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We employ the quark part of the symmetric energy-momentum tensor current to calculate the transition
gravitational form factors of the N(1535) — N by means of the light-cone QCD sum rule formalism. In
numerical analysis, we use two different sets of the shape parameters in the distribution amplitudes of the
N(1535) baryon and the general form of the nucleon’s interpolating current. It is seen that the momentum
squared dependence of the gravitational form factors can be well described by the p-pole fit function.
The results obtained by using two sets of parameters are found to be quite different from each other, and the
N(1535) — N transition gravitational form factors depend highly on the shape parameters of the
distribution amplitudes of the N(1535) state that parametrize the relative orbital angular momentum of

the constituent quarks.
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I. INTRODUCTION

The form factors (FFs) are essential parameters for
gaining knowledge on the internal organization of the
composit particles at low energies. Using various FFs,
one can get important information on many quantities,
such as size, shape, radius, electrical and magnetic charge
distributions, axial and tensor charges, and other mechani-
cal and electromagnetical parameters of hadrons. The
gravitational FFs (GFFs) or energy-momentum tensor
FFs (EMTFFs) are described by the help of the matrix
elements of the symmetric energy-momentum tensor. Just
as the Fourier transform of the electromagnetic form factors
can be explicated with regard to the spatial distribution of
electrical charge and magnetization, the Fourier transform
of the gravitational form factors can be explicated with
regard to the spatial distribution of momentum, energy,
pressure, etc. Hence, the investigation of these FFs attracts
significant interest for comprehension of the internal
structure of the nucleon. The GFFs of the nucleon have
been examined within different theoretical models, such as
the chiral quark soliton model [1-11], lattice QCD [12-19],
light-cone QCD sum rules (LCSRs) [20,21], the Skyrme

.*_ulasozdem@ aydin.edu.tr
"kazem.azizi @ut.ac.ir

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020,/101(5)/054031(15)

054031-1

model [22,23], chiral perturbation theory [24-29], the bag
model [30], and the instant and front forms [31]. Interested
readers can find more details about these studies in a recent
review [32].

In this study, we extend our previous work on the
nucleon’s EMTFFs [21] and calculate for the first time
(to our knowledge) the transitional gravitational form factors
of N(1535) > N due to the energy-momentum tensor
current in the framework of the light-cone QCD sum rule
[33-35] using the general form of the interpolating current of
nucleon and distribution amplitudes of N(1535). [Hereafter
we shall represent the N(1535) particle as N*.] The main
advantage of this method is that it is an analytical method
and includes direct QCD parameters. The method involves a
two-stage approach. First, the corresponding correlation
function is calculated in terms of the quark-gluon properties.
Second, it is obtained in terms of hadron properties such as
GFFs. When calculating the quark-gluon properties, a
connection is established between the low energy processes
and the QCD vacuum, which is expressed in terms of
distribution amplitudes. In this approach, the hadrons are
represented by interpolating currents carrying the same
quantum number as the hadrons. These interpolating
currents are inserted into the correlation function and the
short- (perturbative) and long-distance (nonperturbative)
interactions are separated using the operator product expan-
sion (OPE). The hadronic and OPE representations of the
same correlation function are then matched. To suppress the
unwanted contributions coming from the higher states and
continuum, the Borel transformation and continuum sub-
traction supplied by the quark-hadron duality assumption are
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applied. By choosing some independent Lorentz structures
from both sides of the resultant equations, the desired sum
rules for the FFs are obtained in terms of hadronic parameters
as well as QCD degrees of freedom. The light-cone QCD
sum rule approach has been successfully applied to calculate
different form factors of hadrons as well as the transition form
factors among baryons due to the electromagnetic, axial, and
tensor currents at high Q? (see, e.g., [36-48]).

The presentation of the manuscript is organized as
follows. In Sec. II, we briefly discuss the formalism and
calculate the LCSR for the transition gravitational form
factors under investigation. In Sec. III, we numerically
analyze the N* — N transition GFFs. We fix the auxiliary
parameters by entering the calculations according to the
standard prescriptions of the method. We also use the wave
functions and all of the including parameters recently
available for the distribution amplitudes (DAs) of the N*
state to find the Q2 behavior of the form factors in this
section. Section IV is dedicated to a discussion of the
results achieved for the GFFs. The distribution amplitudes
of the N* state and explicit expressions of the N* - N
transition GFFs are presented in the appendixes.

II. FORMALISM

The following correlation function is used in the ana-
lytical calculations to compute the GFFs of the N* - N
transition by means of the LCSR:

where Jy(0) is the interpolating current of the nucleon, the
T} (x) is the quark part of the energy-momentum tensor
current, and 7 is the time ordering operator.

The main goal in this section is to calculate the above-
mentioned correlation function in two different languages
and apply the prescriptions previously discussed. Thus, the
calculations of the hadronic and OPE (QCD) representa-
tions of the correlation function are in order.

A. Hadronic representation of the correlation function

We begin to compute the correlator with regards to the
hadronic degrees of freedom with the inclusion of the
physical features of the hadrons under examination. To that
end, we embed intermediate states of the nucleon with the
same quantum number of Jy(0) into the correlator. As a
result, we get

)= Z <0|JN|N(pCS’)>n<1112\vf(f’l;ls;)\TZulN*(p,S)>

R (2)

% (p, q

where the contributions coming from the higher states and
continuum are denoted by dots. The expression shown in
Eq. (2) can be simplified by introducing the following
matrix elements [32]:

‘ (OI/NIN(p'.s")) = Ayun(p'.s'). (3)
I, (p.q) =i / d*xe' (0| T [Jy (0) T (x)]IN*(p)), (1)
|
oo q * = oo N*—N 2 Pﬂpl’ - yN*— 2 (P UW’ + P O-M/))A/)
(NP SN (pr ) = iy (') | AV TN(QP) 5 =t o V(@) S by
. AA —g A2 -+
+ D'~ (Qz)m cV'e (Qz)wgﬂv ysun (P, $), (4)

where Ay is residue of the nucleon, P = p' + p, A =p —p,

O',Ml/ = %[yﬂ’ yl/}s and Q2 == _AZ' Heres AN*_N(Qz)’

JN=N(Q?), DV'-N(Q?), and eV =N ((Q?) are the GFFs. Summation over spin of the nucleon is carried out by

Zu,\,(p/,s’)ﬁ,\,(p’,s’) =

P+ my. (5)

Substituting Egs. (3)-(5) into Eq. (2), we achieve the hadronic representation of the correlation function with respect to

the hadronic parameters as

! . PP . (P,0,,+ P,0,,)A
[1Had , _ N ! AN'=N((2 u-v i JN* =N (2 vp Oup
v (P CZ) m%\/ _ p/z (p)/ + mN) |: (Q )Z(mN* I mN) +1 (Q ) 2(mN* + mN)
§ AA —g AT my« +m
4DV I () Iyt (). (©

From Eq. (6), we can decompose the hadronic side of the correlator in terms of different invariant functions and

independent Lorentz structures:

2“(p, q)

= 144 (Q2) p!, plys + TIH4(Q%) pl, pidfys + T (02) g s + TIH(O?) g,ys + -+ (7)
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B. QCD representation of the correlation function

To achieve the expression of the correlator in terms of the
QCD parameters, explicit forms for the interpolating
currents of Jy(0) and T}, (x) are needed. These currents
are defined by the following expressions with respect to
quark fields:

Iv(0) = 26 [T (0)Ca (0)rsu (0
+ T (O)Crsd? ()] (0)].
Th(0) = 5 [0)B, (x)ra ()

<>

D,(x)y,d*(x) + (u < v)],  (8)

where the charge conjugation operator, the arbitrary mixing
parameter, and the color indices are denoted as C, ¢, and a,
b, ¢, d, e, respectively. The two-sided covariant derivative
is defined as

+ d(x)

2" (p.q) =

+1(1),5(Cr5) (D, (X)730)p H (8583851 (=) + 833831 (=) z) (016w (0)uf (x)

+ 830907Sa(=x) 4, (0l ug (0)ug (0)

—/d4xeiqx[{(}’5>y5Caﬂ<Bﬂ(x)7/u)mp +1(1),5(CY5)qp(D

©) = 31B,(x) = B, ()] ©

with

-

= 0,(x) + igA,(x), (10)
D, (x) = 8,(x) — igA,(x), (11)

where A, is the gluon field. We neglect the gluon field
contributions, i.e., the gluonic part of the EMT, since
considering these contributions requires information about
quark-gluon mixed DAs of the N* state, which unfortu-
nately are not available. Therefore, in this work, we shall
take note of the quark part of the energy-momentum tensor
current in Eq. (8). We insert the interpolating currents
Jy(0) and T}, (x) into the correlator and carry out the
necessary contractions with the help of the Wick theorem.
Consequently, we obtain

D, (x)

T

<>

ﬂ(x>7v)mp + (yS)yrSCaﬂ(Bu(x)Yy)mp

dg(0)[N*(p))

dg(x)IN*(p))}]; (12)

where S, (x) is propagator of the light ¢ = u, d quarks and is identified as

o (A ) e (1)
C2exr\Ux2 2 12 4

It should be noted here that we are working with an m, = 0
limit; therefore, the terms proportional to the quark mass do
not give any contribution. The terms proportional with
quark ((gg)) and mixed ((go.Gg)) condensates are killed
by performing a Borel transformation. The contributions
coming from the terms corresponding to the gluon strength
field tensor (G,,) are expected to be small [49], which are
relevant to the distribution amplitudes of four- and five-
particles. Therefore, we can neglect the contributions of
these terms in calculations as well. As a result, only the first
term of the light quark propagator contributes to our
computations. The (0]e*"“ug(ayx)ug(ayx)d;(azx)|N*(p))
matrix element is the expression containing the distribution
amplitudes of the N* state, and it is required for further
calculations. The explicit form of this matrix element in
terms of the related DAs together with the explicit forms of
DAs for N* are given in Appendix A. Using the distribution
amplitudes of the N* state and applying the integration over
x, the QCD representation of the correlation function is
acquired as

_<ZIG'GQ>X2 l—im—q _ igy
192 6 3272252

G" (x)[fo + o] (13)

e (p, q) = I°(0%) plpiys + 3P (0%) plpidys

+T¥P(0?) g dtrs + I (0%) g
+oee (14)

The explicit expressions of II¥P(0?), N¥P(0?),
N (0?), and NP (Q?) are presented in Appendix B.

C. Light-cone QCD sum rules
for the N* — N transition

The required light-cone QCD sum rules for the N* — N
transition GFFs are obtained by matching the coefficients
of different Lorentz structures from both the hadronic and
QCD representations of the correlator.

We shall note that we employ the structures p),p,ys,
PupuAYs» 4,9.47s> and g, ys to find the light-cone QCD
sum rules for the transition GFFs, AV =N (Q?), JV' =N (0?),
DV'=N(Q?), and &V ~N(Q?), respectively. Hence,
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TABLE L

Numerical values of the shape parameters of the distribution amplitudes for the N* state at renormalization scale

u* = 2.0 GeV2. Besides these values, we use AYmy = —3.88(2)(19) x 1072 GeV? and 2" my. = 8.97(45) x 1072 GeV?, given in
Ref. [52] at renormalization > = 4.0 GeV?, by rescaling to u> = 2.0 GeV>.

Model /A I/ ®10 ®20 ¥ (5 Mo M1

LCSR 1 0.633 0.027 0.36 —0.95 0 0 0 0 0.94

LCSR 2 0.633 0.027 0.37 -0.96 0 0 0 -0.29 0.23

Ay N-N/2y . My T My ocD, 40 square M. The GFFs should not be affected by the changes
AN Q) = - —— T (0%),  (15) ;

my — NG . s

2 =p” 2my of these parameters much. Hence, we search for working

windows for these auxiliary parameters such that, in these

AN JN-N(O2) — my + my- 9P (2 16 working windows, the GFFs depend relatively weakly on

2 (@) = 2 (@), (16) these parameters. The mixing parameter ¢ is chosen such

mlz\,—p 2

mz%NpQDN*_N(Qz) = =2(my +my )IEP(QY). (17)
N

Ay “N*=N( )2 2 QCD /2
Q) =-— I1 0°). 18
m2 — p? ¢ (0%) m, i (0% (18)

For the calculation of the N* — N transition GFFs, the
residue of the nucleon Ay is needed as well. The residue of
the nucleon is determined from two point sum rules [42]:

/1]2\,[;’7%2] :256;4 (5+2t+12)Ey(z) - @?2
X {6(1 -2)—(1 —t)2—4m—A/§2[12(1 -2)—(1 —t)2]},
(19)
where
7= 5o/ M?
and

En(Z) - l —e_zzl—
i=0 "

III. NUMERICAL RESULTS

This section is dedicated to the numerical analysis
of the N* — N transition GFFs. To this end, we need dis-
tribution amplitudes of the N* state. The explicit expressions
of these distribution amplitudes are given in Appendix A.
For further calculations, we need the shape parameters of the
distribution amplitudes of the N* state, which are presented
in Table I. Additionally, we use my = 0.94 GeV, my-=
1.51+0.01GeV [50], m,=0, (ggq)=(-0.2440.01)° GeV?,
and mj = 0.8 + 0.1 GeV? [51].

The LCSRs for the N* — N transition GFFs also include
some auxiliary parameters: the mixing parameter f, the
continuum threshold sy, and the Borel mass parameter

that the estimation of the GFFs is independent of the value
of t in its working region. From the numerical calculations,
it is obtained that in the region —0.2 < cos @ < —0.45 the
GFFs weakly depend on ¢, where tan @ = ¢. The working
region for continuum threshold s, is acquired while
taking into account the fact that the GFFs are almost
insensitive with respect to its changes as well. We choose
the s, in the interval 2.5 GeV? < sy < 3.0 GeV>. We use
the following steps to achieve the working interval for the
Borel mass parameter M2. The lower cutoff of M? is
obtained while demanding that the perturbative part
exceeds the nonperturbative one and that the series of
nonperturbative terms are convergent. The upper cutoff of
M? is acquired using the condition that the contributions
of higher states and continuum should be less than the
ground state contribution. These requirements are both
fulfilled when M? varies in the interval 2.0 GeV? <
M? < 3.5 GeV>.

In Figs. 1-3, we plot the dependences of the GFFs
AVV(Q2), JVN(Q2), DV N(QY), and e V() on
different parameters for the various values of the arbitrary
mixing parameter ¢ and other parameters in their working
regions for two sets of the distribution amplitudes for the N*
baryon. As can be seen from Figs. 1 and 2, the obtained
values of the GFFs are approximately independent of the
continuum threshold s, and Borel mass parameter M? on
their working regions. Therefore, for numerical calculations
of the central values of GFFs, we shall use the central values
of the M? and s,. The LCSR method is reliable only when
0? > 1.0 GeV?. However, the mass corrections of the
distribution amplitudes ~m%./Q* become quite large for
0? < 2.0 GeV>—namely, the LCSRs turn out to be unre-
liable. Therefore, for GFFs, we expect the LCSRs to operate
efficiently and effectively in the 2.0 GeV? < Q2 <6.0 GeV?
region. In Fig. 3, we present the Q> dependency of the GFFs
on the fixed Borel mass parameter and continuum threshold
and various values of the arbitrary mixing parameter 7. We
see that GFFs vary smoothly in terms of Q2 as
expected. We also observe that the GFFs AN ~N(Q?),
JV=N(Q?), and DV =N (Q?) are sensitive to the variations
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FIG. 1. The dependence of the GFFs of the N* — N transition on the Borel mass parameter M at Q> = 2.0 GeV? and various values

of continuum threshold s, and arbitrary mixing parameter ¢ at their working region: (a), (c), (e), and (g) for LCSR 1, and (b), (d), and
(f) for LCSR 2.
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FIG.2. The dependence of the GFFs of the N* — N transition on the continuum threshold s, at Q> = 2.0 GeV?, and various values of

the Borel mass parameter M2 and the arbitrary mixing parameter ¢ at their working region: (a), (c), (e), and (g) for LCSR 1, and (b), (d),
and (f) for LCSR 2.
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arbitrary mixing parameter t: (a), (c), (e), and (g) for LCSR 1, and (b), (d), and (f) for LCSR 2.
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TABLE II. The numerical results for the parameters of the GFFs obtained by using the p-pole fit functions.

LCSR 1 LCSR 2
Form factors F(0) m, (GeV) p F(0) m, (GeV) p
AV N(@?) 1.33+£0.13 1.30 £0.10 3.0-34 0.63 £0.10 1.32 £0.10 3.0-34
JVN(Q?) 0.27 £0.07 1.13£0.10 3.0-34 0.13 +£0.05 1.17 £0.11 29-33
DV =N(Q?) -8.20 £2.02 1.14 £0.10 3.64.0 —-6.91 £ 1.80 1.02 £ 0.09 3.2-3.6
VN (E?) —0.40 £ 0.06 1.18 £0.10 3.0-3.5

of the mixing parameter ¢ for both sets. The &V =V (Q?)
form factor is obtained using only the first set of the
distribution amplitudes. The second set of the distribu-
tion amplitudes gives unphysical results for this form
factor (the form factor changes its sign in the region
under consideration); therefore, it is not presented.

To extend the behavior of GFFs to the region 0 < 0% < 2,
we need to use some fit parametrizations. Our numerical
calculations show that the GFFs of the N* — N transition
can be properly characterized using the p-pole fit function

7(0)
(1+0%/(pm3)r

F(Q*) = (20)

Our results for the fit parameters of the N* — N
transition GFFs are presented in Table II. The results,
obtained by using two sets, are found to be quite different
from each other. As can be seen in Table I, the main
difference between the two sets of distribution amplitudes
is the numerical values for the shape parameters 7, and
111, which are connected to the three quark wave functions
of the p-wave N* baryon. As a result, we find that the
N* — N transition GFFs depend strongly on the input
parameters of the distribution amplitudes of the N* baryon
that parametrize the relative orbital angular momentum of
the quarks. There are no theoretical predictions for the
transition GFFs under study in the literature to be compared
to our results. The D(Q?) GFF of the N* has recently been
obtained by means of the bag model, D(Q? = 0) = —12.97
[30]. Any future experimental data will help us gain useful
knowledge about the DAs of the N* state and their nature
and internal structure.

IV. SUMMARY AND CONCLUDING REMARKS

We applied the quark part of the symmetric energy-
momentum tensor current to compute, for the first time, the
GFFs of the N(1535) — N transition with the help of the
|

4(0le“" ug(a,x)dg(arx)dy (azx)|[N*(p))

LCSR approach. Studying the GFFs of the particles result
in valuable knowledge about the total angular momentum,
the spatial distribution of energy, pressure, and shear forces
inside the particles, etc. In our numerical analysis, we used
two different sets of shape parameters in the distribution
amplitudes of the N(1535) state and took into account the
most general form of the nucleon’s interpolating current. It
was seen that the momentum squared dependence of the
gravitational form factors can be well described by a p-pole
fit function. The results obtained by using two sets were
found to be quite different from each other. We found that
the values of the N(1535) — N transition GFFs depend
greatly on the input parameters of the distribution ampli-
tudes of the N(1535) state that parametrize the relative
orbital angular momentum of the quarks. As previously
mentioned, we calculated the N(1535) — N transition
GFFs for the first time in the literature. Therefore, there
are no experimental data or theoretical predictions to be
compared with the results obtained in this study.
Calculations of the GFFs from different methods and
approaches are of great importance. Such calculations
and a comparison of the obtained results with each other
will not only help us get useful information on the DAs of
the N* state but also experimental groups for measuring the
values of the related GFFs.
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APPENDIX A: DISTRIBUTION AMPLITUDES
OF N* THE STATE

In this appendix, we present the explicit forms of N*
DAs [53]:

= Symy-CopNy — 52m12v* Ca/}(ﬂ\’*)y + Pymy- (ySC)aﬂ(ySN*)y + szzzv* (YSC)aﬁ(nyN*)y

2

x*m3.
- <V1 + 4N V/]V[) (ﬁc)aﬁN; + Vsz* (ﬂc)aﬁ(XN*)y + V3mN* (yuc)aﬁ(y”N*)y - V4m12V* (XC)a/JN;

054031-8



GRAVITATIONAL TRANSITION FORM FACTORS OF N(1535) ... PHYS. REV. D 101, 054031 (2020)

2,2
= V33 (1, ) (i x,N*), + Ve (YC) gy (IN), = (A1 + Ai”) (PrsClap(rN°),

+ Aoy (P75C) s (¥rsN™), + Asmy(r,75C) s (r'rsN™),

- «44m12v* (957’5 )ap‘(?’sN*>y - Asmzzv* (7;4}’5 C)aﬂ<iaﬂyxu75N*)y + A6m13v* (Xrs C)a/s()f}’sN*)y
xX2m3. . .
- (Tl + TM) (lapruc)aﬂ(yﬂN*)y + TQmN* (laﬂuxﬂpyc)aﬁN; + TSmN* (Guvc)aﬂ(o-ﬂyN*)y

+ T4mN* (G”Dp”C)aﬂ(O'”pxpN*)y - TSmIZV* (l'GWx”C)aﬂ(y”N*)y - TGmIZV* (i WX P C) (XN )
— T7m3. (0,,C) g5 (6" ¥N*), + T gm3y. (6,,x" C) (6" x,N*),,.

The calligraphic functions can be represented with respect to the functions of the specific twists as

S =85, 2p.xS, =8, —S,,
P, =Py, 2p.xPy =P — P,,
V=V, 2pxVy =V =V, =V3,
Wi =Vs,  dpxV, = -2V, + Vst V,+2Vs,
4p.xVs =V, — Vs, 4(px)?Vs ==V, +V, + V3 + V4 + Vs — Vg
A=A, 2p.xA, = —A; + A, — Aj,
2A;5 = As, 4p.x Ay = -2A, — A3 — A, + 2As,
dp.xAs = Az — Ay, 4(px)?Ag =A; — Ay + Ay + Ay — As + Ag
T,=T,, 2pxTH =T+ T, —2T;5,
275 =T7, 2pxT4 =T, —T,—-2T7,
2pxTs=—-T,+Ts+2Tg,  4(px)*Tg=2T,—2T3—2T,+2Ts + 2T; + 2Ty,
4pxT;=T;—Ty,  4(px)?Tg=-T,+Ty+Ts—Te+2T;+ 2Ty,

where V;, A;, T;, S;, and P; are vector, axial-vector, tensor, scalar, and pseudoscalar distribution amplitudes, respectively.
The explicit expressions of these functions are given as follows:

Vi (xi, 1) = 12030205033 (1) + 3 (1) (1=3x3)],

Vo (i, 1) = 24x12 [0 (1) + ¢ (1) (1= 5x3)],

V(i) = 12003 {r§ (1) (1 = 2x3) Hyrg () 6] +23 =3 (1= x3) ]+ () (1 =23 = 10x,x)
Vi (xip) = 3{y (1) (1 =x3) w5 () 22000 =3 (1 = x3)] 3 () [1 = x3 = 2(x7 +x3)]},
Vis(xi 1) = 6x3[@3 () + b5 (1) (1-2x3)],

Vis(xiop) = 2[5 (1) + g (1) (1=3x3)].

Ay (xi,p) = 120x)x0x3h5 (1) (2 — X1 ),

Ag(xis ) =24x1207 (1) (32 — X1 ),

As () = 12203 (g =2 ){ (w () +wf (1)) +75 () (1-2x3)

Ag(xi,p) =300 = x ) ){=w8 (1) +w3 (1) (1=2x3) +y5 (u)x3},

As (o i) = 6x3(xy = x1 ) b5 (1)

Ag(xi.p) =2(x2 = x1) g (),

T (xp ) = 120205033 [ 3(0) 5 (65 45 (1) (1 =) |
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T (i) = 242,32 (85 () + &4 () (1= 5x3)].
T3 (i) = 633 { (&4 + 3 +w) () (1 —x3) + (&5 + @3 —wi) (W) [ 3 —x3 (1 =x3)] + (&5 + ¢4 +wif) (1) (1 —x3 = 10x,x7) },

T4(xi7/‘):§{(§5 + P9 +wd) (1) (1 =x3) + (&5 + 5 —w5) (1) 221200 = x3(1 = x3)] + (&5 + b3 +w) () (1 =23 =2(x] +x3)) },

Ts(x;, 1) = 6x3[E9 (1) +&5 () (1=2x3)],

e =2 | $0(0) 4565 — ) () (1-333)|.

T (xi,p) = 623 { (=E9+ G +r) (1) (1= x3) +(=&5 + 7 —wy) () [x] +23 = x3(1 = x3)] (1 = x3)]

+(=€4 +¢a +wy) (W) (1=x3—10x,x,) },

TS(xi’ﬂ):%{(_52+¢(5)+W(5))(ﬂ)(1_XS)+(_§5_+¢5__V’5_)(ﬂ)[2x1x2_+x3(1 —x3)](1=2x3)]
+ (=83 + b5 +y3) () (1 =23 =2(x7 +x3)) },

Sy (o) = 6230 =21 ) [(84 + 4 +wi + &5 + g +yi) () +(&5 + 5 —wi) (W) (1-2x3)],

Sz(x,»ﬂ)=%(Xz—xl)[—<w2+¢2+€2)<ﬂ)+(55‘ +¢5 —w5) ()x3+(85 + ¢35 +wd) (1) (1-2x3)],

Py (o) = 633 (xp —x1) (8§ — 5 —wi + & — b —wi) (W) + (&5 — b3 +wi) () (1-2x3)].

PZ(xiv/‘):%(XZ_XI)[(W(5)+W2_fg)(/‘)"f'(gg_‘»bs_ +ys) ()3 +(E5 —ds =) (W) (1-2x3)].

Vﬂ”(xz):/Ol_xzdleﬂw(xl»sz—xl—Xz)Zx—%[fzv*cj‘r(%)*‘/l’lv*cﬁ’(xz)]’

2

24
2

1—x, *
7Y (x,) _A dx, TV (x1,%, 1 =x1 = x3) :&[fN*E}l‘()Q) + 2V Ef(xp)].

1-x, "
A]y(xz):/o dxy AY (x1,0x0, 1 =x1 = xp) =22 (1 =22 [y DY (x2) +4Y D4 (x2)],

The subsequent functions come across to the above DAs, and they can be parametrized with respect to the independent
parameters, such as fy-, A, Ay, f4, f{, f4, A%, and V¢

# b=

B= =5+ A7),

g-g=ly

w4:w5:%(fzv*—/1’1w),

Br= DAL BT =2 (1= V),

#1 = 4 lfv- (= 10V]) + 24" (3 = 107)]

B = =2 [ (1 = 240) = 2 (1= 2f{ = 47)]

Wi = =3 a2 SAY = SVE) = (2= 5 = 7).

5 .
vi =l @=Ar=3v) =2 @77+ 1))
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G =l 4157, =i (4150,
. 5 )
5 =2 GV =2 (=4F0) 43 == 1fy(1-240) 2 (7 )]

5 ]
s =—[fn (54241 =2V]) - 41" (1-2f{ - 2f1)].

"6
5 .

s =3 =AYV 2 (r{ = D).
5 N* d - 5 N* ¢d

55 :%/1 (2—9f2)v 55 :_1/12 /3.

B =51 (1=4VH) =2 (1-27),

By =5 [ (1 +4) 2 (1=47{=271)]
(x2) = (1=x,)[1134+495x, —552x3 — 10A%(1 —3x,) +2V¥(113-951x, + 828x3)],
(x2) ==(1=x,)3[13 =20 +3x, + 104 (1 =3x,)].
DY(xy) = 11+45x, —2A%(113-951x, +828x3) + 10V¢(1-30x;),
(x2) =29 —45x, — 104(7—9x,) —20£4(5—6x3),
(x2)

—4V{(1301=619x, —769x3 + 1161x3 —414x3)]} — 12(73 —=220V¢) In[x,],
E¥(xy) =={(1=x2)[5=211x,+281x3 — 111x3 + 10(1 4+ 61x, —83x3 +33x3) f¢ —40(1 — x,)*(2 - 3x,) f4]}

~12(3-10£¢)Infx),

where the parameters A%, V¢, f¢, f4, and f4 are defined as [53]

1 1 1 1fy 3 1
Al = , Vd:__ - , u — Lz I ,
1= @10+ @1 =3 <ﬂ10+3(ﬂ11 S 1064V 5’710 37711
301f 1 4 2
d_ N* d _
fi= 10 61"’ + 5o~ 3 f2—15+§§10-

APPENDIX B: EXPLICIT FORMS OF THE FUNCTIONS II; FOR THE N* - N TRANSITION

In this appendix, we present the explicit forms of the functions derived in the QCD side:

my 1 x3dx 1=x,
H?CD(QZ):—NA (272/ dx;[3(1=1)[-As = V3] + (1 +1) [Py + S, + T = T7]](x1, %, 1 —=x1 = x5)

2 —Px2)2 0
mN* 1 .x%d.x:; 1—)(3
t— | dxs[(1=1)[-A; = V3] + (1+0) [P+ S, + T = T7]](x1, 1 —x; —x3,x3)
2 Jo (g—px3)
3011 x2d 1-x
LMy xz_x24/ dx, [2(1= ) 2AM £ VM £ 3(1 4 0)TH](x), x5, 1 —x; —x3)
2 Jo (g—px2)
. 1 —Xs
+m—N 7/ dXz/ dx1 (l—t)[ 3A1+3A2—3A3+V1 VZ—V3]
2 Jo (g—pa)
+(1+1)[5T) =T, =3T3 = TT4]](x1, %, 1 —x; = x3)
1
+m—N 7/ d)C3/ dx] (1+t)[3T] +T2—2Tc; T7“(X],1 X1 — X3,X3)
2 Jo (g—pa)
my. [l ada 1-x;
+T W/ d)CZ/ dx, (l—l)[ 3A]+A2—2A3 +A4+2A5+V1 V2—2V3+V4}
0

054031-11



U. OZDEM and K. AZIZI PHYS. REV. D 101, 054031 (2020)

+(1+0)[Py =Py + 8, =8, +2T = 3T, +2T3—Ts—6T7]|(x1,%, 1 —x; —x;)

mi. [1 dda 1 1-x,
+_N 74/ dX3/ 3d.)C][(l—t)[—Al +A2—2A3 +A4+V1—V2—V3+V4}
2 Jo (g-pa) 0
(1+t P2+S1 Sz+2T1—3T2+2T3—T5—6T7]](x1,1—xl—x3 X3)
ﬁzdﬂ 1=x
— ﬁ da dX2 dxl (1—t)[ 2A1+2A2—2A3—2A4 +2A5—2A6
(g-p

+V1 —Vz—V3 —V4—V5 +V6] +( +[)[7T1 —2T2—5T3—5T4—2T5 +7T6—9T7—9T8H(X1,X2, 1 —)Cl —X2)

3 1 2 —x3
@ ﬂ d[} / d(X/ dX3/ dxl 1+t)[2T1+T2—3T3—3T4
2 Jo (g—pB)*
+Ts+Te—T7—=Tgl](x1, 1 = x| —x3,%3), (B1)

HSCD(Qz)Z—lllﬁdle)l_xzdxl[(l—t)[Al+V1]](x1’x2’1—Xl—xz)

2Jo (g—px;
mz* 1 1 l—xz
0 [N [ B =AY+ VI =)
0 (q sz) 0

2 1 2
my a“da

1 1—x
—4/ de/ Cdx [(1=1)[~A, —Ay— A3 + Ay +As =V, +Vy + V]
2 Jo (g=pa)Ja 0

(1+t) P1 P2+S1—S2+T2—T5]](X1,X2,1—X1—Xz)

a*da —X3
+/ / X3/ dxl l—t A2+A4—V1+V2+V4]

(g— pa
+(1+8)[P1=Py+ 8 =Sy + To = Ts]](x1, 1 = x; —x3,x3)
2* 1 d /} 1)67
+m—N ﬁ ﬁ / d(l/ dx2/ dX1 1+t [ T4+T5+T7+T8]](X1,XQ71—X1—.Xz)
2 Jo (g=-pp)*
2* 1 d 1-x3
+mTN qﬂfﬂ / d(Z/ dx;/ d.X1 1+l[ T4+T5—|—T7—|-T8]](x1,1—x1—x3,x3), (B2)
0

H§CD(Q2)=%AldX2((1_—xz>/]_xz[(1 —O[A +V ]](x1,20, 1 =x = x,)

q— sz)z 0

o3 [ a2 [0 Vi —n )

q—px3)
1 1 (1 X2) I—x,
dxy————2 1= 1)[3VM 4+ 3AM]] (x;, x5, 1 —x, —

45 2(q o [ =B 3 s =)

m2. [1 1—-x,
+ /dxz/ dx,[(1=1)[=A; —Ay —=2A5+ Ay +2A5 =V +V, +V,]

2 Jo (g—pa)
+(1+t>[ —P2+S1—SQ+T2—T5H(X1 Xz,l—xl—)(2>

m2 1 1—x3
+—N 7/ dX3/ dxl (1—t>[—A1 A2+A4 V1+V2+V4}

2 Jo (g—pa)
+(14+1)[Py =Py + S, =S, +Tr = Ts]|(x;. 1 —x; —x3,X3))

2.1 a(l —x,

m—N/ ()((—ada/ dxz/ dx,[2(1 = £)[=A, = Ay =245+ Ay + 245V, +V, + V]

2 Jo (g=pa)*

+<1+t)[P1—P2+S1 —52+T2—T5]](XI,X2,1—X1 —.X'2>
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2* 1—x3
+m—N/ d(l/ dX3/ dx1 (1—t [ A2+A4—V1+V2+V4]
2 Jo (g=pa)

+(1+1)[P1=Py+ 81 =S, = To = Ts]](x1, 1 = x; —x3,x3)

2o (1 (1+ 1-x,
+m—N/ A dﬂ/ da/ dxz/ dx,(1+1)[T =Ty +Ts+T7+Tg)(x1, x5, 1 —x; —x3)
2 Jo (g=pp)*
mi. [1 (1+ 1-x3
+é\// ( ﬂ 4dﬁ/ da/ dX3/ dxl 3(1+1)[T2—T3—T4+T5 +T7+T8]](x1,1—x1 X3,X3)
o (g—pP)
(B3)
m3* 1 d)CZ 1-x,
H4QCD(Q2):TNA ml (L+0)TY (x1.2x0, 1= x; —x,)
+m?v* 17 ldx 1—x2d Y _ ~ _ _
B 2 xl[(l t)[ 2A1 2A2 3A3+A4+4A5 2V1+2V2 V3+3V4]
8 Jo (g—pa) Ja 0
+(1+t)[2pl—2P2 +251—2S2—T1+T2 +4T3—4T5—2T7]](.X1,XZ,1—.X'l—XZ)
3* 1 d 1 1—x;
+m—N/ “72/ dx3/ T dx) [<24, 4+ 24, = 3A; + Ay +2V, =2V, —3V5 4 V]
8 Jo (g—pa)*Ja 0
+(1+l’)[2P1—2P2+2S1—2S2+T1—T2—3T5—T7]](X1,1—XI—X3,X3)
3* 1 1-x;
+mN/ / da/ d)Cz/ dx1 4(1—t>[—A1+A2 A'; A4+A5 A6 V1+V2+V3
8 Jo (q- pﬂ
+V4+Vs— V6] + O[T =T, =Ts+Te—2T7=2Tg]](x1, %, 1 = x| —x;)
3
+mN*/ / d(l/ dx;/ d.X] 1+l)[ T5 —|—T6—2T7—2T8]](x1,1—x|—x3,x3).
8 Jo (g- p/)’
(B4)

As we noticed previously, on the QCD side, we start the calculations in x-space, then transfer them to the momentum space by
performing the corresponding Fourier integrals. To eliminate the unwanted contributions coming from the excited and continuum
states in the correlation function, we carry out the Borel transformation. After the Borel transformation, the contribution of the
unwanted terms is exponentially suppressed. We also apply the continuum subtraction procedure. The Borel transformation and
continuum subtraction are performed using the subsequent rules [39]:

p(z) Ydz o
J et == | S,
/dz‘@_) 1 /1 dxp(z)e_5(7>/M2 + p(XO) e_SO/M29

et M2/, Q% +x3m3,.

where

Xo= <\/(Q2 + 50 —m%.)* +4m3. 0* — (0% + 59 _mN*)>/2mN
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