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Abstract Motivated by the discovery of fully open-flavor
tetraquark states X0(2900) and X1(2900) by the LHCb Col-
laboration, the magnetic dipole moment of the X1(2900)

state with the quantum numbers J P = 1− is deter-
mined in the diquark–antidiquark picture using the light-
cone sum rules. The numerical result is obtained as μX1 =
0.79+0.36

−0.39 μN . The magnetic moments of hadrons encom-
passes useful knowledge on the distributions of charge and
magnetization their inside, which can be used to better under-
stand their geometrical shapes and quark-gluon organiza-
tions. The observation of the X0(2900) and X1(2900) as the
first two fully open-flavor multiquark states has opened a new
window for investigation of the exotic states. The obtained
results in the present study may shed light on the future exper-
imental and theoretical searches on the properties of fully
open-flavor multiquark states.

1 Introduction

In 2021, the LHCb Collaboration observed two clear peaks
in the D−K+ invariant mass spectrum of the B+ →
D+D−K+ decay [1,2]. Their spectroscopic parameters are
measured to be

X0(2900) : M = 2866 ± 7 ± 2 MeV,

� = 57 ± 12 ± 4 MeV;
X1(2900) : M = 2904 ± 5 ± 1 MeV,

� = 110 ± 11 ± 4 MeV.

The D−K+ configuration suggests that the quark con-
stituents of X0(2900) and X1(2900) should be [c̄s̄][ud],
a e-mail: ulasozdem@aydin.edu.tr
b e-mail: kazem.azizi@ut.ac.ir (corresponding author)

which means that they are fully open-flavor exotic hadrons.
The possible spin-parity quantum numbers of X0(2900) and
X1(2900) are estimated to be J P = 0+ and 1−, respectively.

This observation triggered interesting phenomenologi-
cal studies on these new resonances in the context of
various approaches and models aiming to elucidate their
nature, quantum numbers and substructure. These studies
are assigned different schemes for these particles: Molecu-
lar forms of D̄∗K ∗ and D̄1K interactions in Refs. [3–8],
the diquark–antidiquark picture in Refs. [3,9–14], and kine-
matic effects from the triangle singularities in Refs. [15,16].
The production and decay properties of these states were
investigated in Refs. [17–20], as well. One can also consult
Refs. [21–32] for other pertinent studies on parameters of
these states.

Despite the above experimental and theoretical inves-
tigations, their properties remain dubious and determina-
tion of their exact nature and substructure is still problem-
atic. Indeed, the properties of the X0(2900) and X1(2900)

tetraquark states have been suggested differently in different
studies. To resolve these ambiguities, their parameters are
needed to be further investigated both in theory and experi-
ment. These studies shall include complementary investiga-
tions of their spectroscopy as well as their various reactions
with other known particles and/or their strong, electromag-
netic and weak decay modes.

Inspired by this, in the present study, we are going to con-
sider the interaction of X1(2900) (X1 for short) tetraquark
state with photon and examine the magnetic dipole moment
of this state within the framework of the light-cone sum rules
(LCSR). In the LCSR method, a two-point correlation func-
tion is calculated in two different steps. In the first step, it
is obtained in terms of hadronic parameters such as form
factors, electromagnetic multipole moments, etc., which is
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called hadronic representation. In the second step, it is cal-
culated in terms of quark-gluon degrees of freedom, which
is called the QCD representation. Then, the correlation func-
tions obtained from these two different ways are related to
each other using quark-hadron duality assumption. Finally,
the Borel transform and continuum subtraction are performed
to suppress the contributions of the possible higher states and
continuum. By this way, one obtains the sum rules for the
desired physical quantities. In the calculations we use the
distribution amplitudes (DAs) of the on-shell photon. When
calculating the magnetic dipole moment of X1, we will con-
sider that this state has a diquark–antidiquark configuration.
There are few studies in the literature where the magnetic
dipole moments of the open-flavor exotic states have been
investigated, see for instance the Refs. [33–35].

The paper is organized as follows. In Sect. 2, some details
of the calculations of the magnetic dipole moment of X1 in
LCSR method is given. In Sect. 3, we present our numerical
results and discussions. In Sect. 4, we discuss obtained results
and conclude with brief notes.

2 Formalism

As we have mentioned above, at the beginning of the analytic
calculations of the magnetic dipole moment, it is necessary
to select a sufficient two-point correlation function in the
background electromagnetic field, which plays an important
role in the LCSR method. It is written as

�μν(p, q) = i
∫

d4xeip·x 〈0|T {Jμ(x)J †
ν (0)}|0〉γ , (1)

where Jμ(x) and γ represent the interpolating current of X1

state and the external electromagnetic field, respectively. We
need explicit expression of Jμ(x) to proceed in the calcula-
tions. In the diquark–antidiquark picture, Jμ(x) can be writ-
ten in the following form

J X1
μ (x) = εabcεamn[uTb(x)Cγ5d

c(x)
]

×[
c̄m(x)γμγ5Cs̄Tn(x)

]
, (2)

where C is the charge conjugation matrix; and a, b, c,m, n
are color indices.

In the hadronic representation, two complete sets of the
initial and final hadronic states are inserted into the correla-
tion function. By isolating the lowest X1 state contribution,
we obtain,

�Had
μν (p, q) = 〈0 | Jμ(x) | X1(p, εθ )〉

p2 − m2
X1

× 〈X1(p, ε
θ ) | X1(p + q, εδ)〉γ

× 〈X1(p + q, εδ) | J †
ν (0) | 0〉

(p + q)2 − m2
X1

+ · · · , (3)

where dots denote the effects of the higher states and contin-
uum. The matrix elements in Eq. (3) are expressed as

〈X1(p + q, εδ) | J †
ν (0) | 0〉 = λX1ε

δ
ν , (4)

〈0 | Jμ(x) | X1(p, ε
θ )〉 = λX1ε

θ
μ , (5)

〈X1(p, ε
θ ) | X1(p + q, εδ)〉γ = −ετ (εθ )α(εδ)β

{
G1(Q

2)

× (2p + q)τ gαβ + G2(Q
2)gτβ qα − gτα qβ)

− 1

2m2
X1

G3(Q
2) (2p + q)τqαqβ

}
, (6)

where λX1 is the residue of X1; and εθ
μ , εδ

ν and ετ are
the initial and final polarization vectors of the X1 and photon
polarization vector, respectively. Here, G1(Q2), G2(Q2) and
G3(Q2) are electromagnetic form factors, with Q2 = −q2.

Using Eqs. (3)–(6) and after performing some necessary
calculations, the final form of the correlation function is
obtained as

�Had
μν (p, q) = ερ λ2

X1

[m2
X1

− (p + q)2][m2
X1

− p2]
{
G2(Q

2)

×
(
qμgρν − qνgρμ − pν

m2
X1

(
qμ pρ − 1

2
Q2gμρ

)

+ (p + q)μ

m2
X1

(
qν(p + q)ρ + 1

2
Q2gνρ

) − (p + q)μ pν pρ

m4
X1

Q2
)

+ other independent structures
}

+ · · · . (7)

To calculate the magnetic dipole moment, we need to cal-
culate only the form factor G2(Q2), which is called the mag-
netic form factor,

FM (Q2) = G2(Q
2) . (8)

At static limit, Q2 = 0, FM (Q2 = 0) is proportional to the
magnetic dipole moment μX1 for real photon:

μX1 = e

2mX1

FM (Q2 = 0). (9)

The correlation function, on the other hand, is determined
in terms of the QCD degrees of freedom and the photon dis-
tribution amplitudes in the second window called the QCD
side. In the QCD representation, we use the Wick’s theorem
to contract the corresponding quark fields to get the corre-
lation function in terms of the quark propagators and DAs
of the photon. After replacing the explicit expression of the
interpolating current in the correlation function and applying
the Wick’s theorem, we get
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�QCD
μν (p, q) = i

∫
d4xeipxεabcεamnεa

′b′c′
εa

′m′n′

× Tr[γ5 S̃
bb′
u (x)γ5S

cc′
d (x)]Tr[γμγ5 S̃

n′n
s (−x)

× γ5γνS
m′m
c (−x)] | 0〉γ , (10)

where

S̃i jc(q)(x) = CSi jTc(q)(x)C,

with Sq(c)(x) being the quark propagators. In the x-space for
the light-quark propagator we use

Sq(x) = S f ree
q − 〈q̄q〉

12

(
1 − i

mq x/

4

)
− 〈q̄q〉

192
m2

0x
2
(

1

− i
mq x/

6

)
− igs

32π2x2 Gμν(x)
[
/xσμν + σμν /x

]
, (11)

where,

S f ree
q = i

x/

2π2x4 − mq

4π2x2 . (12)

The charm-quark propagator is given, in terms of the second
kind Bessel functions Ki (x), as

Sc(x) = S f ree
c − gsmc

16π2

∫ 1

0
dv Gμν(vx)

[(
σμνx/ + x/σμν

)

×
K1

(
mc

√−x2
)

√−x2
+ 2σμνK0

(
mc

√
−x2

)]
. (13)

where,

S f ree
c = m2

c

4π2

⎡
⎣K1

(
mc

√−x2
)

√−x2
+ i

x/ K2

(
mc

√−x2
)

(
√−x2)2

⎤
⎦ .

(14)

The correlation function in QCD representation includes
two different contributions: Perturbative and non-perturbative.
Practically, the perturbative contribution, in which the photon
interacts with one of the quarks perturbatively, can be com-
puted by the replacing one of the light or c-quark propagators
by

S f ree →
∫

d4z S f ree(x − z) /A(z) S f ree(z) , (15)

and the other three propagators with their perturbative or free
parts. In the last equation we also use the perturbative parts
of the propagators in right hand side as is seen.

For the non-perturbative contribution, in which the photon
is radiated at long distances, the correlation function can be

computed by replacing one of the light quark propagators by

Sabαβ → −1

4
(q̄a�i q

b)(�i )αβ, (16)

where �i = I, γ5, γμ, iγ5γμ, σμν/2, and the remaining
light and heavy propagators with their full expressions.
We perform all the possible permutations in the perturba-
tive and non-perturbative parts of the correlation function.
When Eq. (16) is employed in computation of the non-
perturbative effects, we observe that matrix elements of the
forms 〈γ (q)|q̄(x)�i q(0)|0〉 and 〈γ (q)|q̄(x)�i Gμνq(0)|0〉
appear. These matrix elements are written in terms of the
photon distribution amplitudes (see Ref. [36]). Using these
matrix elements in terms of photon’s DAs and the expressions
of the propagators given above, the QCD representation of
the correlation function in coordinate space is obtained. We
perform Fourier transformation to carry the calculations to
the momentum space.

The LCSR for the magnetic dipole moment of X1 state
can be acquired by matching the functions �

QCD
μν (p) and

�Had
μν (p) from both the QCD and hadronic sides. We choose

the ενqμ structure and equate the coefficients of this struc-
ture from both sides to each other. We apply a double Borel
transformation with respect to -p2 and -(p + q)2 and also
continuum subtraction procedure based on the standard pre-
scriptions of the method in order to suppress the contribu-
tions of the higher states and continuum (fore details see for
instance Refs. [37,38]). As a results, we get the desired LCSR
for the magnetic dipole moment as

μX1 = e
m2
X1
M2

λ2
X1

�(M2, s0), (17)

where the explicit expression of �(M2, s0) function, which
represents the final form of the QCD side of the calculations,
is presented in the Appendix. In obtaining the last result,
we use 1

M2 = 1
M2

1
+ 1

M2
2

with M2
1 and M2

2 being the Borel

parameters in the initial and final channels, respectively. We
set M2

1 = M2
2 = 2M2 as the initial and final particles are

the same. We will fix M2 and continuum threshold (s0), com-
ing from the continuum subtraction procedure and appearing
inside the �(M2, s0) function, based on the standard criteria
of the method in next section.

3 Numerical analysis

In this section, we present our numerical prediction for the
magnetic dipole moment of the X1 state. To get our numer-
ical results, the main input parameters are the photon distri-
bution amplitudes. The distribution amplitudes of the pho-
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ton, which depend on various non-perturbative parameters
are borrowed from Ref. [36]. We use the values of some
other input parameters as follow: mu = md = 0, ms =
96+8

−4 MeV, mc = (1.275 ± 0.025) GeV, mX1 = 2904 ±
5 ± 1 MeV, f3γ = −0.0039 GeV 2 [36], 〈s̄s〉= 0.8〈ūu〉 with
〈ūu〉=(−0.24±0.01)3 GeV3 [39],m2

0 = 0.8±0.1 GeV2 [39],
〈αs

π
G2〉 = (0.012 ± 0.004) GeV4 [40] and λX1 = mX1 fX1

with fX1 = (2.1 ± 0.4) × 10−3 GeV4 [14].
In the LCSR method, in addition to the DAs and above

parameters, there are two extra auxiliary parameters as men-
tioned before: The Borel mass parameter M2 and the contin-
uum threshold s0. The continuum threshold is not totally arbi-
trary but it shows the energy scale at which, the excited states
and continuum begin to contribute to the correlation function.
The physical quantities like the magnetic dipole moment are
expected to be independent of these helping parameters. In
practice, however, there appear some residual dependence on
these parameters which are entered as the uncertainties to the
presented results. To find the working intervals of these aux-
iliary parameters, we demand that both the continuum and
higher states contributions have to be sufficiently suppressed
and series of the operator product expansion (OPE) in QCD
side converge. To this end, in technique language, we define
the pole contribution (PC) as

PC = �(M2, s0)

�(M2,∞)
, (18)

and require that it should exceed 20% of the total contri-
butions, which is typical for the multiquark states. We also
demand that the series of light-cone expansion converges and
contributions of the higher twist and higher condensate terms
are less than 10% of the total contribution. These consider-
ations lead to the following working windows for M2 and
s0:

3.0 GeV2 ≤ M2 ≤ 3.5 GeV2

11.0 GeV2 ≤ s0 ≤ 12.5 GeV2.

Our numerical analyses show that, by considering these
working regions for the auxiliary parameters, for the mag-
netic dipole moment of the X1 state PC varies within the
interval 30% ≤ PC ≤ 64% corresponding to the upper and
lower limits of the Borel mass parameter. When we analyze
the OPE convergence, we see that the contribution of the
higher twist and higher dimensional terms in OPE is 2% of
the total and the series show a good convergence. It is worth
mentioning that the above interval for the continuum thresh-
old corresponds to s0 
 (mX1 + 0.5+0.1

−0.1)
2 GeV2, which is

typical in hadronic spectrum. Therefore, the chosen working
windows for M2 and s0 well fulfill the requirements of the
light-cone sum rules method.

In Fig. 1, we depict the dependence of the magnetic dipole
moment of the X1 state on M2 at three fixed values of s0. As

Fig. 1 The magnetic dipole moment of the X1 state versus M2 at three
fixed values of s0

one can see from this figure, the magnetic dipole moment
show a good stability with respect to the variation of the
Borel mass parameter. Although the dependence on s0 is
considerable, however, it remains within the limits allowed
by the method to calculate the magnetic dipole moment.

Considering all the input parameters, DAs of the photon
and the working intervals of auxiliary parameters, our predic-
tion for the magnetic dipole moment of the X1 state, both in
its natural unit ( e

2mX1
) and nuclear magneton (μN = e

2mN
),

is

μX1 = 2.43+1.13
−1.21

e

2mX1

= 0.79+0.36
−0.39 μN . (19)

The order of magnitude for the magnetic dipole moment
shows that measurement of μX1 is accessible in the future
experiments.

4 Summary and conclusion

Motivated by the discovery of fully open-flavor tetraquark
states X0(2900) and X1(2900) by the LHCb Collaboration,
the magnetic dipole moment of the X1(2900) tetraquark
state have been determined using the light-cone sum rules
assigning the diquark–antidiquark structure with the quan-
tum numbers J P = 1− for this state. The magnetic moments
of hadrons encompasses useful knowledge about the dis-
tribution of charge and magnetization their inside, which
helps us to understand their nature, quark-gluon organiza-
tion and geometrical shape. The existing theoretical predic-
tions on the spectroscopic parameters of X1(2900) tetraquark
and their comparison with the experimental data have also
given rise to different assignments on the internal structure of
this state. Calculations of electromagnetic parameters of the
exotic states like their magnetic dipole moment can be useful
in establishing the nature of these states. The observation of
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the X0(2900) and X1(2900) by LHCb as the first two fully
open-flavor multiquark states has opened a new platform for
investigation of the exotic states. More experimental and the-
oretical research is required to fully understand the proper-
ties of this class of hadrons. The magnitude obtained for the
magnetic dipole moment of X1(2900) shows a possibility to
measure it in future experiments. The obtained result in the
present study may be useful for analyses of the future exper-
imental data on parameters of fully open-flavor multiquark
states.
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Appendix: explicit expression of �(M2, s0)

In this appendix, we present the explicit expression of the
function �(M2, s0) entering into the sum rule for the mag-
netic moment of the X1 state. It is obtained as

�(M2, s0) = − ec
36864m2

cπ
6

[
3m12

c

(
3I [−6, 4] − 4I [−5, 3])

− 48m10
c

(
I [−5, 4] + I [−4, 3]) − 48m9

cms I [−4, 3]
+ 3m8

c

(
30I [−4, 4] + P1(I [−4, 2] − 2I [−3, 1])

+ 96ms P3π
2(I [−4, 2] − 2I [−3, 1]) − 24I [−3, 3]

)

+ 144m7
c

(
4P3π

2 I [−3, 2] − ms I [−3, 3])
− 12m6

c

(
− 32m2

0ms P3π
2 I [−3, 1]

+ 512P2
2 π4 I [−3, 1] + P1 I [−3, 2]

+ 96ms P3π
2 I [−3, 2] + 6I [−3, 4] + P1 I [−2, 1]

+ 96ms P3π
2 I [−2, 1] + 4I [−2, 3]

)

− 12m5
c

(
48P3π

2(m2
0 I [−2, 1] + 2I [−2, 2])

+ ms(P1 I [−2, 1] + 12I [−2, 3])
)

+ 3m4
c

(
64m2

0ms P3π
2 I [−2, 1]

− 1024P2
2 π4 I [−2, 1] + 3P1 I [−2, 2] + 288ms P3π

2 I [−2, 2]
+ 7I [−2, 4] − 2P1 I [−1, 1] − 192ms P3π

2 I [−1, 1]
− 4I [−1, 3]

)
+ 8

(
− 192P2

2 π4(m2
0 I [0, 0] + 2I [0, 1])

+ ms P3π
2(P1 I [0, 0] + 24m2

0 I [0, 1])) − 192m2
c I [0, 3]

− 16mc

(
P1P3π

2 I [0, 0] + 24ms
( − 8P2

2 π4 I [0, 0] + I [0, 3]))

+ 12m3
c

(
48P3π

2(I [−1, 2]

− m2
0 I [1, 0]) − ms

(
4I [−1, 3] + P1 I [1, 0]))

]

+ ed
442368m2

cπ
6

[
f3γ π2

(
− 11P1

(
m6

c I [−3, 1]

+ 3m4
c I [−2, 1] + 2I [0, 1])I1[A] + 12

(
5m10

c I [−5, 3]
− 12m8

c I [−4, 3] − 36m7
cms I [−3, 2]

+ m6
c

(
48ms P3π

2 I [−3, 1] − 9I [−3, 3])
+ 24m5

c

(
8P3π

2 I [−2, 1]
+ 3ms I [−2, 2]) − 2m4

c

(
24ms P3π

2 I [−2, 1]
+ 5I [−2, 3]) − 36m3

cms I [−1, 2] + 48m2
0mcP3π

2 I [0, 0]
+ 8ms P3π

2(m2
0 I [0, 0] − 12I [0, 1])

− 20I [0, 3]
)
I1[V]

)
+ 4

(
1152m4

c P
2
2 π4 I4[S]I [−2, 1]

− 6m5
c P1

(
mc(2mc(mc + ms)I [−3, 1]

+ I [−3, 2]) + (3mc + 2ms)I [−2, 1])
+ 9m4

c P1 I [−2, 2] − 6m4
c P1 I [−1, 1]

− 6m3
cms P1 I [−1, 1] + 12m3

cms P1 I [0, 0]
+ 16mcP1P3π

2 I [0, 0] + 8ms P1P3π I [0, 0]
− 1152mcms P

2
2 π4 I4[S]I [0, 0] − 48mcms P1 I [0, 1]

+ 1152P2
2 π4 I4[S]I [0, 1] − 144P2

2 π4(6m6
c I [−3, 1]

+ 4m4
c I [−2, 1] + m2

0 I [0, 0] + 2I [0, 1])I1[S]
+ 9P1 I [0, 2] + 18m3

cms P1 I [1, 0]
+ 2 f3γ P1π

2(3m6
c I [−3, 1]

+ 2m4
c I [−2, 1] + 3I [0, 1] + 2m3

cms I [1, 0])I6[ψa]
+ 4 f3γ P1π

2(3m6
c I [−3, 1]

+ 2mcms I [0, 0] − I [0, 1])ψa[u0]
)]

+ eu
442368m2

cπ
6

[
f3γ π2

(
12

(
5mc10I [−5, 3]

− 12m8
c I [−4, 3] − 36m7

cms I [−3, 2]
+ m6

c

(
48ms P3π

2 I [−3, 1]
− 9I [−3, 3]) + 24m5

c

(
8P3π

2 I [−2, 1] + 3ms I [−2, 2])
− 2m4

c

(
24ms P3π

2 I [−2, 1] + 5I [−2, 3])
− 36m3

cms I [−1, 2] + 48m2
0mcP3π

2 I [0, 0]
+ 8ms P3π

2(m2
0 I [0, 0] − 12I [0, 1]) − 44I [0, 3]

)
I2[V]

+ P1

(
11

(
m6

c I [−3, 1] + 3m4
c I [−2, 1]

+ 2I [0, 1])I2[A] + 8
(
3m6

c I [−3, 1]
+ 2m4

c I [−2, 1] + 3I [0, 1]
+ 2m3

cms I [1, 0])I6[ψa]
+ 16

(
3m6

c I [−3, 1] + 2mcms I [0, 0]

− I [0, 1])ψa[u0])
)

− 24m5
c(3mc + 2ms)P1 I [−2, 1]

− 4608P2
2 π4(m4

c I [−2, 1] − mcms I [0, 0] + I [0, 1])I3[S]
+ 576P2

2 π4(6m6
c I [−3, 1] + 4m4

c I [−2, 1] + m2
0 I [0, 0]

+ 2I [0, 1])I2[S] + 4P1

(
m4

c(9I [−2, 2] − 6I [−1, 1])
+ 8ms P3π

2 I [0, 0] + 16mc
(
P3π

2 I [0, 0] − 3ms I [0, 1])
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+ 9I [0, 2] − 6m3
cms(I [−1, 1] − 2I [0, 0] − 3I [1, 0])

)]

− es
221184m2

cπ
4

[
m12

c (6I [−6, 4] + 8I [−5, 3])
− 24mc10(I [−5, 4] − I [−4, 3])
+ m8

c

(
P1I [−4, 2] + 30I [−4, 4]

+ 2P1 I [−3, 1] + 24I [−3, 3])
+ 2m6

c

(
512P2

2 π4 I [−3, 1] − P1 I [−3, 2]
− 6I [−3, 4] + P1 I [−2, 1] + 4I [−2, 3])
+ 1024P2

2 π4 I [0, 1] − 3P1 I [0, 2] + 64m2
c I [0, 3]

+ P3

(
864

(
m6

c I [−3, 2] − m4
c I [−2, 2])A[u0]

− 432m2
c

(
I4[S] + I4[T1] + I4[T2] − I4[T3]

− I4[T4] − I4[S̃])(m4
c I [−3, 2]

− 2m2
c I [−2, 2] + I [−1, 2])

+ P1

(
23I4[S] + 23I4[T1] + 23I4[T2]

− 12
(
I4[T3] + I4[T4] + I4[S̃]))I [0, 0]

+ 24
(

36m4
c(m

4
c I [−4, 2] − 2m2

c I [−3, 2]

+ I [−2, 2]) − P1 I [0, 0]
)
I6[hγ ]

)

− f3γ

(
144m8

c I1[A]I [−4, 3]

+ 144m8
c I1[V]I [−4, 3] + 288m6

c I1[A]I [−3, 3]
+ 288m6

c I1[V]I [−3, 3]
+ 23m4

c P1 I1[A]I [−2, 1] + 23m4
c P1 I1[V]I [−2, 1]

+ 144m4
c I1[A]I [−2, 3] + 144m4

c I1[V]I [−2, 3]
+ 23P1 I1[A]I [0, 1] + 23P1 I1[V]I [0, 1]
+ 576I1[A]I [0, 3] + 576I1[V]I [0, 3]
+ 24

(
m6

c(12m4
c I [−5, 3] + 24m2

c I [−4, 3]
+ P1 I [−3, 1] + 12I [−3, 3]) − P1 I [0, 1]
+ 48I [0, 3]

)
I6[ψa]

+ 96
(
m6

c(12m4
c I [−5, 3] + 24m2

c I [−4, 3]
+ P1 I [−3, 1] + 12I [−3, 3]) + P1 I [0, 1]
+ 48I [0, 3]

)
I6[ϕγ ]

+ 576m10
c I [−5, 3]ψa[u0] + 48m6

c P1 I [−3, 1]ψa[u0]
− 576m6

c I [−3, 3]ψa[u0] + 48P1 I [0, 1]ψa[u0]
+ 48

(
m6

c

(
12m4

c I [−5, 3]
+ 24m2

c I [−4, 3] + P1 I [−3, 1]
+ 12I [−3, 3]) + P1 I [0, 1]

+ 48I [0, 3]
)
ϕγ [u0]

)]
, (20)

where P1 = 〈g2
s G

2〉 is gluon condensate, P2 = 〈q̄q〉 stands
for u/d quark condensate, and P3 = 〈s̄s〉 represents the

s-quark condensate. The functions I [n,m], I1[A], I2[A],
I3[A], I4[A], I5[A] and I6[A] are defined as

I [n,m] =
∫ s0

m2
c

ds
∫ s

m2
c

dl e−s/M2 (s − l)m

ln

I1[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ

′(αq + v̄αg − u0),

I2[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ

′(αq̄ + vαg − u0),

I3[A] =
∫ 1

0
du A(u)δ′(u − u0),

I4[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq + v̄αg − u0),

I5[A] =
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq̄ + vαg − u0),

I6[A] =
∫ 1

0
du A(u),

where A stands for the corresponding photon DAs and Dαi

is the measure defined as∫
Dαi =

∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg).
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