with data that describes different types of expenditures

and costs as well as the importance (weight) of each one of them given that all

of the weights added would sum up to 1. In this case the cost was simply the

distances between cities and the weight was set to 1 which indicates that the only

cost would be the distance and its importance is 100%.

The distances between all the cities in the Republic of Turkey are included in

the attachments in an excel file called ”Turkish cities distances.xlsx” (General

Directorate of Highways in Turkey, 2016).

4.2 Results

The algorithm was tested using two different sets configurations; (1) short flexible

configurations, and (2) long strict configurations.
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4.2.1 Short flexible configurations

For this type of execution, configurations were set as follows:

• Number of vehicles (sectors): 8

• Number of optimization iterations: 280

• Neighborhood min size during optimizations: 60%

• Neighborhood max size during optimizations: 1000%

• Local pheromone update value: 0.05

• Global pheromone update value: -0.03

• Minimum number of clients per vehicle: 8

• Maximum number of clients per vehicle: 11

Completing 280 optimization iterations took the test environment described in

section 4.1.2 about 128 minutes of execution, which translates into an average

of 27.45 seconds per iteration and it yielded the best suggested solution at iter-

ation #61 with a solution total cost (total distance traversed by all vehicles) of

18,656KM. The total cost is broken down into the following details per vehicle:

• Vehicle #1: 3428KM

• Vehicle #2: 3058KM

• Vehicle #3: 2274KM

• Vehicle #4: 1357KM

• Vehicle #5: 1918KM

• Vehicle #6: 1608KM

• Vehicle #7: 2624KM

• Vehicle #8: 2389KM
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Figure 4.1: Short test’s best solution’s clients distribution per vehicle

Calculating the standard deviation (SD) of the results, it is concluded that

σ ' 658KM . The reason of such a big deviation can be caused by multiple

reasons, most importantly are: (1) the lack to iterations, and (2) flexibility of

configurations (Neighborhood max size of 1000% is too flexible), and (3) the

lack of experience fed into the algorithm.

In order to avoid bad results, multiple measures can be taken such as increasing

the number of optimization iterations, train the algorithm to increase its experi-

ence thus increasing the efficiency, and including different factors of the solution

in the algorithm’s input matrices.

Inspecting the map in figure 4.1 it can be seen that the algorithm failed to group

the clients in the best possible way (due to the lack of time).

4.2.2 Long strict configurations

To try to overcome the limitations of the algorithm when tried with limited

number of iterations, and other relaxed configurations, the algorithm was tested

again on the same environment but with the following configurations:

• Number of vehicles (sectors): 8

• Number of optimization iterations: 500

• Neighborhood min size during optimizations: 60%

• Neighborhood max size during optimizations: 150%
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• Local pheromone update value: 0.05

• Global pheromone update value: -0.03

• Minimum number of clients per vehicle: 8

• Maximum number of clients per vehicle: 11

Completing the 500 optimization iterations took the test machine 357 Minutes,

resulting in a mean of 42 per iteration. best suggested solution was solution

#337 and had a total cost of 17,277KM which translates into a 7.4% decrease

in costs when compared to the previous test (described in section 4.2.1), when

compared to the increase in processing time, we conclude that the costs decreased

1.8% per processing hour. Below are the details of the best suggested solution:

• Vehicle #1: 2802KM

• Vehicle #2: 1721KM

• Vehicle #3: 1803KM

• Vehicle #4: 1561KM

• Vehicle #5: 2961KM

• Vehicle #6: 1745KM

• Vehicle #7: 2898KM

• Vehicle #8: 1786KM

Calculating the standard deviation (SD) for the results above it is concluded that

σ ' 582KM which quiet lower than the previous trial (section 4.2.2) with an

improvement of 11.6%.

Studying the map in figure 4.2 shows that the algorithm successfully grouped

the clients in tighter groups which resulted in the small deviation in distances

traveled for different vehicles and lower solution-wide cost as well.
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Figure 4.2: Long test’s best solution’s clients distribution per vehicle

4.3 Benchmarking

In a world where VRP is a problem such a high importance, it is important to

benchmark new solutions against other established ones. Therefor, the algorithm

is being benchmarked against ”VRP Spreadsheet Solver” which was developed

using MS-Excel by Dr. Güneş Erdoğan in 2013 (Erdoğan, 2013).

Both the tool (VRP Spreadsheet Solver), and our algorithm were fed the same

data, set to run using the same configurations and were given exactly the same

time (357 Minutes) to run on the same environment (same PC and same soft-

wares), and the results were as follow:

• Vehicle #1: 1969KM

• Vehicle #2: 907KM

• Vehicle #3: 1017KM

• Vehicle #4: 1980KM

• Vehicle #5: 2709KM

• Vehicle #6: 1837KM

• Vehicle #7: 1857KM

• Vehicle #8: 2980KM
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Summing up the previously provided individual costs will give a sum of 15256KM

of total cost for the solution provided by the tool, with a 671KM (14.9%) stand-

ard deviation percentage. Comparing it to the total cost of the solution yielded

by our algorithm, it is concluded that VRP Spreadsheet Solver yielded a solution

11.7% cheaper when given the same configurations and the same time window

for processing.

Benchmarking the algorithm against the tool (VRP Spreadsheet Solver) shows

that the algorithm is not yet as accurate as other tools that are already in use.

4.3.1 Ways to improve and take advantage of the algorithm

It is suspected that the algorithm could have performed better using different set

of configurations or in different scenarios as detailed in the following points:

• Population size: The set of clients that was provided for benchmarking

the algorithm was too small (81 clients) to take advantage of the algorithm’s

usage of metaheuristics. As it has been stated earlier in chapter 2.2.1.1

algorithms based on exact methods are capable of solving problems that

have a population of up to 134 instances.

• Little expenses information: The benchmarking did not take full ad-

vantage of the algorithm’s ability of finding a solution that takes into ac-

count an infinite number of different expenses (in theory) due to the lack

of real life data. The algorithm was only given 1 type of costs (distances

between clients) and thus it lacked one of the advantages it possesses.

• Runtime experience configuration: The algorithm was designed to gain

experience throughout its runtime, through the usage of ACO (Ant Colony

Optimization) as explained in section 3.4.2.1.2, but to make further usage

of experience, more testing is needed using real life data.

• Algorithm lifetime experience: As mentioned before in section 3.4.2.1.2,

the algorithm makes use of experience within a runtime, but it can be

improved to make of longer experience through the software lifetime by

using the experience gained from one runtime in the future ones until the
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algorithm has been trained enough to suggest solutions closer to the optimal

solution in a shorter time window.
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5. CONCLUSIONS AND RECOMMENDATIONS

This chapter discusses fields of application, conclusions, and recommendations

for future improvements.

5.1 Practical Applications of the Algorithm

The algorithm can be used by almost all types of business around the world,

such as logistic companies which are considered the main beneficiary of such

studies, post services providers, and all other businesses that are looking for

ways to distribute different amounts of goods to clients, and/or are looking for

ways to more effectively manage their supply chain, it can also be used by to

manage picking up clients or employees by HR (human resources) departments

in companies or by hotels that offer pick services for their clients.

5.2 Conclusions

VRP (Vehicle Routing Problem) is a problem that has a huge impact over our

lives as it has been stated in section 1.6, and the importance of this impact is

shown in the number of studies that were done in the field. With such a big

impact, a solution with the smallest amount of improvements would have an

effect so big as the impact.

The importance that VRP gained through time made it the title of countless

studies since its definition in the late 1950s. Many approaches were taken to

solve this important issue since then including exact methods, classical heuristics

and metaheuristics (as it was detailed in section 2.2) in pursuit of finding the

optimal solution which in turn would help us be more efficient and thus reserve

resources (human, natural, time,.. etc.).
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In this thesis a new approach was introduced to solve VRP using a combination

of exact methods and metaheuristics to harvest the benefits of both approaches

while avoiding their shortcomings.

Metaheuristics were used to divide the population into sections in accordance with

the number of the available vehicles and keep trying to find the best combination

of sectors that would yield the best global solution (solution with the lowest cost)

through experience gained while processing the algorithm.

Whereas exact methods were used to find the best route within each sector which

insures that the best route within the section was suggested.

When benchmarked against VRP Spreadsheet Solver which is a tool that was

developed by Dr. Güneş Erdoğan to solve the same problem, the algorithm

performance was lower than that of VRP Spreadsheet Solver. The performance

disadvantage is suspected to be caused by the small number of clients used in

the benchmarking process and the lack of different expenses and criteria for costs

for traversing between clients, which led to the algorithm not being able to take

advantage of its strong points as it was stated in section 4.3. To take advantage

of the algorithm more testing is needed using bigger number of clients and a

more comprehensive set of expenses that would more clearly describe real life

situations.

5.3 Future Improvements

Future improvements can be applied to the algorithm by adding constraints that

would prohibit the usage of metaheuristics for problems with small number of

clients, as well as adding the ability to change criteria in real time which would

significantly improve the algorithm since it is an algorithm that takes lots of time

to fully process and thus changes can be so costly sometimes.

Another field were the algorithm can be improved is by adding lifetime machine

learning to the algorithm. This way previous solutions or trials would be used

as an experience for the algorithm and thus yield in better solutions with shorter

processing times in the future.

43



44 
 

REFERENCES 

 

 

Alba, R. D. (1973), `A graph-theoretic definition of a sociometric clique', The 
Journal of Mathematical Sociology 3(1), 113-126. 

Amazon (2017), `Amazon.co.uk / About One-Day Delivery'. URL: 
https://www.amazon.co.uk/gp/help/customer/display.html?n 

Bektaş, T. and Gouveia, L. (2014), `Requiem for the Miller-Tucker-Zemlin subtour 
elimination constraints?', European Journal of Operational Research 
236(3), 820-832. 

Dunn, J. (2017), The number of Amazon Prime members has reportedly doubled in 
the past two years, Technical report. URL: 
http://www.businessinsider.com/how-many-amazon-prime-
subscribers-estimates-chart-2017-4 

Erdoğan, G. (2013), `User's Manual for VRP Spreadsheet Solver', p. 18. URL: 
http://verolog.deis.unibo.it/vrp-spreadsheet-solver 

Gendreau, M., Potvin, J. Y., Bräysy, O., Hasle, G. and Løkketangen, A. (2008), 
`Metaheuristics for the vehicle routing problem and its extensions: A 
categorized bibliography', Operations Research/ Computer Science 
Interfaces Series 43(August), 143-169. 

General Directorate of Highways in Turkey (2016), `Distances Between Turkish 
Cities'. URL: 
http://www.kgm.gov.tr/sayfalar/kgm/sitetr/root/uzakliklar.aspx 

Koh, K. M., Dong, F. M. and Tay, E. G. (2007), Introduction to Graph Theory: H3 
Mathematics, World Scientific. URL: 
https://books.google.com/books?id=7 bQa4SJTQQC&pgis=1 

Koulamas, C. (1998), `A new constructive heuristic for the flowshop scheduling 
problem', European Journal of Operational Research 105(1), 66-71. 

Laporte, G. (2009), `Fifty Years of Vehicle Routing', Transportation Science 43(4), 
408-416. 

Mckinnon, A. (2007), `CO 2 Emissions from Freight Transport: An Analysis of UK 
Data', (iii). 

Mourào, M. C., Nunes, A. C. and Prins, C. (2009), `Heuristic methods for the 
sectoring arc routing problem', European Journal of Operational 
Research 196(3), 856-868. URL: 
http://dx.doi.org/10.1016/j.ejor.2008.04.025 



45 
 

Pop, P., Sitar, C., Zelina, I., Lupşe, V. and Chira, C. (2011), `Heuristic Algorithms 
for Solving the Generalized Vehicle Routing Problem', Int. J. of 
Computers, Communications & Control 6(1), 158-165. 

PwC (2015), `Transportation and Logistics 2030-Volume 5: Winning the talent race', 
Transportation & Logistics 2030 5. 

Reuter, J. (2010), `Transportation & Logistics 2030 - Transport infra-structure', 
Transportation 1, 1-64. 

Ruske, K.-D., Kauschke, P., Basu, G., Reuter, J. and Montgomery, D. E. (2011), 
`Transportation & Logistics 2030 Volume 4: Securing the supply 
chain', PricewaterhouseCoopers 4, 50. URL: www.pwc.com/tl2030 

United Nations (2015), `World Population Prospect: The 2015 Revision, World 
Population 2015 Wallchart.', Department of Economic and Social 
Affairs, Population Division p. 2. URL: 
https://esa.un.org/unpd/wpp/Publications/Files/World_Population_201
5_Wallchart.pdf 

World Trade Organization (2016), `World Trade Statistical Review', World Trade 
Organization. 

Yeun, L. C., Ismail, W. a. N. R., Omar, K. and Zirour, M. (2008), `Vehicle 
Routing Problem: Models and Solutions', Journal of Quality 
Measurement and Analysis 4(1), 205-218. 

 

 



APPENDICES

APPENDIX A.1: Turkish Cities’ Coordinate

46



Table A.1: Turkish Cities’ Coordinate

City No. City Name lat long
1 ADANA 37.000000 35.321333
2 ADIYAMAN 37.764751 38.278561

3 AFYONKARAHİSAR 38.750714 30.556692

4 AĞRI 39.626922 43.021596
5 AKSARAY 38.368690 34.036980
6 AMASYA 40.649910 35.835320
7 ANKARA 39.920770 32.854110
8 ANTALYA 36.884140 30.705630
9 ARDAHAN 41.110481 42.702171

10 ARTVİN 41.182770 41.818292
11 AYDIN 37.856041 27.841631

12 BALIKESİR 39.648369 27.882610
13 BARTIN 41.581051 32.460979
14 BATMAN 37.881168 41.135090
15 BAYBURT 40.255169 40.224880

16 BİLECİK 40.056656 30.066524

17 BİNGÖL 39.062635 40.769610

18 BİTLİS 38.393799 42.123180
19 BOLU 40.575977 31.578809
20 BURDUR 37.461267 30.066524
21 BURSA 40.266864 29.063448
22 ÇANAKKALE 40.155312 26.414160
23 ÇANKIRI 40.601343 33.613421
24 ÇORUM 40.550556 34.955556

25 DENİZLİ 37.776520 29.086390

26 DİYARBAKIR 37.914410 40.230629
27 DÜZCE 40.843849 31.156540

28 EDİRNE 41.681808 26.562269

29 ELAZIĞ 38.680969 39.226398

30 ERZİNCAN 39.750000 39.500000
31 ERZURUM 39.900000 41.270000

32 ESKİŞEHİR 39.776667 30.520556

33 GAZİANTEP 37.066220 37.383320

34 GİRESUN 40.912811 38.389530
35 GÜMÜŞHANE 40.438588 39.508556

36 HAKKARİ 37.583333 43.733333
37 HATAY 36.401849 36.349810

38 IĞDIR 39.887984 44.004836
39 ISPARTA 37.764771 30.556561

40 İSTANBUL 41.005270 28.976960

41 İZMİR 38.418850 27.128720
42 KAHRAMANMARAŞ 37.585831 36.937149
43 KARABÜK 41.206100 32.620350
44 KARAMAN 37.175930 33.228748

47



City No. City Name lat long
45 KARS 40.616667 43.100000
46 KASTAMONU 41.388710 33.782730

47 KAYSERİ 38.731220 35.478729
48 KIRIKKALE 39.846821 33.515251

49 KIRKLARELİ 41.733333 27.216667

50 KIRŞEHİR 39.142490 34.170910

51 KİLİS 36.718399 37.121220

52 KOCAELİ 40.853270 29.881520
53 KONYA 37.866667 32.483333
54 KÜTAHYA 39.416667 29.983333
55 MALATYA 38.355190 38.309460

56 MANİSA 38.619099 27.428921

57 MARDİN 37.321163 40.724477

58 MERSİN 36.800000 34.633333

59 MUĞLA 37.215278 28.363611
60 MUŞ 38.946189 41.753893

61 NEVŞEHİR 38.693940 34.685651

62 NİĞDE 37.966667 34.683333
63 ORDU 40.983879 37.876411

64 OSMANİYE 37.213026 36.176261

65 RİZE 41.020050 40.523449
66 SAKARYA 40.693997 30.435763
67 SAMSUN 41.292782 36.331280

68 SİİRT 37.933333 41.950000

69 SİNOP 42.023140 35.153069

70 SİVAS 39.747662 37.017879
71 ŞANLIURFA 37.159149 38.796909
72 ŞIRNAK 37.418748 42.491834

73 TEKİRDAĞ 40.983333 27.516667
74 TOKAT 40.316667 36.550000
75 TRABZON 41.001450 39.717800

76 TUNCELİ 39.307355 39.438778
77 UŞAK 38.682301 29.408190
78 VAN 38.489140 43.408890
79 YALOVA 40.650000 29.266667
80 YOZGAT 39.818081 34.814690
81 ZONGULDAK 41.456409 31.798731
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