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Abstract
The unification problem in a propositional logic is to determine, given a formula ϕ, whether
there exists a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of
ϕ. When a unifiable formula has minimal complete sets of unifiers, it is either infinitary,
finitary, or unitary, depending on the cardinality of its minimal complete sets of unifiers.
Otherwise, it is nullary. In this paper, we prove that in modal logic K + ��⊥, unifiable
formulas are either finitary, or unitary.
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problem · Unification types
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1 Introduction

The unification problem in a propositional logic is to determine, given a formula ϕ, whether
there exists a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ.
We say that a set of unifiers of a unifiable formula ϕ is complete if for all unifiers σ of ϕ,
there exists a unifier τ of ϕ in that set such that τ is more general than σ .1 Now, an important
question is to determine whether a given unifiable formula has minimal complete sets of
unifiers [2]. When such sets exist, they all have the same cardinality. In that case, a unifiable
formula is either infinitary, or finitary, or unitary, depending whether its complete sets of
unifiers are either infinite, or finite, or with cardinality 1. Otherwise, the formula is nullary.

1A substitution σ is more general than a substitution τ in a propositional logic if there exists a substitution υ

such that for all variables x, υ(σ (x)) ↔ τ(x) is in that logic.
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The importance of the unification problem lies in its connection with the admissibility
problem. In a consistent propositional logic L, unification is reducible to non-admissibility,
seeing that the unifiability in L of a formula ϕ is equivalent to the non-admissibility in L
of the inference rule ϕ

⊥ . As observed by Ghilardi [17], when L has a decidable membership
problem and L is either unitary, or finitary, algorithms for computing minimal complete sets
of unifiers in L can be used as a key component of algorithms for solving the admissibility
problem in L, seeing that the admissibility in L of an inference rule ϕ1,...,ϕp

ψ
is equivalent to

the inclusion in L of the set {σ(ψ) : σ∈�}, where � is an arbitrary minimal complete set
of unifiers of ϕ1 ∧ . . . ∧ ϕp in L.

Within the context of the unification problem in a propositional logic, we distinguish
between elementary unification and unification with constants. In unification with con-
stants, some variables (called constants) are never replaced by formulas when one applies a
substitution whereas in elementary unification, all variables are likely to be replaced. About
the unification type of modal logics, it is known that KT, KD and KB are nullary [4, 5,
7], KD45 and K45 are unitary [6, 10, 19, 22], Alt1 + �d⊥ (the least modal logic contain-
ing Alt1 and �d⊥) is unitary for each d≥2 [8], S5 and S4.3 are unitary [13–15], transitive
modal logics like K4 and S4 are finitary [17, 21], K is nullary [23] and K4D1 is unitary [24],
the type of KT, KD and KB having only been obtained within the context of unification
with constants and the type of Alt1 + �d⊥ having only been obtained within the context
of elementary unification.2 About the unification type of Alt1 and its extensions, the line
of reasoning determining in [5, 7] the unification type (nullary) of KD within the context
of unification with constants can be adapted to Alt1 + ♦� whereas the line of reasoning
determining in [23] the unification type (nullary) of K has been adapted to Alt1 [9]. In this
paper, within the context of elementary unification, we prove that in K + ��⊥ (the least
modal logic containing ��⊥), unifiable formulas are either finitary, or unitary.3

2 A preliminary result

Let S be a finite set. We write ‖S‖ for the cardinality of S. If S is nonempty then for all
equivalence relations ∼ on S, for all α∈S, [α] denotes the equivalence class of α modulo
∼ and for all T ⊆S, T/∼ denotes the quotient set of T modulo ∼. Our first result, Proposi-
tion 1, is used later in Section 6. Its proof is presented in an Appendix along with the proofs
of most of the results asserted in this paper.

Proposition 1 Let T be a finite set. If S is nonempty then for all equivalence relations ∼
on S, ‖S/∼‖≤‖T ‖≤‖S‖ iff there exists a surjective function f from S to T such that for all
α, β∈S, if f (α)=f (β) then α∼β.

2In this paper, all modal logics are normal. We follow the same conventions as in [11, 12, 25] for talking about
them: S5 is the least modal logic containing the formulas usually denoted T, 4 and 5, KD is the least modal
logic containing the formula usually denoted D, etc. In particular, Alt1 is the least modal logic containing
♦x → �x and K4D1 is the least modal logic containing K4 and �(�x → y) ∨ �(�y → x).
3From now on, “. . . iff . . .” means “. . . if and only if . . .” and “. . . not-iff . . .” means “. . . if and only if not
. . .”.
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3 Syntax

Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc).
Let (x1, x2, . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FORn of
all n-formulas (with typical members denoted ϕ, ψ , etc) is inductively defined by:

• ϕ, ψ ::= xi | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ.

We adopt the standard rules for omission of the parentheses. The connectives �, ∧, → and
↔ are defined by the usual abbreviations. We have also a connective ♦ which is defined by

• ♦ϕ ::= ¬�¬ϕ.

For all ϕ∈FORn, we respectively write “ϕ0” and “ϕ1” to mean “¬ϕ” and “ϕ”. An n-
substitution is a couple (k, σ ) where k≥1 and σ is a homomorphism from FORn to FORk .
Let SUBn be the set of all n-substitutions. From now on,

we write “L2” to mean “K + ��⊥”.

The standard axiomatization of L2 consists of the following axioms and rules of proof:

• all propositional tautologies,
• �(xi → xj ) → (�xi → �xj ),
• ��⊥,
• modus ponens,
• uniform substitution,
• generalization: given ϕ, prove �ϕ.

As is well-known, L2 is the modal logic of directed graphs where there is no path of length
3. The generated subgraphs of such directed graphs are therefore tree-like Kripke frames
of depth at most 1. They constitute the semantic basis of L2 — tree-like Kripke models of
depth at most 1 — developed in Section 4. In the meantime, let us consider the equivalence
relation ≡n on FORn defined by:

• ϕ≡nψ iff ϕ ↔ ψ∈L2.

Proposition 2 ≡n possesses finitely many equivalence classes.

In other words, L2 is locally tabular. Locally tabular modal logics possess interesting prop-
erties. In particular, in terms of decidability [26–28]. See also [12, Chapter 12] and [16].
The equivalence relation �n on SUBn is defined by:

• (k, σ )�n(l, τ ) iff for all i∈{1, . . . , n}, σ(xi) ↔ τ(xi)∈L2.

The preorder �n on SUBn is defined by:

• (k, σ )�n(l, τ ) iff there exists a k-substitution (m, υ) such that for all i∈{1, . . . , n},
υ(σ(xi)) ↔ τ(xi)∈L2.

4 Semantics

Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such
function should be understood as a propositional valuation of the variables x1, . . . , xn: for
all i∈{1, . . . , n}, if αi=0 then it is interpreted to mean “xi is false” else it is interpreted to
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mean “xi is true”. Let BITn be the set of all n-tuples of bits. An n-model is a structure of
the form (α, S) where α∈BITn and S⊆BITn. Such structure should be understood as a tree-
like Kripke model of depth at most 1.4 Let MODn be the set of all n-models. We say that an
n-model (α, S) is degenerated if S=∅. Let MODdeg

n be the set of all degenerated n-models.
Notice that ‖MODdeg

n ‖=2n. Notice also that for all sets S of n-tuples of bits, S × {∅} is a
set of degenerated n-models. The binary relation |=n of n-satisfiability between MODn and
FORn is defined as expected:

• (α, S)|=nxi iff αi=1,
• (α, S) �|=n⊥,
• (α, S)|=n¬ϕ iff (α, S) �|=nϕ,
• (α, S)|=nϕ ∨ ψ iff either (α, S)|=nϕ, or (α, S)|=nψ ,
• (α, S)|=n�ϕ iff for all β∈S, (β, ∅)|=nϕ.

As a result,

• (α, S)|=n♦ϕ iff there exists β∈S such that (β, ∅)|=nϕ.

Obviously, for all α∈BITn and for all ϕ∈FORn, (α,∅)|=n�ϕ and (α,∅)�|=n♦ϕ. We say that
ϕ∈FORn is n-valid if for all (α, S)∈MODn, (α, S)|=nϕ. The soundness and the complete-
ness of L2 with respect to the concept of validity is well-known. This is what Proposition 3
is about.

Proposition 3 For all ϕ∈FORn, ϕ∈L2 iff ϕ is n-valid.

For all α∈BITn, the n-formula

• x̄α=∧{xαi

i : i∈{1, . . . , n}}
exactly characterizes the propositional valuation of the variables x1, . . . , xn represented by
α. This is what Proposition 4 is about.

Proposition 4 For all (α, S)∈MODn and for all β∈BITn, α=β iff (α, S)|=nx̄
β .

For all (α, S)∈MODn, the n-formula

• forn(α, S)=x̄α ∧ �
∨{x̄γ : γ∈S} ∧ ∧{♦x̄γ : γ∈S}

exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S).
This is what Proposition 5 is about.

Proposition 5 For all (α, S), (β, T )∈MODn, (α, S)=(β, T ) iff (α, S)|=nforn(β, T ).

As we know, an n-substitution (k, σ ) is a homomorphism from FORn to FORk . Taking
into account the duality between n-formulas and n-models, Propositions 6 and 7 tell us how
to associate a function g(k,σ ) from MODk to MODn to any n-substitution (k, σ ).5

4Indeed, an n-model (α, S) should be seen as a Kripke model (W,R, V ) with set W of possible worlds the
set {(α, 0)} ∪ {(β, 1): β∈S}, with accessibility relation R the binary relation {((α, 0), (β, 1)): β∈S} on W

and with valuation V the function from {x1, . . . , xn} to P(W) such that for all i∈{1, . . . , n}, if αi=0 then
V (xi)={(β, 1): β∈S and βi=1} else V (xi)={(α, 0)} ∪ {(β, 1): β∈S and βi=1}.
5Propositions 6 and 7 state standard results connecting substitutions and models. In particular, Proposition 6
is an immediate consequence of [17, Proposition 1.3].
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Proposition 6 Let (k, σ )∈SUBn. For all (α, S)∈MODk , there exists (β, T )∈MODn such
that (α, S)|=kσ (forn(β, T )).

Proposition 7 Let (k, σ )∈SUBn. Let (α, S)∈MODk . For all (β, T ), (γ, U)∈MODn, if
(α, S)|=kσ (forn(β, T )) and (α, S)|=kσ (forn(γ, U)) then (β, T )=(γ, U).

For all (k, σ )∈SUBn, let g(k,σ ) be the function from MODk to MODn such that for all
(α, S)∈MODk ,

• g(k,σ )(α, S) is the (β, T )∈MODn such that (α, S)|=kσ (forn(β, T )).

For all (k, σ )∈SUBn, notice that by Propositions 6 and 7, g(k,σ ) is well-defined.
Moreover, for all (k, σ )∈SUBn, for all (α, S)∈MODk and for all (β, T )∈MODn, if
g(k,σ )(α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that g(k,σ )(γ,∅)=(δ, ∅),
• for all δ∈T , there exists γ∈S such that g(k,σ )(γ,∅)=(δ, ∅).

See Proposition 8 below. Obviously, the above conditions are very similar to the forward
condition and backward condition of bounded morphisms usually considered in modal
logic [11, Definition 2.10]. This motivates the following definition. For all k≥1, a (k, n)-
morphism is a function f from MODk to MODn such that for all (α, S)∈MODk and for all
(β, T )∈MODn, if f (α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that f (γ, ∅)=(δ, ∅),
• for all δ∈T , there exists γ∈S such that f (γ, ∅)=(δ, ∅).

Proposition 8 For all (k, σ )∈SUBn, g(k,σ ) is a (k, n)-morphism.

However, the morphisms described here should not be mistaken for the bounded morphisms.
In particular, in the above definition, there is no condition related to the propositional val-
uations of the variables. For all (k, σ )∈SUBn, the best we can say about the propositional
valuations of the variables concerns g(k,σ ) and is contained in the following result.

Proposition 9 For all (k, σ )∈SUBn and for all (α, S), (β, T )∈MODk , if
g(k,σ )(α, S)=g(k,σ )(β, T ) then for all i∈{1, . . . , n}, (α, S)|=kσ (xi) iff (β, T )|=kσ (xi).

Nevertheless, it is not particularly surprising that we have the following results.

Proposition 10 Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and
(γ, U)∈MODn. If f (β, T )=(γ, U) then the image by f of T × {∅} is equal to U × {∅}.
Moreover, T =∅ iff U=∅.

Proposition 11 Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and
(γ, U)∈MODn. If the following conditions hold then f (β, T )=(γ, U):

• f (β, T )|=nx̄
γ ,

• for all δ∈T , there exists ε∈U such that f (δ, ∅)=(ε,∅),
• for all ε∈U , there exists δ∈T such that f (δ, ∅)=(ε,∅).
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5 Unification

Let n≥1. An n-unifier of ϕ∈FORn is an n-substitution (k, σ ) such that σ(ϕ)∈L2. We say
that ϕ∈FORn is n-unifiable if there exists an n-unifier of ϕ. We say that a set � of n-
unifiers of an n-unifiable ϕ∈FORn is n-complete if for all n-unifiers (k, σ ) of ϕ, there
exists (l, τ )∈� such that (l, τ )�n(k, σ ). We say that an n-complete set � of n-unifiers of
an n-unifiable ϕ∈FORn is minimal if for all n-complete sets  of n-unifiers of ϕ, if ⊆�

then =�. As is well-known, for all ϕ∈FORn, if ϕ is n-unifiable then for all minimal
n-complete sets �, of n-unifiers of ϕ, � and  have the same cardinality. Then, an
important question is the following: when ϕ∈FORn is n-unifiable, is there a minimal n-
complete set of n-unifiers of ϕ? When the answer is “yes”, how large is this set? For all
n-unifiable ϕ∈FORn, we say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,
• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite

cardinality,
• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite

cardinality ≥2,
• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Obviously, considered as an n-formula, ♦x1 → �x1 is n-unifiable. Indeed, let (n, υ⊥) and
(n, υ�) be the n-substitutions defined by:

• υ⊥(x1)=⊥ and υ�(x1)=�,
• for all i∈{2, . . . , n}, υ⊥(xi)=xi and υ�(xi)=xi .

Obviously, υ⊥(♦x1 → �x1)∈L2 and υ�(♦x1 → �x1)∈L2. Hence, (n, υ⊥) and (n, υ�)

are n-unifiers of ♦x1 → �x1. Moreover,

Proposition 12 The n-unifiable n-formula ♦x1 → �x1 is n-finitary.

For all n-unifiable ϕ∈FORn and for all π≥1, we say that ϕ is n-π -reasonable if for all n-
unifiers (k, σ ) of ϕ, if k≥π then there exists an n-unifier (l, τ ) of ϕ such that (l, τ )�n(k, σ )

and l≤π . The idea behind the concept of reasonableness is simple: a unifiable formula is
reasonable when a bounded set of variables suffices to express the set of all its unifiers.
Since L2 is locally tabular, it is not particularly surprising that we have the following result.

Proposition 13 Let ϕ∈FORn be n-unifiable and π≥1. If ϕ is n-π -reasonable then ϕ is
either n-finitary, or n-unitary.

As a result, in order to prove that n-unifiable n-formulas are either n-finitary, or n-
unitary, it suffices to prove that n-unifiable n-formulas are n-n-reasonable. This is what
Proposition 14 asserts below.

6 Main result

Let n≥1. Our aim is now to prove that n-unifiable n-formulas do not require more vari-
ables than the variables x1, . . ., xn in order to express their unifiers. Let ϕ∈FORn. Suppose
ϕ is n-unifiable. Let (k, σ ) be an n-unifier of ϕ such that k≥n. To achieve our aim, it
suffices to construct an n-unifier (n, τ ) of ϕ such that (n, τ )�n(k, σ ). The construction
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of (n, τ ) is based on the definition of a surjective (k, n)-morphism f such that for all
(α, S), (β, T )∈MODk , if f (α, S)=f (β, T ) then g(k,σ )(α, S)=g(k,σ )(β, T ). See Lemmas 4,
5 and 6 below. The argument leading to the definition of f is based on a sequence of combi-
natorial facts. See Lemmas 1, 2 and 3 below. In this argument, Proposition 1 is used twice.
Now, let us start. Let ∼k be the equivalence relation on MODk defined by:

• (α, S)∼k(β, T ) iff g(k,σ )(α, S)=g(k,σ )(β, T ).

Lemma 1 1. ‖MODdeg
k /∼k‖≤‖MODdeg

n ‖,
2. ‖MODdeg

n ‖≤‖MODdeg
k ‖.

Hence, by Proposition 1 and Lemma 1, there exists a surjective function f deg from
MODdeg

k to MODdeg
n such that for all (α,∅), (β, ∅)∈MODdeg

k , if f deg(α,∅)=f deg(β, ∅)

then (α,∅)∼k(β, ∅).

Lemma 2 For all nonempty sets S, T of k-tuples of bits, if the images by f deg of S × {∅}
and T × {∅} are equal then the images by g(k,σ ) of S × {∅} and T × {∅} are equal.

For all nonempty sets E of n-tuples of bits, let

• f ◦(E) be the set of all (α, S)∈MODk\MODdeg
k such that the image by f deg of S×{∅}

is equal to E × {∅},
• f •(E) be the set of all (α, S)∈MODn \ MODdeg

n such that S=E.

Notice that for all nonempty sets E of n-tuples of bits, since f deg is surjective,
‖f ◦(E)‖≥2k . Notice also that for all nonempty sets E of n-tuples of bits, ‖f •(E)‖=2n.

Lemma 3 For all nonempty sets E of n-tuples of bits,

1. ‖f ◦(E)/∼k‖≤‖f •(E)‖,
2. ‖f •(E)‖≤‖f ◦(E)‖.

Thus, for all nonempty sets E of n-tuples of bits, by Proposition 1 and Lemma 3, there
exists a surjective function f E from f ◦(E) to f •(E) such that for all (α, S), (β, T )∈f ◦(E),
if f E(α, S)=f E(β, T ) then (α, S)∼k(β, T ). Let f be the function from MODk to MODn

such that for all (α,∅)∈MODdeg
k ,

• f (α,∅)=f deg(α,∅)

and for all (α, S)∈MODk \ MODdeg
k , E being the nonempty set of n-tuples of bits such

that the image by f deg of S × {∅} is equal to E × {∅},
• f (α, S)=f E(α, S).

Lemma 4 f is surjective.

Lemma 5 f is a (k, n)-morphism.

Lemma 6 For all (α, S), (β, T )∈MODk , if f (α, S)=f (β, T ) then g(k,σ )(α, S)=
g(k,σ )(β, T ).

487About the unification type of K + ��⊥



The reader is invited to notice how Proposition 1 has been used — twice — in the argument
leading to the definition of f . Let (n, τ ), (k, ν) be the n-substitutions defined by:

• τ(xi)= ∨{forn(f (α, S)) : (α, S)∈MODk is such that (α, S)|=kσ (xi)} where
i∈{1, . . . , n},

• ν(xi)= ∨{fork(α, S) : (α, S)∈MODk is such that f (α, S)|=nxi} where i∈{1, . . . , n}.
In Lemmas 7–10 below, we prove interesting properties of these n-substitutions: Lemma 7
is used for showing that (n, τ ) is an n-unifier of ϕ, Lemma 8 is used in the proof of
Lemma 9, Lemma 9 is used in the proof of Lemma 10 and Lemma 10 is used for showing
that (n, τ )�n(k, σ ).

Lemma 7 Let ψ∈FORn. For all (β, T )∈MODn, the following conditions are equivalent:
(i) there exists (α, S)∈MODk such that f (α, S)=(β, T ) and (α, S)|=kσ (ψ); (ii) for all
(α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (ψ); (iii) (β, T )|=nτ (ψ).

Lemma 8 For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(xi) iff f (β, T )|=nxi .

Lemma 9 For all (β, T )∈MODk and for all (γ, U)∈MODn, f (β, T )=(γ, U) iff
(β, T )|=kν(forn(γ, U)).

Lemma 10 For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(τ (xi)) iff
(β, T )|=kσ (xi).

Since (k, σ ) is an n-unifier of ϕ, σ(ϕ)∈L2. Thus, by Proposition 3, σ(ϕ) is k-valid, i.e.
for all (α, S)∈MODk , (α, S)|=kσ (ϕ). Consequently, by Lemma 7, for all (β, T )∈MODn,
(β, T )|=nτ (ϕ), i.e. τ(ϕ) is n-valid. Hence, by Proposition 3, τ(ϕ)∈L2. Thus, (n, τ ) is an
n-unifier of ϕ. Since by Lemma 10, (n, τ )�n(k, σ ), ϕ is n-n-reasonable. Since ϕ∈FORn is
arbitrary, this proves the following result.

Proposition 14 For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is n-n-reasonable.

Propositions 13 and 14, lead us to the following result.

Theorem 1 For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

In the light of Proposition 12 and Theorem 1, we therefore conclude that L2 is finitary.

7 Conclusion

In this paper, within the context of elementary unification, we have proved Theorem 1
asserting that in L2, unifiable formulas are either finitary, or unitary. We believe that in the
line of reasoning leading to Theorem 1, the main properties of L2 are the ones given in
Propositions 2, 6 and 7. Proposition 2 says that L2 is locally tabular — it is used in the
proof of Proposition 13. For all n≥1, Propositions 6 and 7 tell us how to associate a func-
tion g(k,σ ) from MODk to MODn to any n-substitution (k, σ ) — they are used in the proof
of Proposition 14. Notice that Theorem 1 is an immediate consequence of Propositions 13
and 14. However, since L2 is locally tabular, the reader may think that the line of reasoning
leading to Theorem 1 is unnecessarily complicated. In other respect, since the unification
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type is a categorical invariant, the reader may think that it is possible to directly work in the
category of all finite models of L2. Indeed, the categorical approach to the unification prob-
lem in propositional logic is powerful [18]. Nevertheless, the fact that the question of the
unification type of L2 has not been solved before indicates that things may not be so simple.

Here are open questions: (i) determine the unification type of K+�d⊥ (the least modal
logic containing �d⊥) for each d≥3, (ii) determine the unification types of the locally
tabular modal logics studied in [26–28], (iii) determine the unification types of KB, KD
and KT. We conjecture that the modal logics mentioned in (i) and (ii) are either finitary, or
unitary. As for the modal logics considered in (iii), it is only known that KD and KT are
not unitary within the context of elementary unification and KB, KD and KT are nullary
within the context of unification with constants [4, 5, 7]. We conjecture that the modal logics
mentioned in (iii) are finitary within the context of elementary unification. And of course
there is also the open question of the decidability of the unification problem in the modal
logics considered in (i), (ii) and (iii). When the modal logics mentioned in (i) and (ii) are
decidable, their local tabularity implies the decidability of their unification problem within
the context of elementary unification. Concerning the modal logics considered in (iii), the
decidability of their unification problem remains a mystery within the context of unification
with constants.6

Recently, the question of the unification type has been considered within the context of
a semantic restriction of description logic FL0. The formulas of FL0 are constructed by
means of the connectives �, ∧ and �a — where a ranges over a countably infinite set ACT.
The unification problem in FL0 is to determine, given a couple (ϕ, ψ) of formulas, whether
there exists a substitution σ such that σ(ϕ) and σ(ψ) are logically equivalent in the class
of all ACT-frames, i.e. Kripke frames of the form (W,R) where W is a nonempty set and
Ra is a binary relation on W for each a∈ACT. As is well-known, the unification type of
FL0 is nullary [3]. Restricting the discussion to the class of all ACT-frames (W,R) such
that for all a, b∈ACT, Ra ◦ Rb=∅, Baader et al. [1] have proved that the unification type of
FL0 is unitary for elementary unification and finitary for unification with constants. Now,
interpreting the formulas constructed by means of the connectives ⊥, ¬, ∨ and �a — where
a ranges over ACT — in the class of all ACT-frames (W,R) such that for all a, b∈ACT,
Ra ◦ Rb=∅, we conjecture that the unifiable ones are either finitary, or unitary.

Appendix

Proof of Proposition 1: Suppose S is nonempty. Let ∼ be an equivalence relation on S.
Suppose ‖S/∼‖≤‖T ‖≤‖S‖. Let h be a function from S/∼ to S such that for all α∈S,

h([α])∈[α], i.e. h is a function selecting an element in each equivalence class modulo ∼.7

Obviously, h is injective. Let S0={h([α]) : α∈S}. Since h is injective, ‖S/∼‖=‖S0‖.
Since ‖S/∼‖≤‖T ‖, ‖S0‖≤‖T ‖. Let T0 be a subset of T such that ‖T0‖=‖S0‖. Let f0
be a one-to-one correspondence between S0 and T0. Let T1=T \T0. Notice that T0 and
T1 make a partition of T . Since ‖T ‖≤‖S‖ and ‖T0‖=‖S0‖, ‖T1‖≤‖S\S0‖. Let S1 be a
subset of S\S0 such that ‖S1‖=‖T1‖. Let f1 be a one-to-one correspondence between S1
and T1. Let S2=(S\S0)\S1. Let f2 be the function from S2 to T such that for all α∈S2,

6As is well-known, the unification problem in KB, KD and KT is in NP within the context of elementary
unification.
7Since S is finite, the proof of the existence of ∼ does not require the use of the axiom of choice.
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f2(α)=f0(h([α])). Let f be the function from S to T defined by f |S0=f0, f |S1=f1 and
f |S2=f2.

Claim f is surjective.

Proof Let β∈T . We consider the following cases.

Case β∈T0. Since f0 is one-to-one, let α∈S0 be such that f0(α)=β. Thus, α∈S. Moreover,
f (α)=f0(α). Since f0(α)=β, f (α)=β.

Case β∈T1. Since f1 is one-to-one, let α∈S1 be such that f1(α)=β. Hence, α∈S.
Moreover, f (α)=f1(α). Since f1(α)=β, f (α)=β.

Claim For all α, β∈S, if f (α)=f (β) then α∼β.

Proof Let α, β∈S be such that f (α)=f (β). We consider the following cases.
Case α∈S0 and β∈S0. Consequently, f (α)=f0(α) and f (β)=f0(β). Since

f (α)=f (β), f0(α)=f0(β). Since f0 is one-to-one, α=β. Thus, α∼β.
Case α∈S0 and β∈S1. Consequently, f (α)=f0(α) and f (β)=f1(β). Since

f (α)=f (β), f0(α)=f1(β). Since f0(α)∈T0 and f1(β)∈T1, T0 and T1 do not make a
partition of T : a contradiction.

Case α∈S0 and β∈S2. Hence, f (α)=f0(α) and f (β)=f2(β). Since f (α)=f (β),
f0(α)=f2(β). Thus, f0(α)=f0(h([β])). Since f0 is one-to-one, α=h([β]). Since
h([β])∈[β], α∈[β]. Consequently, α∼β.

Case α∈S1 and β∈S1. Hence, f (α)=f1(α) and f (β)=f1(β). Since f (α)=f (β),
f1(α)=f1(β). Since f1 is one-to-one, α=β. Thus, α∼β.

Case α∈S1 and β∈S2. Hence, f (α)=f1(α) and f (β)=f2(β). Since f (α)=f (β),
f1(α)=f2(β). Thus, f1(α)=f0(h([β])). Since f1(α)∈T1 and f0(h([β]))∈T0, T0 and T1 do
not make a partition of T : a contradiction.

Case α∈S2 and β∈S2. Hence, f (α)=f2(α) and f (β)=f2(β). Since f (α)=f (β), f2(α)

=f2(β). Consequently, f0(h([α]))=f0(h([β])). Since f0 is one-to-one, h([α])=h([β]).
Since h([α])∈[α] and h([β])∈[β], [α] ∩ [β]�=∅. Thus, α∼β.

Suppose f is a surjective function from S to T such that for all α, β∈S, if f (α)=f (β)

then α∼β. For the sake of the contradiction, suppose either ‖S/∼‖>‖T ‖, or ‖T ‖>‖S‖.
Since f is surjective, ‖T ‖≤‖S‖. Since either ‖S/∼‖>‖T ‖, or ‖T ‖>‖S‖, ‖S/∼‖>‖T ‖. Let
p∈N and β1, . . . , βp∈S be such that p>‖T ‖ and for all q, r∈N, if 1≤q, r≤p and q �=r then
βq �∼βr . Hence, for all q, r∈N, if 1≤q, r≤p and q �=r then f (βq)�=f (βr). Thus, p≤‖T ‖: a
contradiction.

Proof of Proposition 2: From [11, Proposition 2.29] and from the fact that for all ϕ∈FORn,
there exists ψ∈FORn such that degn(ψ)<2 and ϕ ↔ ψ∈L2.

Proof of Proposition 3: From [11, Proposition 2.6], from [11, Lemma 4.21] and from the
fact that for all maximal consistent sets w of n-formulas, there exists (α, S)∈MODn such
that the submodel of the canonical model of L2 generated by w is isomorphic to (α, S).
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Proof of Proposition 4: Let (α, S)∈MODn and β∈BITn. For the sake of the contradic-
tion, suppose α=β not-iff (α, S)|=nx̄

β . Hence, either α=β and (α, S) �|=nx̄
β , or α �=β and

(α, S)|=nx̄
β . In the former case, for all i∈{1, . . . , n}, αi=βi . Thus, for all i∈{1, . . . , n},

(α, S)|=nx
βi

i . Consequently, (α, S)|=nx̄
β : a contradiction. In the latter case, let i∈{1, . . . , n}

be such that αi �=βi . Hence, (α, S) �|=nx
βi

i . Thus, (α, S) �|=nx̄
β : a contradiction.

Proof of Proposition 5: From [20, Theorem 32], from the fact that for all (α, S)∈MODn,
forn(α, S) characterizes n-models modulo bisimulation and from the fact that for all
(α, S), (β, T )∈MODn, if (α, S) and (β, T ) are bisimilar then (α, S)=(β, T ).

Proof of Proposition 6: Let (α, S)∈MODk . Let β be the n-tuple of bits such that for
all i∈{1, . . . , n}, if (α, S) �|=kσ (xi) then βi=0 else βi=1. Let T be the least set of n-
tuples of bits such that for all γ∈S, there exists δ∈T such that for all i∈{1, . . . , n}, if
(γ,∅)�|=kσ (xi) then δi=0 else δi=1. By induction on ϕ∈FORn, the reader may easily
verify that (α, S)|=kσ (ϕ) iff (β, T )|=nϕ. Since by Proposition 5, (β, T )|=nforn(β, T ),
(α, S)|=kσ (forn(β, T )).

Proof of Proposition 7: Let (β, T ), (γ, U)∈MODn. Suppose (α, S)|=kσ (forn(β, T )) and
(α, S)|=kσ (forn(γ, U)). Hence, (α, S)|=kσ (x̄β) and (α, S)|=kσ (x̄γ ). Thus, β=γ .
Let β ′∈T be arbitrary. Since (α, S)|=kσ (forn(β, T )), let α′∈S be such that
(α′,∅)|=kσ (x̄β ′

). Since (α, S)|=kσ (forn(γ, U)), let γ ′∈U be such that (α′,∅)|=kσ (x̄γ ′
).

Since (α′, ∅)|=kσ (x̄β ′
), β ′=γ ′. Consequently, β ′∈U . Since β ′ is arbitrary, T ⊆U .

Reciprocally, the reader may easily verify that U⊆T . Hence, T =U . Since β=γ ,
(β, T )=(γ, U).

Proof of Proposition 8: Let (k, σ )∈SUBn. For the sake of the contradiction, suppose g(k,σ )

is not a (k, n)-morphism. Hence, let (α, S)∈MODk and (β, T )∈MODn be such that
g(k,σ )(α, S)=(β, T ) — and therefore (α, S)|=kσ (forn(β, T )) — and either there exists
γ∈S such that for all δ∈T , g(k,σ )(γ,∅)�=(δ,∅), or there exists δ∈T such that for all
γ∈S, g(k,σ )(γ,∅)�=(δ,∅). In the former case, let δ′∈T be such that (γ,∅)|=kσ (x̄δ′

). Thus,
g(k,σ )(γ,∅)�=(δ′,∅). Since (γ,∅)|=kσ (x̄δ′

), g(k,σ )(γ,∅)=(δ′, ∅): a contradiction. In the lat-
ter case, let γ ′∈S be such that (γ ′, ∅)|=kσ (x̄δ). Consequently, g(k,σ )(γ

′,∅)�=(δ,∅). Since
(γ ′,∅)|=kσ (x̄δ), g(k,σ )(γ

′,∅)=(δ, ∅): a contradiction.

Proof of Proposition 9: Let (k, σ )∈SUBn and (α, S), (β, T )∈MODk . Suppose
g(k,σ )(α, S)=g(k,σ )(β, T ). Hence, let (γ, U)∈MODn be such that g(k,σ )(α, S)=(γ, U) and
g(k,σ )(β, T )=(γ, U). Thus, (α, S)|=kσ (forn(γ, U)) and (β, T )|=kσ (forn(γ, U)). Conse-
quently, (α, S)|=kσ (x̄γ ) and (β, T )|=kσ (x̄γ ). Hence, for all i∈{1, . . . , n}, (α, S)|=kσ (xi)

iff (β, T )|=kσ (xi).

Proof of Proposition 10: For the sake of the contradiction, suppose f (β, T )=(γ, U) and
the image by f of T × {∅} is not equal to U × {∅}. Hence, either the image by f of T × {∅}
is not included in U × {∅}, or the image by f of T × {∅} does not include to U × {∅}.
In the former case, let δ∈T be such that f (δ,∅)�∈U × {∅}. Since f is a (k, n)-morphism
and f (β, T )=(γ, U), let ε′∈U be such that f (δ,∅)=(ε′,∅). Thus, f (δ,∅)∈U × {∅}: a
contradiction. In the latter case, let ε∈U be such that (ε,∅)�∈f (T × {∅}). Since f is a
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(k, n)-morphism and f (β, T )=(γ, U), let δ′∈T be such that f (δ′,∅)=(ε,∅). Consequently,
(ε, ∅)∈f (T × {∅}): a contradiction.

Proof of Proposition 11: For the sake of the contradiction, suppose f (β, T )�=(γ, U),
f (β, T )|=nx̄

γ , for all δ∈T , there exists ε∈U such that f (δ, ∅)=(ε,∅) and for all
ε∈U , there exists δ∈T such that f (δ,∅)=(ε,∅). Let (γ ′, U ′)∈MODn be such that
f (β, T )=(γ ′, U ′). Since f (β, T )|=nx̄

γ , by Proposition 4, γ=γ ′. Since f (β, T ) �=(γ, U)

and f (β, T )=(γ ′, U ′), U �=U ′. Hence, either U �⊆U ′, or U �⊇U ′. In the former case, let ε′∈U

be such that ε′ �∈U ′. Since for all ε∈U , there exists δ∈T such that f (δ,∅)=(ε,∅), let δ′∈T

be such that f (δ′,∅)=(ε′,∅). Since f is a (k, n)-morphism and f (β, T )=(γ ′, U ′), ε′∈U ′: a
contradiction. In the latter case, let ε′′∈U ′ be such that ε′′ �∈U . Since f is a (k, n)-morphism
and f (β, T )=(γ ′, U ′), let δ′′∈T be such that f (δ′′,∅)=(ε′′,∅). Since for all δ∈T , there
exists ε∈U such that f (δ,∅)=(ε,∅), ε′′∈U : a contradiction.

Proof of Proposition 12: Let (n, σ ) and (n, τ ) be the n-substitutions defined by:

• σ(x1)=�⊥ ∨ x1 and τ(x1)=♦� ∧ x1,
• for all i∈{2, . . . , n}, σ(xi)=xi and τ(xi)=xi .

Obviously, σ(♦x1 → �x1)∈L2 and τ(♦x1 → �x1)∈L2. Hence, (n, σ ) and (n, τ ) are n-
unifiers of ♦x1 → �x1. In order to prove that ♦x1 → �x1 is n-finitary, it suffices to prove
that {(n, σ ), (n, τ )} is a minimal n-complete set of n-unifiers of ♦x1 → �x1.

n-completeness of {(n, σ ), (n, τ )}: Let (k, υ) be an arbitrary n-unifier of ♦x1 → �x1.
Thus, υ(♦x1 → �x1)∈L2. By using the semantics of L2, it follows that either �⊥ →
υ(x1)∈L2, or υ(x1) → ♦�∈L2. Indeed, for the sake of the contradiction, suppose nei-
ther �⊥ → υ(x1)∈L2, nor υ(x1) → ♦�∈L2. Consequently, by Proposition 3, neither
�⊥ → υ(x1) is k-valid, nor υ(x1) → ♦� is k-valid. Hence, let (α,∅), (β, ∅)∈MODdeg

k

be such that (α,∅)�|=kυ(x1) and (β, ∅)|=kυ(x1). Let γ∈BITk . Since (α,∅)�|=kυ(x1) and
(β, ∅)|=kυ(x1), (γ, {α, β})�|=kυ(♦x1 → �x1). Thus, υ(♦x1 → �x1) is not k-valid. Con-
sequently, by Proposition 3, υ(♦x1 → �x1)�∈L2: a contradiction. In the former case where
�⊥ → υ(x1)∈L2, it follows immediately that υ(σ(x1))≡kυ(x1). Hence, (n, σ )�n(k, υ).
In the latter case where υ(x1) → ♦�∈L2, it follows immediately that υ(τ(x1))≡L2υ(x1).
Thus, (n, τ )�n(k, υ).

Minimality of {(n, σ ), (n, τ )}: For the sake of the contradiction, suppose {(n, σ ), (n, τ )} is
not minimal. Consequently, either (n, σ )�n(n, τ ), or (n, τ )�n(n, σ ). In the former case,
there exists an n-substitution (n, υ) such that υ(σ(x1))≡nτ (x1). Hence, �⊥∨υ(x1)≡n♦�∧
x1. In the latter case, there exists a substitution (n, υ) such that υ(τ(x1))≡nσ (x). Thus,
♦� ∧ υ(x1)≡n�⊥ ∨ x1. In both cases, �⊥ → ♦�∈L2. Consequently, ♦�∈L2: a
contradiction.

Proof of Proposition 13: Suppose ϕ is n-π -reasonable. Let � be the set of all n-unifiers
of ϕ. Notice that � is n-complete. Let �′ be the set of n-substitutions obtained from �

by keeping only the n-substitutions (k, σ ) such that k≤π . Since ϕ is n-π -reasonable and
� is n-complete, �′ is n-complete. Let �′′ be the set of n-substitutions obtained from �′
by keeping only one representative of each equivalence class modulo �n. Since �′ is n-
complete, �′′ is n-complete. Moreover, by Proposition 2, �′′ is finite. Hence, either ϕ is
n-finitary, or ϕ is n-unitary.
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Proof of Lemma 1: (1) For the sake of the contradiction, suppose ‖MODdeg
k /∼k‖>

‖MODdeg
n ‖. Let p∈N and (α1,∅), . . . , (αp,∅)∈MODdeg

k be such that p>‖MODdeg
n ‖

and for all q, r∈N, if 1≤q, r≤p and q �=r then (αq, ∅)�∼k(α
r , ∅). Hence, for all q, r∈N,

if 1≤q, r≤p and q �=r then g(k,σ )(α
q,∅)�=g(k,σ )(α

r , ∅). Since g(k,σ ) is a (k, n)-morphism,
let β1, . . . , βp∈BITn be such that g(k,σ )(α

1,∅)=(β1, ∅), . . ., g(k,σ )(α
p,∅)=(βp, ∅). Since

for all q, r∈N, if 1≤q, r≤p and q �=r then g(k,σ )(α
q, ∅)�=g(k,σ )(α

r ,∅), for all q, r∈N, if
1≤q, r≤p and q �=r then βq �=βr . Thus, p≤2n. Since ‖MODdeg

n ‖=2n, p≤‖MODdeg
n ‖: a

contradiction.

(2) Since ‖MODdeg
n ‖=2n, ‖MODdeg

k ‖=2k and k≥n, ‖MODdeg
n ‖≤‖MODdeg

k ‖.

Proof of Lemma 2: Let S, T be nonempty sets of k-tuples of bits. Suppose the images by
f deg of S × {∅} and T × {∅} are equal. For the sake of the contradiction, suppose the
images by g(k,σ ) of S × {∅} and T × {∅} are not equal. Since g(k,σ ) is a (k, n)-morphism,
let (γ,∅)∈MODdeg

n be such that either (γ,∅) is in the image by g(k,σ ) of S × {∅} without
being in the image by g(k,σ ) of T × {∅}, or (γ, ∅) is in the image by g(k,σ ) of T × {∅}
without being in the image by g(k,σ ) of S × {∅}. Without loss of generality, suppose (γ,∅)

is in the image by g(k,σ ) of S × {∅} without being in the image by g(k,σ ) of T × {∅}.
Hence, let α∈S be such that g(k,σ )(α,∅)=(γ,∅). Since the images by f deg of S × {∅} and
T × {∅} are equal, let β∈T be such that f deg(α,∅)=f deg(β, ∅). Thus, (α,∅)∼k(β, ∅).
Consequently, g(k,σ )(α,∅)=g(k,σ )(β, ∅). Since g(k,σ )(α,∅)=(γ,∅), (γ,∅) is in the image
by g(k,σ ) of T × {∅}: a contradiction.

Proof of Lemma 3: Let E be a nonempty set of n-tuples of bits. (1) For the sake of the con-
tradiction, suppose ‖f ◦(E)/∼k‖>‖f •(E)‖. Let p∈N and (α1, S1), . . . , (α

p, Sp)∈MODk\
MODdeg

k be such that p>‖f •(E)‖, the images by f deg of S1 × {∅}, . . . , Sp × {∅} are
equal to E ×{∅} and for all q, r∈N, if 1≤q, r≤p and q �=r then (αq, Sq)�∼k(α

r , Sr ). Hence,
for all q, r∈N, if 1≤q, r≤p and q �=r then g(k,σ )(α

q, Sq)�=g(k,σ )(α
r , Sr ). Since g(k,σ ) is a

(k, n)-morphism and the images by f deg of S1 ×{∅}, . . . , Sp ×{∅} are equal to E ×{∅}, let
β1, . . . , βp∈BITn be such that g(k,σ )(α

1, S1)=(β1, E), . . ., g(k,σ )(α
p, Sp)=(βp, E). Since

for all q, r∈N, if 1≤q, r≤p and q �=r then g(k,σ )(α
q, Sq) �=g(k,σ )(α

r , Sr ), for all q, r∈N,
if 1≤q, r≤p and q �=r then βq �=βr . Thus, p≤2n. Since ‖f •(E)‖=2n, p≤‖f •(E)‖: a
contradiction.

(2) Since k≥n, ‖f ◦(E)‖≥2k and ‖f •(E)‖=2n, ‖f •(E)‖≤‖f ◦(E)‖.

Proof of Lemma 4: Let β∈BITn and T be a set of n-tuples of bits. We consider the
following cases.

Case (β, T )∈MODdeg
n . Since f deg is surjective, let α∈BITk be such that

f deg(α,∅)=(β,∅). Hence, f (α,∅)=(β, T ).
Case (β, T )∈MODn \ MODdeg

n . Thus, (β, T )∈f •(T ). Since f T is surjective, let
(α, S)∈f ◦(T ) be such that f T (α, S)=(β, T ). Consequently, (α, S)∈MODk \ MODdeg

k

and the image by f deg of S × {∅} is equal to T × {∅}. Hence, f (α, S)=f T (α, S). Since
f T (α, S)=(β, T ), f (α, S)=(β, T ).

Proof of Lemma 5: For the sake of the contradiction, suppose f is not a (k, n)-morphism.
Hence, let (α, S)∈MODk and (β, T )∈MODn be such that f (α, S)=(β, T ) and either there
exists γ ′∈S such that for all δ′∈T , f (γ ′, ∅)�=(δ′,∅), or there exists δ′′∈T such that for all
γ ′′∈S, f (γ ′′,∅)�=(δ′′, ∅). In the former case, S �=∅. Thus, (α, S)∈MODk \MODdeg

k and, E
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being the nonempty set of n-tuples of bits such that the image by f deg of S × {∅} is equal
to E × {∅}, f (α, S)=f E(α, S). Since f (α, S)=(β, T ), f E(α, S)=(β, T ). Consequently,
T =E. Since the image by f deg of S × {∅} is equal to E × {∅}, the image by f deg of
S × {∅} is equal to T × {∅}. Hence, let δ∈T be such that f (γ ′,∅)=(δ, ∅). Since for all
δ′∈T , f (γ ′,∅)�=(δ′, ∅), f (γ ′,∅)�=(δ,∅): a contradiction. In the latter case, T �=∅. Since
f (α, S)=(β, T ), S �=∅. Thus, (α, S)∈MODk\MODdeg

k and, E being the nonempty set of n-
tuples of bits such that the image by f deg of S×{∅} is equal to E×{∅}, f (α, S)=f E(α, S).
Since f (α, S)=(β, T ), f E(α, S)=(β, T ). Consequently, T =E. Since the image by f deg

of S × {∅} is equal to E × {∅}, the image by f deg of S × {∅} is equal to T × {∅}. Hence, let
γ∈S be such that f (γ,∅)=(δ′′,∅). Since for all γ ′′∈S, f (γ ′′,∅)�=(δ′′, ∅), f (γ, ∅)�=(δ′′, ∅):
a contradiction.

Proof of Lemma 6: Let (α, S), (β, T )∈MODk . Suppose f (α, S)=f (β, T ). We consider
the following cases.

Case S=∅. Since f (α, S)=f (β, T ), by Lemma 5, T =∅. Since S=∅,
(α, S), (β, T )∈MODdeg

k . Hence, f (α, S)=f deg(α, S) and f (β, T )=f deg(β, T ). Since
f (α, S)=f (β, T ), f deg(α, S)=f deg(β, T ). Thus, (α, S)∼k(β, T ). Consequently,
g(k,σ )(α, S)=g(k,σ )(β, T ).

Case S �=∅. Since f (α, S)=f (β, T ), by Lemma 5, T �=∅. Since S �=∅,
(α, S), (β, T )∈MODk \ MODdeg

k . Hence, f (α, S)=f E(α, S) and f (β, T )=f F (β, T ), E

being the nonempty set of n-tuples of bits such that the image by f deg of S × {∅} is equal
to E × {∅} and F being the nonempty set of n-tuples of bits such that the image by f deg of
T × {∅} is equal to F × {∅}. Since f (α, S)=f (β, T ), f E(α, S)=f F (β, T ). Thus, E=F .
Since f E(α, S)=f F (β, T ), (α, S)∼k(β, T ). Consequently, g(k,σ )(α, S)=g(k,σ )(β, T ).

Proof of Lemma 7: By induction on ψ . Let (β, T )∈MODn. We consider the following
cases.

Caseψ=xi for some i∈{1, . . . , n}. (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|=kσ (xi)

for some (α, S)∈MODk . Let (α′, S′)∈MODk . Suppose f (α′, S′)=(β, T ). Since
f (α, S)=(β, T ), f (α, S)=f (α′, S′). Hence, g(k,σ )(α, S)=g(k,σ )(α

′, S′). Thus, by Proposi-
tion 9, (α, S)|=kσ (xi) iff (α′, S′)|=kσ (xi). Since (α, S)|=kσ (xi), (α′, S′)|=kσ (xi).

(ii)⇒(iii) Suppose for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (xi).
Since f is surjective, let (α′, S′)∈MODk be such that f (α′, S′)=(β, T ). Since for all
(α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (xi), (α′, S′)|=kσ (xi). Consequently,
forn(f (α′, S′)) is one of the disjuncts of τ(xi). Since f (α′, S′)=(β, T ), by Proposition 5,
(β, T )|=nτ (xi).

(iii)⇒(i) Suppose (β, T )|=nτ (xi). Hence, let (α, S)∈MODk be such that (α, S)|=kσ (xi)

and (β, T )|=nforn(f (α, S)). Thus, by Proposition 5, f (α, S)=(β, T ).
Case ψ=⊥. (i)⇒(ii) Obviously, the condition “f (α, S)=(β, T ) and (α, S)|=kσ (⊥) for

some (α, S)∈MODk cannot hold.
(ii)⇒(iii) Since f is surjective, the condition “for all (α, S)∈MODk , if f (α, S)=(β, T )

then (α, S)|=kσ (⊥)” cannot hold.
(iii)⇒(i) Obviously, the condition “(β, T )|=nτ (⊥)” cannot hold.
Case ψ=¬χ . (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|=kσ (¬χ) for some

(α, S)∈MODk . Let (α′, S′)∈MODk . Suppose f (α′, S′)=(β, T ). For the sake of the contra-
diction, suppose (α′, S′)�|=kσ (¬χ). Consequently, (α′, S′)|=kσ (χ). Since f (α, S)=(β, T )

and f (α′, S′)=(β, T ), by induction hypothesis, (α, S)|=kσ (χ). Hence, (α, S) �|=kσ (¬χ): a
contradiction.
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(ii)⇒(iii) Suppose for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (¬χ). For
the sake of the contradiction, suppose (β, T ) �|=nτ (¬χ). Thus, (β, T )|=nτ (χ). Since f is
surjective, let (α′, S′)∈MODk be such that f (α′, S′)=(β, T ). Since for all (α, S)∈MODk , if
f (α, S)=(β, T ) then (α, S)|=kσ (¬χ), (α′, S′)|=kσ (¬χ). Consequently, (α′, S′) �|=kσ (χ).
Since f (α′, S′)=(β, T ), by induction hypothesis, (β, T ) �|=nτ (χ): a contradiction.

(iii)⇒(i) Suppose (β, T )|=nτ (¬χ). Since f is surjective, let (α, S)∈MODk be such
that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) �|=kσ (¬χ). Hence,
(α, S)|=kσ (χ). Since f (α, S)=(β, T ), by induction hypothesis, (β, T )|=nτ (χ). Thus,
(β, T ) �|=nτ (¬χ): a contradiction.

Case ψ=χ ∨ θ . (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|=kσ (χ ∨ θ) for some
(α, S)∈MODk . Let (α′, S′)∈MODk . Suppose f (α′, S′)=(β, T ). For the sake of the
contradiction, suppose (α′, S′)�|=kσ (χ ∨ θ). Consequently, neither (α′, S′)|=kσ (χ), nor
(α′, S′)|=kσ (θ). Since f (α, S)=(β, T ) and f (α′, S′)=(β, T ), by induction hypothesis,
neither (α, S)|=kσ (χ), nor (α, S)|=kσ (θ). Hence, (α, S) �|=kσ (χ ∨ θ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (χ ∨θ). For
the sake of the contradiction, suppose (β, T ) �|=nτ (χ ∨ θ). Thus, neither (β, T )|=nτ (χ), nor
(β, T )|=nτ (θ). Since f is surjective, let (α′, S′)∈MODk be such that f (α′, S′)=(β, T ).
Since for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (χ ∨ θ), (α′, S′)|=kσ (χ ∨
θ). Consequently, either (α′, S′)|=kσ (χ), or (α′, S′)|=kσ (θ). Since f (α′, S′)=(β, T ), by
induction hypothesis, either (β, T )|=nτ (χ), or (β, T )|=nτ (θ): a contradiction.

(iii)⇒(i) Suppose (β, T )|=nτ (χ ∨ θ). Since f is surjective, let (α, S)∈MODk be such
that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) �|=kσ (χ ∨ θ). Hence,
neither (α, S)|=kσ (χ), nor (α, S)|=kσ (θ). Since f (α, S)=(β, T ), by induction hypothesis,
neither (β, T )|=nτ (χ), nor (β, T )|=nτ (θ). Thus, (β, T ) �|=nτ (χ ∨ θ): a contradiction.

Case ψ=�χ . (i)⇒(ii) Suppose there exists (α, S)∈MODk such that f (α, S)=(β, T )

and (α, S)|=kσ (�χ). Let (α′, S′)∈MODk . Suppose f (α′, S′)=(β, T ). For the sake of
the contradiction, suppose (α′, S′)�|=kσ (�χ). Consequently, let γ ′∈S′ be such that
(γ ′,∅)�|=kσ (χ). Since f is a (k, n)-morphism and f (α′, S′)=(β, T ), let δ∈T be such
that f (γ ′,∅)=(δ, ∅). Since f is a (k, n)-morphism and f (α, S)=(β, T ), let γ∈S be such
that f (γ, ∅)=(δ, ∅). Since (γ ′,∅)�|=kσ (χ) and f (γ ′, ∅)=(δ, ∅), by induction hypothesis,
(γ,∅)�|=kσ (χ). Hence, (α, S) �|=kσ (�χ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (�χ).
For the sake of the contradiction, suppose (β, T ) �|=nτ (�χ). Thus, let δ∈T be
such that (δ,∅)�|=nτ (χ). Since f is surjective, let (α′, S′)∈MODk be such that
f (α′, S′)=(β, T ). Since for all (α, S)∈MODk , if f (α, S)=(β, T ) then (α, S)|=kσ (�χ),
(α′, S′)|=kσ (�χ). Since f is a (k, n)-morphism and f (α′, S′)=(β, T ), let γ ′∈S′ be
such that f (γ ′, ∅)=(δ, ∅). Since (δ,∅)�|=nτ (χ), by induction hypothesis, (γ ′,∅)�|=kσ (χ).
Consequently, (α′, S′)�|=kσ (�χ): a contradiction.

(iii)⇒(i) Suppose (β, T )|=nτ (�χ). Since f is surjective, let (α, S)∈MODk be such
that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) �|=kσ (�χ). Hence,
let γ∈S be such that (γ,∅)�|=kσ (χ). Since f is a (k, n)-morphism and f (α, S)=(β, T ),
let δ∈T be such that f (γ, ∅)=(δ, ∅). Since (γ,∅)�|=kσ (χ), by induction hypothesis,
(δ,∅)�|=nτ (χ). Thus, (β, T ) �|=nτ (�χ): a contradiction.

Proof of Lemma 8: Let (β, T )∈MODk and all i∈{1, . . . , n}. For the sake of the contradic-
tion, suppose either (β, T )|=kν(xi) and f (β, T )�|=nxi , or (β, T ) �|=kν(xi) and f (β, T )|=nxi .
In the former case, by definition of ν, let (α, S)∈MODk be such that f (α, S)|=nxi

and (β, T )|=kfork(α, S). Hence, by Proposition 5, (β, T )=(α, S). Since f (α, S)|=nxi ,
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f (β, T )|=nxi : a contradiction. In the latter case, by definition of ν, fork(β, T ) is one
of the disjuncts of ν(xi). Since by Proposition 5, (β, T )|= fork(β, T ), (β, T )|=kν(xi): a
contradiction.

Proof of Lemma 9: Let (β, T )∈MODk and (γ, U)∈MODn. For the sake of the contra-
diction, suppose either f (β, T )=(γ, U) and (β, T ) �|=kν(forn(γ, U)), or f (β, T ) �=(γ, U)

and (β, T )|=kν(forn(γ, U)). In the former case, since by Proposition 4, (γ, U)|=nx̄
γ ,

f (β, T )|=nx̄
γ . Hence, by Lemma 8, (β, T )|=kν(x̄γ ). Since f is a (k, n)-morphism

and by Proposition 4, for all γ ′′′, γ ′′′′∈U , (γ ′′′, ∅)|=nx̄
γ ′′′′

iff γ ′′′=γ ′′′′, for all β ′∈T ,
there exists γ ′∈U such that f (β ′,∅)|=nx̄

γ ′
and for all γ ′′∈U , there exists β ′′∈T

such that f (β ′′,∅)|=nx̄
γ ′′

. Thus, by Lemma 8, for all β ′∈T , there exists γ ′∈U such
that (β ′,∅)|=kν(x̄γ ′

) and for all γ ′′∈U , there exists β ′′∈T such that (β ′′,∅)|=kν(x̄′′).
Since (β, T )|=kν(x̄γ ), (β, T )|=kν(forn(γ, U)): a contradiction. In the latter case,
(β, T )|=kν(x̄γ ). Moreover, for all β ′∈T , there exists γ ′∈U such that (β ′,∅)|=kν(x̄γ ′

) and
for all γ ′′∈U , there exists β ′′∈T such that (β ′′,∅)|=kν(x̄′′). Consequently, by Lemma 8,
for all β ′∈T , there exists γ ′∈U such that f (β ′, ∅)|=nx̄

γ ′
and for all γ ′′∈U , there exists

β ′′∈T such that f (β ′′,∅)|=nx̄
γ ′′

. Since f is a (k, n)-morphism and by Proposition 4, for
all γ ′′′, γ ′′′′∈U , (γ ′′′,∅)|=nx̄

γ ′′′′
iff γ ′′′=γ ′′′′, for all β ′∈T , there exists γ ′∈U such that

f (β ′, ∅)=(γ ′,∅) and for all γ ′′∈U , there exists β ′′∈T such that f (β ′′,∅)=(γ ′′,∅). Since
(β, T )|=kν(x̄γ ), by Proposition 11, f (β, T )=(γ, U): a contradiction.

Proof of Lemma 10: Let (β, T )∈MODk and i∈{1, . . . , n}. For the sake of the contra-
diction, suppose either (β, T )|=kν(τ (xi)) and (β, T ) �|=kσ (xi), or (β, T ) �|=kν(τ (xi)) and
(β, T )|=kσ (xi). In the former case, by definition of τ , let (α, S)∈MODk be such that
(α, S)|=kσ (xi) and (β, T )|=kν(forn(f (α, S))). Hence, by Lemma 9, f (β, T )=f (α, S).
Thus, g(k,σ )(β, T )=g(k,σ )(α, S). Consequently, by Proposition 9, (β, T )|=kσ (xi) iff
(α, S)|=kσ (xi). Since (α, S)|=kσ (xi), (β, T )|=kσ (xi): a contradiction. In the latter case,
by definition of τ , forn(f (β, T )) is one of the disjuncts of τ(xi). Since by Lemma 9,
(β, T )|=kν(fornf (β, T )), (β, T )|=kν(τ (xi)): a contradiction.
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