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Abstract

We calculate the gravitational form factors of the excited N(1535) state with the quantum numbers 
I (JP ) = 1

2 ( 1
2
−

) via light cone QCD sum rules (LCSR). To this end, we consider the quark part of the 
energy-momentum tensor (EMT) current and use the general form of the nucleon’s interpolating field as 
well as the distribution amplitudes (DAs) of N(1535). As both the nucleon and N(1535) couple to the same 
current, the N(1535) → N gravitational transition form factors are entered to the calculations as the main 
input parameters. First we revisit the transitional gravitational form factors of N(1535) → N , then extract 
the values of the form factors of the N(1535) excited state. We observe that the gravitational form factors of 
N(1535) in terms of Q2 are well described by the multipole fit function. As a byproduct, we also calculate 
the pressure and energy density at the center of N(1535) and estimate its mechanical radius.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The form factors (FFs) are fundamental parameters that contain useful information on the 
nature, internal structure and geometric shapes of the hadrons. By calculation of electromag-
netic, axial, tensor and gravitational or energy momentum form factors, one can get valuable 
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information on the distribution of charge, magnetism, pressure, energy and other mechanical 
observables inside the hadrons. Among these form factors, the energy-momentum tensor form 
factors (EMTFFs) or gravitational form factors (GFFs) play essential roles as they are also 
sources of knowledge on the fractions of the momenta carried by the quarks and gluons as ingre-
dients of the composite objects. They carry information on the total angular momenta of quarks 
and gluons as well as distribution and stabilization of the strong force inside the hadrons, as well. 
The GFFs of hadrons are in the focus of much attention. By recent experimental progresses on 
the gravitational form factors of nucleons [1,2], we hope it will be possible to experimentally 
investigate the excited nucleons and other light and heavy baryons to measure their GFFs and 
those defining the transitions among the hadrons. Theoretical and phenomenological investiga-
tions on various GFFs of different hadrons can play essential role in the present time as they 
can help experimental groups in measuring GFFs. For the first time, the GFFs were introduced 
by Kobzarev and Okun in 1962 [3]. Then the GFFs of nucleons were calculated using differ-
ent methods and approaches: chiral perturbation theory (χPT) [4–9], Bag model [10], instanton 
picture (IP) [11], chiral quark soliton model (χQSM) [12–22], dispersion relation (DR) [23], 
Skyrme model [24,25], lattice QCD [26–33], LCSR [34,35] and instant-front form (IFF) [36]. 
The GFFs of hyperons, for the first time, were calculated in [37].

In the present study, we calculate the gravitational form factors of the excited N(1535) (here-
after N∗) state with the quantum numbers I (JP ) = 1

2 ( 1
2
−
) via LCSR by considering the quark 

part of the EMT current and using the general form of the nucleon’s interpolating field as well 
as the DAs of N∗ [38]. As both the nucleon and N∗ couple to the same current, the N∗ → N

gravitational transition form factors enter to the calculations as the main input parameters. First, 
we revisit the transition GFFs of N∗ → N studied in Ref. [39]. In this work, the transition ma-
trix element of the energy momentum tensor (EMT) current is parameterized in terms of four 
independent FFs. Considering the conservation of EMT current and the Lorentz invariance as 
well as avoiding from the redundancy in Lorentz structures at the limit of equal masses of the 
initial and final baryonic states, one can parameterize the transition matrix element of the total 
EMT current, sandwiched between the N and N∗ states in terms of three different form factors 
(for details see [40]). If one applies the partial EMT current (say the quark part), which is not 
conserved, one has to add three more form factors to the parametrization. Here, by considering 
the quark part of the symmetric EMT current we calculate the six transition gravitational form 
factors of the N∗ → N by means of LCSR formalism [41–43] in full QCD. Using these form 
factors as the main input parameters, we are able to extract the gravitational form factors of N∗
state. We find the fit functions of the form factors in terms of Q2 and use them to estimate the 
pressure and energy density at the center of N∗ state and calculate its mechanical radius.

Intensive spectroscopy programs are currently underway at different particle factories in the 
quest for undiscovered excited baryons, especially the excited nucleons. Experiments such as 
CEBAF at JLAB in the US, ELSA at Bonn University in Germany, and MAMI at the Johannes 
Gutenberg University at Mainz in Germany, focus on the s-channel excitation of nucleons to N∗
and �∗ states [2]. In order to access GFFs of N∗ → N experimentally, the nucleon to N∗ transi-
tion generalized parton distributions have to be studied [2]. By this the mechanical properties of 
excited nucleons will be accessible, as well.

The rest of the paper is organized as follows. In next section, we calculate the LCSRs for 
the six transition GFFs for N∗ → N . Using the obtained results, we also calculate LCSRs for 
GFFs of N∗ state in the same section. In section 3, we numerically analyze the obtained sum 
rules to find the GFFs in terms of Q2 using the DAs for N∗ state. Last section encompasses our 
concluding notes.
2
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2. Formalism

In this section, first we revisit the transitional gravitational FFs of the N∗ → N studied in 
Ref. [39] then obtain the LCSR for the GFFs of the N∗ state.

2.1. Revisiting the transition N∗ → N GFFs

The starting point is to consider an appropriate LCSR correlation function, a time ordering 
product of the nucleon and energy-momentum tensor currents sandwiched between the vacuum 
and N∗ states:

�μν(p,q) = i

∫
d4xeiqx〈0|T [JN(0)T q

μν(x)]|N∗(p)〉, (1)

where JN(0) is the nucleon’s interpolating current and the T q
μν(x) is the quark part of the EMT 

current. Note that the EMT current has a gluonic part as well (for instance see [35]). Taking the 
gluonic part of EMT current requires knowledge of the quark-gluon mixed DAs of the N∗, which 
unfortunately are not available. Considering the gluonic part leads to five (or more)-particle dis-
tribution amplitudes, contributions of which are expected to be small (see for instance [44,45]). 
Hence, we ignore from the gluonic part of the EMT current in the present study.

Performing the four-integral over x the correlation function takes the form

�Had
μν (p, q) =

∑
s′

〈0|JN |N(p′, s′)〉〈N(p′, s′)|T q
μν |N∗(p, s)〉

m2
N − p′2

+ ..., (2)

where dots represent the contributions of the higher states and continuum and we set the final 
threshold to include only the nucleon in the final state. To proceed, we need to introduce the 
residue of the nucleon (λN ):

〈0|JN |N(p′, s′)〉 = λNuN(p′, s′), (3)

where, uN(p′, s′) is the Dirac spinor of the momentum p′ and spin s′. To go further, we introduce 
the matrix element of the quark part of the EMT current. As the quark part of the current alone is 
not conserved, this matrix element is parameterized in terms of six form factors by imposing the 
conditions of Lorentz invariance, discrete space-time symmetries and the equations of motion 
(Gordon identities) [40]:

〈N(p′, s′)|T μν
q |N∗(p, s)〉

= ūN (p′, s′)
[
F1(Q

2)

m̄3

{
�2 P̃{μP̃ν} − (m2

N∗ − m2
N)�{μ�ν} + (m2

N∗ − m2
N)2

4
gμν

}

+ F2(Q
2)

m̄2

{
�2γ{μP̃ν} − (mN∗ + mN)�{μP̃ν} − (m2

N∗ − m2
N)

2

(
γ{μ�ν}

− (mN∗ + mN)gμν

)}
+ F3(Q

2)

m̄

{
�μ�ν − �2gμν

}

+ m̄C̄1(Q
2)gμν + C̄2(Q

2)γ{μP̃ν} + C̄3(Q
2)γ{μ�ν}

]
γ5uN∗(p, s), (4)

where mN∗ and mN are the mass of the initial and final nucleon states, respectively; and m̄ =
(mN∗ + mN)/2, P̃ = (p′ + p)/2, � = p′ − p, X{μYν} = (XμYν + XνYμ)/2 and Q2 = −�2. 
3



K. Azizi and U. Özdem Nuclear Physics A 1015 (2021) 122296
Here, F1(Q
2), F2(Q

2), F3(Q
2), C̄1(Q

2), C̄2(Q
2) and C̄3(Q

2) are the transition GFFs. Note 
that by introducing m̄ into the above definition at different places we tried to make the form 
factors dimensionless, which is not done in [40].

For further simplification, we introduce the Dirac summation over spin of the nucleon:∑
s′

uN(p′, s′) ūN (p′, s′) = /p′ + mN. (5)

Using Eqs. (4) and (5) in Eq. (2), we acquire the hadronic representation of the correlation 
function in terms of FFs and other hadronic parameters as

�Had
μν (p, q) = λN

m2
N − p′2

(/p′ + mN)

[
F1(Q

2)

m̄3

{
�2 P̃{μP̃ν} − (m2

N∗ − m2
N)�{μ�ν}

+ (m2
N∗ − m2

N)2

4
gμν

}

+ F2(Q
2)

m̄2

{
�2γ{μP̃ν} − (mN∗ + mN)�{μP̃ν} − (m2

N∗ − m2
N)

2

(
γ{μ�ν}

− (mN∗ + mN)gμν

)}
+ F3(Q

2)

m̄

{
�μ�ν − �2gμν

}

+ m̄C̄1(Q
2)gμν + C̄2(Q

2)γ{μP̃ν} + C̄3(Q
2)γ{μ�ν}

]
γ5uN∗(p, s) + ..... (6)

One can write the hadronic side of the correlation function in terms of different Lorentz struc-
tures:

�Had
μν (p, q) = �Had

1 (Q2) (p′
μqν/qγ5 + p′

νqμ/qγ5)

+ �Had
2 (Q2) (p′

μγν/qγ5 + p′
νγμ/qγ5)

+ �Had
3 (Q2) qμqν/qγ5

+ �Had
4 (Q2) gμν/qγ5

+ �Had
5 (Q2)p′

μp′
νγ5

+ �Had
6 (Q2) (qμγν/qγ5 + qνγμ/qγ5)

+ ...., (7)

where the invariant functions �Had
i (Q2) are functions of GFFs.

The next step is to evaluate the correlation function in terms of QCD fundamental parameters. 
To this end, we replace the currents in correlation function with their explicit expressions in terms 
of quark fields, which are given as

JN(0) = 2 εabc

[[
uaT (0)Cdb(0)

]
γ5u

c(0) + t
[
uaT (0)Cγ5d

b(0)
]
uc(0)

]
,

T q
μν(x) = i

2

[
ūd (x)

←→
D μ(x)γνu

d(x) + d̄e(x)
←→
D μ(x)γνd

e(x) + (μ ↔ ν)

]
, (8)

where C is the charge conjugation operator, t is the arbitrary mixing parameter; and a, b, c, d , e
are color indices. The two-sides covariant derivative is expressed as
4
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←→
D μ(x) = 1

2

[−→
D μ(x) − ←−

D μ(x)
]
, (9)

with
−→
D μ(x) = −→

∂ μ(x) + igAμ(x), (10)
←−
D μ(x) = ←−

∂ μ(x) − igAμ(x), (11)

where Aμ is the gluon field. As we also previously mentioned, the gluon field is neglected as the 
quark-gluon mixed DAs of the N∗ state are unknown. Thus, we take the quark part of the EMT 
current in Eq. (8). By insertion of the explicit forms of the interpolating field into the correlation 
function and performing contractions among the quark fields using the Wick theorem, we obtain 
the QCD representation in terms of quark propagators, DAs of N∗ state and their derivatives. As 
a result we have

�QCD
μν (p, q)

= −
∫

d4xeiqx

[{
(γ5)γ δ Cαβ (

←→
D μ(x)γν)ωρ + t (I )γ δ (Cγ5)αβ (

←→
D μ(x)γν)ωρ

+ (γ5)γ δ Cαβ (
←→
D ν(x)γμ)ωρ + t (I )γ δ (Cγ5)αβ (

←→
D ν(x)γμ)ωρ

}

×
{(

δα
σ δ

ρ
θ δ

β
φSu(−x)δω + δδ

σ δ
ρ
θ δ

β
φSu(−x)αω

)
〈0|εabcua

σ (0)ub
θ (x)dc

φ(0)|N∗(p)〉

+ δα
σ δδ

θ δ
ρ
φSd(−x)βω 〈0|εabcua

σ (0)ub
θ (0)dc

φ(x)|N∗(p)〉
}]

, (12)

where Sq(x) is the light quark propagator given by

Sq(x) = 1

2π2x2

(
i

/x

x2 − mq

2

)
− 〈q̄q〉

12

(
1 − i

mq/x

4

)
− 〈q̄σ.Gq〉

192
x2

(
1 − i

mq/x

6

)
− igs

32π2x2 Gμν(x)

[
/xσμν + σμν /x

]
. (13)

We set mq = 0 and the terms proportional to 〈q̄q〉 and 〈q̄σ.Gq〉 are killed after Borel transforma-
tion. Hence, only the first term in the light quark propagator gives contribution to the calculations. 
The matrix element 〈0|εabcua

σ (a1x)ub
θ (a2x)dc

φ(a3x)|N∗(p)〉 is written in terms of N∗ DAs, i.e.,

4〈0
∣∣∣εabcua

α(a1x)db
β(a2x)dc

γ (a3x)

∣∣∣N∗(p)〉
= S1mN∗CαβN∗

γ − S2m
2
N∗Cαβ(/xN∗)γ

+P1mN∗(γ5C)αβ(γ5N
∗)γ +P2m

2
N∗(γ5C)αβ(γ5/xN∗)γ

−
(
V1 + x2m2

N∗
4

VM
1

)
(/pC)αβN∗

γ

+ V2mN∗(/pC)αβ(/xN∗)γ + V3mN∗(γμC)αβ(γ μN∗)γ − V4m
2
N∗(/xC)αβN∗

γ

− V5m
2
N∗(γμC)αβ(iσμνxνN

∗)γ

+ V6m
3
N∗(/xC)αβ(/xN∗)γ −

(
A1 + x2m2

N∗
4

AM
1

)
(/pγ5C)αβ(γN∗)γ
5
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+A2mN∗(/pγ5C)αβ(/xγ5N
∗)γ +A3mN∗(γμγ5C)αβ(γ μγ5N

∗)γ
−A4m

2
N∗(/xγ5C)αβ(γ5N

∗)γ −A5m
2
N∗(γμγ5C)αβ(iσμνxνγ5N

∗)γ
+A6m

3
N∗(/xγ5C)αβ(/xγ5N

∗)γ

−
(
T1 + x2m2

N∗
4

T M
1

)
(iσμνpνC)αβ(γ μN∗)γ + T2mN∗(iσμνx

μpνC)αβN∗
γ

+ T3mN∗(σμνC)αβ(σμνN∗)γ + T4mN∗(σμνp
νC)αβ(σμρxρN∗)γ

− T5m
2
N∗(iσμνx

νC)αβ(γ μN∗)γ − T6m
2
N∗(iσμνx

μpνC)αβ(/xN∗)γ
− T7m

2
N∗(σμνC)αβ(σμν /xN∗)γ + T8m

3
N∗(σμνx

νC)αβ(σμρxρN∗)γ .

The calligraphic functions in the above matrix element are expressed in terms of the functions 
having definite twists as

S1 =S1, 2p.xS2 = S1 − S2,

P1 =P1, 2p.xP2 = P1 − P2, (14)

V1 =V1, 2p.xV2 = V1 − V2 − V3,

2V3 =V3, 4p.xV4 = −2V1 + V3 + V4 + 2V5,

4p.xV5 =V4 − V3, 4(p.x)2V6 = −V1 + V2 + V3 + V4 + V5 − V6 (15)

A1 =A1, 2p.xA2 = −A1 + A2 − A3,

2A3 =A3, 4p.xA4 = −2A1 − A3 − A4 + 2A5,

4p.xA5 =A3 − A4, 4(p.x)2A6 = A1 − A2 + A3 + A4 − A5 + A6 (16)

T1 =T1, 2p.xT2 = T1 + T2 − 2T3,

2T3 =T7, 2p.xT4 = T1 − T2 − 2T7,

2p.xT5 = − T1 + T5 + 2T8, 4(p.x)2T6 = 2T2 − 2T3 − 2T4 + 2T5 + 2T7 + 2T8,

4p.xT7 =T7 − T8, 4(p.x)2T8 = −T1 + T2 + T5 − T6 + 2T7 + 2T8, (17)

where Vi, Ai, Ti, Si and Pi are vector, axialvector, tensor, scalar and pseudoscalar DAs of N∗
state, respectively. Their explicit forms together with all the relative parameters are given in 
Ref. [38].

Making use of the DAs of N∗ state and performing the Fourier transformations, the QCD side 
of the correlation function is obtained, which reads

�QCD
μν (p, q) = �

QCD
1 (Q2) (p′

μqν/qγ5 + p′
νqμ/qγ5)

+ �
QCD
2 (Q2) (p′

μγν/qγ5 + p′
νγμ/qγ5)

+ �
QCD
3 (Q2) qμqν/qγ5

+ �
QCD
4 (Q2) gμν/qγ5

+ �
QCD
5 (Q2)p′

μp′
νγ5

+ �
QCD
6 (Q2) (qμγν/qγ5 + qνγμ/qγ5)

+ .... (18)
6
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The desired LCSR for the N∗ → N transition GFFs are achieved by equating the coefficients 
of different Lorentz structures from both the hadronic and QCD sides of the correlation function. 
To suppress the contributions of the higher states and continuum, Borel transformation and con-
tinuum subtraction are applied. We shall note that we use the structures (p′

μqν/qγ5 + p′
νqμ/qγ5), 

(p′
μγν/qγ5 + p′

νγμ/qγ5), qμqν/qγ5, gμν/qγ5, p′
μp′

νγ5 and (qμγν/qγ5 + qνγμ/qγ5) to find the LCSR 
for the N∗ → N transition GFFs, F1(Q

2), F2(Q
2), F3(Q

2), C̄1(Q
2), C̄2(Q

2) and C̄3(Q
2), re-

spectively. Hence,

F1(Q
2) = − m̄3

λN(mN − mN∗)2 e
m2

N

M2 Π
QCD
1 , (19)

F2(Q
2) = − m̄2

λN

e
m2

N

M2 Π
QCD
2 , (20)

F3(Q
2) = m̄

λN

e
m2

N

M2 Π
QCD
3 , (21)

C̄1(Q
2) = − 1

m̄λN

e
m2

N

M2 Π
QCD
4 , (22)

C̄2(Q
2) = 1

2λN

e
m2

N

M2 Π
QCD
5 , (23)

C̄3(Q
2) = − 1

λN

e
m2

N

M2 Π
QCD
6 . (24)

The �QCD
i functions are quite lengthy, therefore the explicit expressions of the these func-

tions are not presented here. The Borel and subtraction procedures are applied using the following 
relations (see for instance Ref. [45]):

∫
dx

ρ(x)

(q − xp)2 → −
1∫

x0

dx

x
ρ(x)e−s(x)/M2

,

∫
dx

ρ(x)

(q − xp)4 → 1

M2

1∫
x0

dx

x2 ρ(x)e−s(x)/M2 + ρ(x0)

Q2 + x2
0m2

N∗
e−s0/M

2
,

∫
dx

ρ(x)

(q − xp)6
→ − 1

2M4

1∫
x0

dx

x3 ρ(x)e−s(x)/M2 − 1

2M2

ρ(x0)

x0(Q2 + x2
0m2

N∗)
e−s0/M

2

+ 1

2

x2
0

Q2 + x2
0m2

N∗

[
d

dx0

ρ(x0)

x0(Q2 + x2
0m2

N∗)

]
e−s0/M

2
(25)

Here

s(x) = (1 − x)m2
N∗ + 1 − x

x
Q2, (26)

where M2 is the Borel mass parameter, which appears following the application of the Borel 
transformation with respect to the p′2, and x0 is the solution of the equation s(x) = s0, i.e.,

x0 =
[√

(Q2 + s0 − m2 ∗)2 + 4m2 ∗Q2 − (Q2 + s0 − m2
N∗)

]
/2m2

N∗ , (27)
N N

7
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with s0 being the continuum threshold parameter.

2.2. GFFs of the N∗ state

�N∗
μν (p, q) = i

∫
d4xeiqx〈0|T [JN∗(0)T q

μν(x)]|N∗(p)〉, (28)

where, as we previously mentioned, N∗ state couples to the same as the nucleon, i.e.,

JN∗(0) = 2 εabc

[[
uaT (0)Cdb(0)

]
γ5u

c(0) + t
[
uaT (0)Cγ5d

b(0)
]
uc(0)

]
. (29)

Using this three-particle interpolating current, the mass of the N∗ state was already extracted to 
be well consistent with the experimental data in Refs. [46,47], using the QCD sum rule method. A 
reasonable and compatible result with those extracted from the experimental data for the strong 
coupling of N∗ to Nπ was also obtained in Ref. [48] using the same method. Although this 
state could be the lowest L = 1 orbital excited |uud〉 state with a large admixture of |[ud][us]s̄〉
pentaquark component having [ud], [us] and s̄ in the ground state according to Ref. [49], we 
consider it as a three-particle state interpolating by the above current based on the results of 
[46–48].

Now, we saturate the correlation function with the intermediate hadronic states, which receives 
contributions from both the N∗ and N states when we set the final thrashed considering the N∗
state. As a result, we get

�Had−N∗
μν (p, q) = 〈0|JN |N(p′, s′)〉〈N(p′, s′)|T q

μν |N∗(p, s)〉
m2

N − p′2

+ 〈0|JN |N∗(p′, s′)〉〈N∗(p′, s′)|T q
μν |N∗(p, s)〉

m2
N∗ − p′2

+ .... (30)

This can be further simplified by introducing the matrix elements

〈0|JN |N∗(p′, s′)〉 = λN∗γ5uN∗(p′, s′), (31)

〈N∗(p′, s′)|T q
μν |N∗(p, s)〉 = ūN∗(p′, s′)

[
A(Q2)

P̃μP̃ν

mN∗
+ iJ (Q2)

(P̃μσνρ + P̃νσμρ)�ρ

2mN∗

+ D(Q2)
�μ�ν − gμν�

2

4mN∗
+ c̄(Q2)mN∗gμν

]
uN∗(p, s), (32)

where λN∗ is the residue of the N∗ state; and A(Q2), J (Q2), D(Q2) and c̄(Q2) are its gravita-
tional form factors. Using these matrix elements and those of the N∗ → N transition from the 
previous section, we find

�Had−N∗
μν (p, q) = λN

m2
N − p′2

(/p′ + mN)

[
F1(Q

2)

m̄3

{
�2 P̃{μP̃ν} − (m2

N∗ − m2
N)�{μ�ν}

+ (m2
N∗ − m2

N)2

gμν

}

4

8
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+ F2(Q
2)

m̄2

{
�2γ{μP̃ν} − (mN∗ + mN)�{μP̃ν} − (m2

N∗ − m2
N)

2

(
γ{μ�ν}

− (mN∗ + mN)gμν

)}
+ F3(Q

2)

m̄

{
�μ�ν − �2gμν

}

+ m̄C̄1(Q
2)gμν + C̄2(Q

2)γ{μP̃ν} + C̄3(Q
2)γ{μ�ν}

]
γ5uN∗(p, s)

+ λN∗

m2
N∗ − p′2

γ5(/p
′ + mN∗)

[
A(Q2)

P̃μP̃ν

mN∗

+ iJ (Q2)
(P̃μσνρ + P̃νσμρ)�ρ

2mN∗

+ D(Q2)
�μ�ν − gμν�

2

4mN∗
+ c̄(Q2)mN∗gμν

]
uN∗(p, s). (33)

The above equation contains many structures, we use some of which to evaluate the GFFs of 
the N∗ state. We present the structures that are used explicitly and remove the others into the ...
as follows

�Had−N∗
μν (p, q) = �Had

7 (Q2)p′
μp′

ν/qγ5 + �Had
8 (Q2)p′

μγνγ5

+ �Had
9 (Q2) qμqν/qγ5 + �Had

10 (Q2) gμν/qγ5

+ ..., (34)

where the invariant functions �Had
7 (Q2), �Had

8 (Q2), �Had
9 (Q2) and �Had

10 (Q2) contain GFFs 
of both the N∗ − N∗ and N∗ − N transitions.

From a similar manner the QCD side of the calculations is written in terms of the selected 
structures as

�QCD−N∗
μν (p, q) = �

QCD
7 (Q2)p′

μp′
ν/qγ5 + �

QCD
8 (Q2)p′

μγνγ5

+ �
QCD
9 (Q2) qμqν/qγ5 + �

QCD
10 (Q2) gμν/qγ5

+ .... (35)

Matching the coefficients of the same structures from both sides, applying the Borel transfor-
mation with respect to p′2 and using the sum rules for the N∗ − N transition from the previous 
section, we obtain the following sum rules for the GFFs of the N∗ state:

A(Q2) = mN∗

λN∗
e

m2
N∗

M∗2 Π
QCD
7 − m̄3

λN(mN − mN∗)2 e
m2

N

M2 Π
QCD
1 , (36)

J (Q2) = mN∗

λN∗
e

m2
N∗

M∗2 Π
QCD
8 − m̄2

λN

e
m2

N

M2 Π
QCD
2 (37)

D(Q2) = 4mN∗

λN∗
e

m2
N∗

M∗2 Π
QCD
9 − mN∗

λN∗
e

m2
N∗

M∗2 Π
QCD
7 − mN∗

λN∗
e

m2
N∗

M∗2 Π
QCD
8

− m̄

λN

e
m2

N

M∗2 Π
QCD
3 , (38)

c̄(Q2) = 1

λN∗ mN∗
e

m2
N∗

M∗2 Π
QCD
10 − 1

m̄λN

e
m2

N

M2 Π
QCD
4 , (39)
9
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where M∗2 is the new Borel parameter in N∗ channel. The expressions in QCD sides also contain 
the new continuum threshold parameter s∗

0 , which will be fixed together with other auxiliary 
parameters in next section.

3. Numerical results

The sum rules for GFFs contain many input parameters that we need their numerical values. 
The DAs of N∗ state and all the corresponding parameters are used from Ref. [38]. We use mN =
0.94 GeV and mN∗ = 1.51 ± 0.01 GeV [50] for the baryon masses. For numerical evaluations of 
LCSR for GFFs of N∗ → N and N∗ − N∗, we need the values of the residues, λN and λN∗ as 
well. They are borrowed from Refs. [51,52], which were determined from mass sum rules.

The LCSRs for GFFs under study are also functions of three auxiliary parameters that are 
included at different stages of the calculations: the mixing parameter t , the continuum threshold 
s0 and the Borel mass parameter M2. These are helping parameters that the physical observables 
should not depend on their variations. But in practice, the results show some dependencies on 
these objects. We need to search for their working intervals such that their variations in those 
windows lead to relatively small changes in the results. The weak dependence of the results on 
these parameters constitutes the main part of the uncertainties in the results. The working in-
tervals for these auxiliary parameters are determined by imposing the standard criteria of the 
method, namely, weak dependence of the results on these parameters, pole dominance and con-
vergence of the series of the operator product expansion. The standard procedures lead to the 
intervals −0.31 ≤ cos θ ≤ −0.45 (where t = tan θ ), 1.5 GeV2 ≤ s0 ≤ 2.0 GeV2, 2.3 GeV2

≤ s∗
0 ≤ 2.7 GeV2, 1.0 GeV2 ≤ M2 ≤ 2.0 GeV2 and 2.0 GeV2 ≤ M∗2 ≤ 3.0 GeV2 for the auxil-

iary parameters.
Having determined the working intervals for the helping parameters, we proceed to discuss 

the behavior of the form factors with respect to Q2. As usual, the LCSRs of GFFs give reliable 
results at large Q2 but they do not lead to safe results at lower values of Q2. We need the values 
of GFFs at static limit, Q2 = 0. To this end, we use the beauty of the mathematics: we employ 
some fit functions to extrapolate the results to lower values of Q2 such that the fits reproduce the 
LCSR results for Q2 > 2 GeV2. Our numerical calculations depict that the GFFs of the N∗ → N

and N∗ − N∗ transitions can properly be parameterized via the following multipole fit function:

F(Q2) = F(0)(
1 + eQ2

)p , (40)

where the fit parameters together with the values of the GFFs at Q2 = 0 are given in Tables 1 and 
2. Note that, we have only one result on the D-term of N∗ available from the bag model [10]. In 
this study, DN∗ = −12.97 is found, which is consistent with our prediction, D(0) = −14.50 ±
2.50, within the errors. The presented errors in the tables are due to the uncertainties in the 
calculations of the working windows for the auxiliary parameters as well as those related to the 
uncertainties in the parameters of DAs and other inputs. The behavior of GFFs for N∗ → N

and N∗ − N∗ transitions with respect to Q2 are depicted in Figs. 1 and 2. These behaviors 
may be checked by different non-perturbative methods as well as in future experiments. As we 
previously mentioned, we have considered only the quark part of the EMT current, which is 
not conserved. The order of violation is determined from the value of c̄ form factor. The value 
c̄(0) = −0.34 ± 0.06 obtained in the present study, shows that the violation in the conservation 
of the quark part of the EMT current is considerably high in N∗ channel compared to that of the 
10
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Table 1
Values for the parameters of the N∗ − N transition GFFs obtained by 
applying the multipole fit functions.

Form factors F(0) e (GeV−2) p

F1(Q2) 1.25 ± 0.32 1.08 ± 0.09 3.6 − 4.0
F2(Q2) 0.29 ± 0.05 0.90 ± 0.07 3.4 − 3.8
F3(Q2) −3.65 ± 0.51 0.94 ± 0.05 3.0 − 3.4
C̄1(Q2) −1.80 ± 0.32 0.95 ± 0.07 2.8 − 3.1
C̄2(Q2) −0.30 ± 0.06 1.06 ± 0.05 2.7 − 3.0
C̄3(Q2) −0.40 ± 0.15 1.20 ± 0.10 2.8 − 3.2

Table 2
Values for the parameters of the N∗ − N∗ transition GFFs obtained by 
applying the multipole fit functions.

Form factors F(0) e (GeV−2) p

A(Q2) 0.72 ± 0.10 1.16 ± 0.12 3.3 − 3.7
J (Q2) 0.35 ± 0.05 1.10 ± 0.10 3.2 − 3.6
D(Q2) −14.50 ± 2.50 1.00 ± 0.06 3.6 − 4.0
c̄(Q2) −0.34 ± 0.06 0.94 ± 0.08 3.6 − 4.0

Table 3
The values of mechanical quantities for N∗ − N∗ transition.

Transition p0 (GeV/fm3) E (GeV/fm3) 〈r2
mech〉 (fm2)

N∗ − N∗ 1.36 ± 0.33 1.40 ± 0.40 0.65 ± 0.09

ground state nucleon obtained in Ref. [35] but comparable with the prediction of, for instance, 
Ref. [10].

After obtaining the GFFs of the N∗ − N∗ transition, we can use them to compute some me-
chanical properties of the N∗ state such as mechanical radius square (〈r2

mech〉) as well as energy 
(E ) and pressure (p0) distributions at the center of the particle. The related formulas are given as 
[53],

p0 = − 1

24π2 mN∗

∞∫
0

dy y
√

y [D(y) − c̄(y)], (41)

E = mN∗

4π2

∞∫
0

dy
√

y
[
A(y) + y

4m2
H

[A(y) − 2J (y) + D(y) + c̄(y)]
]
, (42)

〈r2
mech〉 = 6D(0)∫ ∞

0 dy D(y)
, (43)

where y = Q2.
The numerical values for the mechanical quantities of the N∗ state are depicted in Table 3. 

From this table we see that the value of 〈r2
mech〉 in N∗ channel is about 20% larger from that of 

the nucleon obtained in Ref. [35]. Our results for all the mechanical properties may be checked 
via different approaches.
11
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Fig. 1. The dependence of the F1(Q2), F2(Q2), F3(Q2), C̄1(Q2), C̄2(Q2) and C̄3(Q2) GFFs on Q2 at fixed values of 
the s0, M2 and mixing parameter t .

4. Summary and concluding remarks

The FFs of hadrons due to different types of interactions are main objects, determinations of 
which help us get useful knowledge on various observables related to the corresponding inter-
12
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Fig. 2. The dependence of the A(Q2), J (Q2), D(Q2) and c̄(Q2) GFFs on Q2 at fixed values of the s0, M2 and mixing 
parameter t .

actions. The GFFs, which appear as a result of interactions of hadrons with energy momentum 
tensor current, are of great importance as they provide useful information on the internal struc-
ture, geometric shape, distributions of the energy and pressure as well as distribution of the 
strong force inside the hadrons. In the present study, we calculated the gravitational form fac-
tors of the excited N∗ state with the quantum numbers I (JP ) = 1

2 ( 1
2
−
) via LCSR approach. We 

considered the quark part of the EMT current and used the general form of the nucleon’s inter-
polating current together with the DAs of N∗. As both the nucleon and N∗ couple to the same 
current, the N∗ → N gravitational transition form factors are entered to the calculations as the 
main input parameters. Hence, first we revisited the N∗ → N transition GFFs considering the 
non-conservation of the quark part of the EMT current and including into analyses the six related 
form factors. Using the obtained results, we calculated the GFFs of the N∗ excited state. We saw 
that, behavior of GFFs of N∗ in terms of Q2 are well described by the multipole fit function. Our 
result of D-term for N∗ is well consistent with the only prediction made by the bag model [10].

As a byproduct, we also calculated the pressure and energy density at the center of N(1535)

and estimated its mechanical radius using the Q2 -dependent GFFs of N∗. We found that the 
mean mechanical radius squared of N∗ state is about 20% larger than that of the nucleon. Our 
13
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results may be checked via different non-perturbative methods. By the recent progresses in the 
experimental side, we hope that these form factors will be measured by near future experiments.
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