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Abstract In this study, the magnetic moments of the spin-1/2 triply heavy baryons have been calculated using both light-cone QCD
sum rules and quark–diquark model. Theoretical investigations on magnetic moments of the triply heavy baryons are crucial as their
results can help us better understand their internal structure and the dynamics of the QCD as the theory of the strong interaction. We
compare the results extracted for the magnetic moment with the existing theoretical predictions. It is seen that the obtained magnetic
moment values are quite compatible with the results in the literature.

1 Introduction

The theoretical and experimental studies of heavy baryons have become a major topic in the literature since properties of heavy
baryons provide valuable insight into the non-perturbative aspects of QCD. Quark model predicts charmed or bottomed single,
doubly and triply heavy baryons with spin-1/2 and spin-3/2. Among these heavy baryons, triply heavy baryons which sit at the
uppermost layer of SU(3) flavor symmetry may open a door for the understanding of the strong interaction between heavy quarks in
the absence of any light quarks. Charm and beauty quarks except top quark which cannot make bound state are much heavier than
the rest of the quarks of the standard model, so baryons with three heavy quarks will refrain light quark contaminations through the
dynamics of strong interactions and can help us better to understand the triply heavy baryons.

In recent years, there are a lot of works devoted to the singly heavy and doubly heavy baryon in the literature. Up to now, all
baryons containing a single charm quark have been observed as predicted by the quark model. The experimental progresses on the
spectroscopy of the heavy baryons have stimulated the theoretical studies. For example, the observation of doubly charmed baryon
state �++

cc by the LHCb collaboration triggered many new studies [1]. This state fills well in the quark model as the ccu baryon.
In particular, very recent observation of a narrow resonance structure X (6900) and a broad structure just above the J/ψ J/ψ mass
with global significances of more than 5σ may open a new era on the fully heavy exotic multiquark states [2].

By this time, no triply heavy baryon state is reported experimentally. The production of triply heavy baryons is extremely difficult.
This is because one needs to produce three heavy quark–antiquark pairs in one collision event, and the three heavy quarks thus
produced need to be close enough to each other in coordinate and momentum space to enable hadronization into a fully heavy
baryon. Nonetheless, there are studies related to the production mechanisms of triply heavy baryons. In [3], the total and differential
cross sections for the production of �ccc baryon have been calculated. The predicted value of cross section of �ccc baryon is close
to that the cross section for �scb baryon production in e+e− collisions if the s-quark mass is set to 300 MeV. Cross-sectional
calculations of triply heavy baryons at LHC were done in [4–7]. In [8], hadronic production cross sections of the baryons with the
ccc and ccb quark content were estimated with a conclusion that around 104-105 events of triply heavy baryons can be accumulated
for 10 fb−1 integrated luminosity at LHC. The production of ccc baryon by quark coalescence mechanism in high-energy nuclear
collisions was studied in [9] and nuclear medium effect on multicharmed baryon production was studied in [10]. Both of these
studies presented that it is most probable to observe triply heavy baryon in heavy ion collisions. It was pointed out in [11,12] that
it will be good to look for triply heavy baryons in their semi-leptonic and non-leptonic decays. A recent review for exotic hadrons
from heavy ion collisions can be found in [13]. Apart from production mechanisms, the spectrum of the triply heavy baryon states
have been studied extensively via different theoretical approaches like lattice QCD [14–21], QCD Sum Rules [22–28], potential
models [29–45], Faddeev equation [46–49] and Regge trajectories [50,51].
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The electromagnetic properties like masses and decay widths are the important parameters of a hadron, which are measurable
and computable. Among these electromagnetic properties, the study of magnetic moments of hadrons is an important effort since
magnetic moments give information on the internal structure of hadrons. The present paper focuses on the magnetic moments of the
triply heavy baryons in light-cone QCD sum rules (LCSR) and quark–diquark model (QDM). The motivation of both using LCSR
and QDM is to compare the results and make reliable estimations. We believe that the predictions of different methods can be useful
for future theoretical and experimental studies. Both LCSR and QDM models are non-perturbative methods and the underlying
interactions and assumptions (if exist) can be different. If different models predict same or comparable results, this will pave the way
for the true understanding of the related problem. In the LCSR method, the operator product expansion is performed over a twist
near the light cone, x2 ∼ 0 and the non-perturbative contributions show up in the matrix elements of non-local operators, which are
described with respect to the light-cone distribution amplitudes (DAs) of the photon [52–54], in place of the vacuum condensates that
show up in the traditional QCD sum rules approach [55]. Quark model has often been employed for exploratory studies in QCD. For
example, definition of an exotic state stems from the quark model. Any deviation from the quark model predictions of their masses,
decay widths, various reactions, production and decay behaviors may also provide insightful clues in the search of the exotic states
[56]. The concept of diquark as an effective degree of freedom is very helpful within the quark model phenomenological approach
to simplify the description of hadrons: conventional or exotic.

The paper is organized as follows: In Sect. 2, the methodology of the LCSR and QDM is given. In Sect. 3, we present our
magnetic moment results with a comparison of references from the literature. Section 4 includes our concluding remarks. The
explicit expressions of the magnetic moment of the triply heavy baryons in LCSR is presented in Appendix.

2 Methodology

Different models have been proposed to describe the structure of baryons. In this work, we have used two approaches: LCSR and
QDM. Both approaches heave their characteristic features. For example, QCD sum rule is a semi-phenomenological framework to
extract spectroscopic information from the QCD Lagrangian. This model allows one to relate the hadron spectrum to the fundamental
QCD Lagrangian. QDM have been applied for doubly heavy and triply heavy baryons since it reduces degrees of freedom and makes
calculations easier. In the next two subsections, descriptions of LCSR and QDM will be given.

2.1 Light-cone QCD sum rules

To get the magnetic moments of triply heavy baryons, we begin our analysis by considering the following the correlation function

�(p, q) = i
∫

d4xeip·x 〈0|T {JBQQQ′ (x) J̄BQQQ′ (0)}|0〉γ , (1)

where the subindex γ stands for the background electromagnetic field and JBQQQ′ is the interpolating current of the triply heavy

baryons. The most general form of the interpolating current for the J P = 1
2

+
baryons under investigation can be written as

JBQQQ′ (x) = 2εabc
{(

QT
a (x)CQ′

b(x)
)
γ5Qc(x) + t

[(
QT

a (x)Cγ5Q
′
b(x)

)
Qc(x)

]}
, (2)

where Q, Q′ = b and c-quark, the a, b and c are color indexes, C is the charge conjugation and t is arbitrary mixing parameter.
The correlation function in Eq. (1) can be obtained in two different representations. On the hadronic representation, it is calculated

with respect to the hadronic observables while the QCD representation it is calculated with respect to the quark–gluon degrees of
freedom. Equating these two different representations then gives us LCSR for physical parameters under investigation. To eliminate
the contributions coming from the higher states and continuum, we perform Borel transformation and continuum subtraction to both
representations of the obtained LCSR.

For p2 > 0, (p + q)2 > 0, the correlation function can be calculating in terms of hadronic parameter. We insert a complete set
of intermediate triply heavy baryon states into the correlation function to get the hadronic representation. As a result, we obtain

�Had(p, q) = 〈0 | JBQQQ′ | BQQQ′(p)〉
[p2 − m2

BQQQ′ ]
〈BQQQ′(p) | BQQQ′(p + q)〉γ

〈BQQQ′(p + q) | J̄BQQQ′ | 0〉
[(p + q)2 − m2

BQQQ′ ]
+ ..., (3)
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where q is the photon momentum. The matrix elements in the Eq. (3) are given as

〈0 | JBQQQ′ (0) | BQQQ′(p, s)〉 = λBQQQ′ u(p, s), (4)

〈BQQQ′(p) | BQQQ′(p + q)〉γ = εμū(p)

[(
f1(q

2) + f2(q
2)

)
γμ + f2(q

2)
(2p + q)μ

2mBQQQ′

]
u(p), (5)

where u(p) and λBQQQ′ are the Dirac spinor and residue, respectively. The f1(q2) and f2(q2) are Lorentz invariant form factors.
Substituting Eqs. (3–5) in Eq. (1) for hadronic representation, we obtain

�Had(p, q) =
λ2
BQQQ′

[(p + q)2 − m2
BQQQ′ ][p2 − m2

BQQQ′ ][(
f1(q

2) + f2(q
2)

)(
2 p/ε/p/ + p/ε/q/ + mBQQQ′ p/ε/ + 2mBQQQ′ ε/p/

+ mBQQQ′ ε/q/ + m2
BQQQ′ ε/

)
+ other structures proportional wi th the f2(q

2)

]
. (6)

At q2 = 0, the magnetic moment is described with respect to f1(q2 = 0) and f2(q2 = 0) form factors in the following way:

μBQQQ′ = f1(q
2 = 0) + f2(q

2 = 0). (7)

In this study, we choose the structure ε/q/ for analysis, the triply heavy baryons have no contaminations. As a result, the hadronic
representation of the correlation can be written with respect to magnetic moment of the spin- 1

2 triply heavy baryons as,

�Had(p, q) = μBQQQ′
λ2
BQQQ′ mBQQQ′

[(p + q)2 − m2
BQQQ′ ][p2 − m2

BQQQ′ ]
. (8)

In obtaining the above expression, summation over spins of BQQQ′
∑
s

u(p, s)ū(u, s) = p/ + mBQQQ′ , (9)

have also been used.
In QCD representation, the correlation function in Eq. (1) is evaluated in deep Euclidean region with respect to the QCD degrees

of freedom. For p2 << 0 and (p + q)2 << 0, the main contribution to the correlation function is from small times and small
distances [57]. Hence, the correlation function can be calculated using operator product expansion (OPE). To obtain correlation
function via QCD degrees of freedom, we insert the explicit forms of the interpolating current in the correlation function and contract
the corresponding quark fields with the help of the Wick’s theorem. After some simple computation for the correlation function, we
get

�QCD(p, q) = 4i εabcεa
′b′c′

∫
d4 xeip·x 〈0 |

{
γ5S

cc′
Q (x)γ5Tr [S̃aa′

Q (x)Sbb
′

Q′ (x)]

− γ5S
ca′
Q (x)S̃bb

′
Q′ (x)Sac

′
Q (x)γ5 + t

(
γ5S

cc′
Q (x)Tr [γ5 S̃

aa′
Q (x)Sbb

′
Q′ (x)]

− γ5S
ca′
Q (x)γ5 S̃

bb′
Q′ (x)Sac

′
Q (x) + Sac

′
Q (x)γ5Tr [S̃ca′

Q (x)γ5S
bb′
Q′ (x)]

− Sac
′

Q (x)S̃bb
′

Q′ (x)γ5S
ca′
Q (x)γ5

)
+ t2

(
Scc

′
Q (x)Tr [γ5 S̃

aa′
Q (x)γ5S

bb′
Q′ (x)]

− Sca
′

Q (x)γ5 S̃
bb′
Q′ (x)γ5S

ac′
Q (x)

)}
| 0〉γ (10)

where S̃i jQ (x) = CSi j
T

Q (x)C and, Si jQ (x) is the heavy quark propagator and it is given as

SQ(x) = S f ree − gsmQ

16π2

∫ 1

0
dv Gμν(vx)

[(
σμνx/ + x/σμν

)K1(mQ
√−x2)√−x2

+ 2σμνK0(mQ

√
−x2)

]
, (11)

where

S f ree = m2
Q

4π2

[
K1(mQ

√−x2)√−x2
+ i

x/ K2(mQ
√−x2)

(
√−x2)2

]
, (12)

with Ki ’s are Bessel functions of the second kind and Gμν is the gluon field strength tensor.
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When the magnetic moment calculation of light quark-containing hadrons is performed using the LCSR method, the correlation
function in Eq. (10) includes different contributions: The photon can be emitted both perturbatively and non-perturbatively. But in
our case, since triply heavy baryons contain no valence light quark, the photon cannot be emitted non-perturbatively. Therefore, our
calculation includes only the contributions in which the photon is perturbatively emitted.

The propagator of the quark interacting with the photon perturbatively is replaced by

S f ree(x) →
∫

d4y S f ree(x − y) /A(y) S f ree(y) , (13)

the remaining two heavy quark propagators in Eq. (10) are with the full quark propagators including the perturbative and non-
perturbative parts. The full perturbative contribution is obtained by carrying out the replacement above-mentioned for the pertur-
batively interacting quark propagator with the photon and making use of the replacement of the remaining propagators by their
free parts. The QCD representation of the correlation function can be obtained by applying the Fourier transform to transfer the
computations acquired in the x-space to the momentum space.

Having evaluated the correlation function for both physical and QCD representations, we now match the coefficient of the structure
ε/q/ from both representations and carry out double Borel transformation with respect to p2 and (p + q)2. Continuum subtractions,
on the other hand, are made using the quark–hadron duality ansatz. As a results, we get the LCSR for the magnetic moments as

μBQQQ′ = e

m2
BQQQ′
M2

λ2
BQQQ′ mBQQQ′

�QCD . (14)

The explicit expressions of �QCD function is given in Appendix.

2.2 Quark–diquark model

The notion of diquarks dates back to the early days of the quark model. It can be said that diquarks are almost as old as quarks. It
provides an alternative description of baryons as bound states of a quark and diquark. The concept of diquarks as effective degrees
of freedom in quark models has proved useful in the calculation of baryon spectra, see for an instructive review [58] and recent
review [59] and references therein. It leads a simple two-body structure.

A diquark is defined as a colored bound state of two quarks. By this time, no diquark state has been detected in the experiments.
However, experimental lack of observation does not eliminate the hypothesis of diquarks as constituents of baryons. Hadrons can
exist only when their total color charge of constituent quarks are zero. Technically, this means that every naturally occurring hadron
is a color singlet under the group symmetry SU(3). A diquark is composed of two quarks (qq) whereas conventional quark–antiquark
(also called quarkonium) is composed of (qq̄). According to group theory, two quarks can attract one another in the 3̄ representation
of SU(3) color, thus a diquark form having the same color features as an antiquark. In other words, a quark inside the baryon sees a
color 3̄ set of two quarks which is analogous to the antiquark seen by a quark in a traditional meson. According to the perturbation
theory of QCD, the potential between two quarks or a quark–antiquark is approximately Coulombic at short distances. At large
distances, one can invoke lattice QCD approximation and the potential is approximately a sum of two-body linear potentials, although
three-body forces exist in baryon [60,61]. In one-gluon exchange approximation, the quark–quark potential in a baryon is equal to
half to the quark–antiquark potential in a meson. This suggests that the interaction between a quark and a diquark in a baryon can
be studied in a similar way as the one between a quark and an antiquark in a meson.

Since c and b quarks are heavy, nonrelativistic treatment is very plausible. In the present work, we choose Cornell potential to
study ccb and bbc baryons. It reads as

V (r) = καs

r
+ br, (15)

where κ is a color factor and associated with the color structure of the system, αs is the fine structure constant of QCD and b is
the string tension. The first term (Coulomb term) in Eq. (15) arises from the one-gluon exchange (OGE) associated with a Lorentz
vector structure and the second term (linear part) is responsible for confinement, which is usually associated with a Lorentz scalar
structure.

In the center-of-mass frame, using spherical coordinates, one can factorize the angular and radial parts of the Schrödinger
equation. Let μ ≡ m1m2/(m1 +m2), where m1 and m2 are the constituent masses of quark 1 and quark 2, respectively. Then radial
Schrödinger equation can be written as

{
1

2μ

[
− d2

dr2 + L(L + 1)

r2

]
+ V (r)

}
ψ(r) = Eψ(r). (16)
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A spin–spin interaction can be included under the assumption of the Breit–Fermi Hamiltonian for OGE [62] as:

VS(r) = − 2

3(2μ)2 ∇2VV (r)S1 · S2

= −2πκαS

3μ2 δ3(r)S1 · S2 . (17)

The spin–spin interaction in the zeroth-order (unperturbed) potential can be written by replacing the Dirac delta by a Gaussian
function

VS(r) = −2πκαS

3μ2

(
σ√
π

)3

exp
(−σ 2r2) S1 · S2, (18)

which introduces a new parameter σ .
With this new definition, the Schrödinger equation of the form of Eq. (16) can be written in a compact form as follows:

[
− d2

dr2 + Veff (r)

]
ϕ(r) = 2μEϕ(r). (19)

Here the effective potential Veff (r) is given by

Veff (r) ≡ 2μ [V (r) + VS(r)] + L(L + 1)

r2 (20)

and composed of Cornell potential, spin–spin interaction and orbital excitation.
Computing baryon masses in the quark–diquark model has two steps in which in the first step the diquark mass is calculated

and in the second step masses of the system formed by a quark interacting with this diquark are calculated. As mentioned before,
the energy of a quark–diquark pair is assumed to be the same as the one of a quark–antiquark pair. The nonrelativistic Schrödinger
equation with Cornell potential is solved, and the mass spectra is obtained using

MB = mQQ + mQ + 〈H〉 , (21)

where mQQ is the mass of heavy diquark, mQ is the mass of heavy quark and 〈H〉 is composed of Cornell potential and the
spin-dependent interactions.

The SU(3) color symmetry of QCD implies that combining a quark and an antiquark in the fundamental color representation
gives |qq̄〉 : 3

⊗
3̄ = 1

⊕
8. This representation yields the color factor for the color singlet states as κ = −4/3 of the quark–

antiquark system. When we combine two quarks in the fundamental color representation, it reduces to |qq〉 : 3
⊗

3 = 3̄
⊕

6, a color
antitriplet 3̄ and a color sextet 6. Similarly combining two antiquarks reduces to |q̄q̄〉 : 3̄

⊗
3̄ = 3

⊕
6̄, a triplet 3 and antisextet 6̄.

The antitriplet state has a color factor of κ = −2/3 which is attractive whereas the sextet state has a color factor of κ = +1/3 which
is repulsive. Therefore, we will only consider diquarks in the antitriplet color state. It should be mentioned that going from the color
factor κ = − 4

3 (for a quark–antiquark in the singlet color state) to the color factor κ = − 2
3 (for a quark–quark in the antitriplet

color state) is equivalent to introducing a factor of 1/2, which can generalized to be a global factor since it comes from the color
structure of the wave function. As mentioned before, it is very common to extend this 1/2 factor to the whole potential describing
the quark–quark interaction for studying diquark systems.

The parameters of the model are listed in Table 1. The parameters are obtained by fitting a quark–antiquark model to available
charmonium and bottomonium meson data [63].

Equipped with these arguments, we can obtain magnetic moments of ccb and cbb baryons. The magnetic moment of baryons
can be obtained in terms of the spin, charge and effective mass of the bound quarks as

μB =
∑
i

〈φs f |μiσ
i |φs f 〉, (22)

Table 1 Potential model parameters

Parameter Numerical value

mc 1.459 GeV

mb 4.783 GeV

αs 0.3714

b 0.1445 GeV2

σ 1.5 GeV

123
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where
μi = ei

2mef f
i

. (23)

Here ei is the charge, σ i is the spin of the constituent quark in the baryon, and φs f is the spin–flavor wave function. The effective

mass for the each constituent quark mef f
i can be defined as

mef f
i = mi

(
1 + 〈H〉∑

i mi

)
, (24)

where 〈H〉 = E + 〈VS〉 and mi ’s are the respective model quark mass parameters.
It should be noted here that the magnetic moments of triply heavy baryons have been studied nonrelativistic quark–diquark model

in [39]. They use a Coulomb plus power potential with a power index ν and rather a different type of spin–spin interaction. In our
analysis, we use a Cornell potential with spin-dependent interactions. In addition to this, they use a total Hamiltonian which is
composed of a diquark Hamiltonian and quark–diquark Hamiltonian. Accordingly, the quark–diquark model of Ref. [39] is different
than our model.

3 Numerical results and discussion

3.1 Results of Light-cone QCD sum rules

Now we are ready to investigate numerically the LCSR acquired in the previous subsection and compute the numerical values of
the magnetic moments of the triply heavy baryons. To do this, we take the quark masses as their pole values mc = 1.67 ± 0.07 GeV
and mb = 4.78 ± 0.06 GeV. The numerical value of the residues and masses of these baryons is needed to perform the numerical
calculations in LCSR. These parameters were obtained using the two-point QCD sum rules in the Ref. [24]. The numerical values of
these parameters depend on the arbitrary mixing parameter t . To be consistent, we use the same range of t which is −0.5 ≤ t ≤ −1.75.

The LCSR for magnetic moments under study are also functions of two more auxiliary parameters that are included at different
stages of the calculations: the continuum threshold s0 and Borel mass parameter M2. Complying with the standard prescription of
LCSR method, the s0 and M2 are varied to find the optimal stability interval, in which the perturbative contribution should be larger
than the non-perturbative contributions while the pole contribution larger than continuum contribution. Therefore, the LCSR intervals
are taken as s0 = (144 − 148) GeV2, M2 = (12 − 16) GeV2 for �0

bbc baryon and s0 = (78 − 82) GeV2, M2 = (8 − 12) GeV2 for
�+

ccb baryon, respectively. It is noted here that the magnetic moment results exhibit less dependent variation on the value s0 when
the quark masses are taken at the pole value.

Now that we have determined all the input parameters, we can perform our numerical calculations. We summarized our results
as follows

μ�+
ccb

= 0.61 ± 0.21 μN , (25)

μ�0
bbc

= −0.19 ± 0.06 μN . (26)

The errors in our results reflect the uncertainties in the M2, s0 as well as above-mentioned input parameters. We should also
emphasize that the main source of uncertainties is the variations in connection with the s0 and the results weakly depend on the
variation of the M2.

3.2 Results of quark–diquark model

The quark–diquark model can be used not only to study spectroscopy but also to structure properties such as magnetic moments. In
order to obtain magnetic moments, we first calculate diquark masses. In the second step, we evaluate baryon masses to get effective
masses of quarks inside the baryon. Then magnetic moments can be calculated by using effective quark masses. The results are
presented in Table 2.

Table 2 Expressions and results for magnetic moments of spin–1/2 triply heavy baryons using effective quark masses (in nuclear magneton μN )

Particle Expression Magnetic moment

�+
ccb

4
3 μc − 1

3 μb 0.581

�0
cbb

4
3 μb − 1

3 μc −0.227

123
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Table 3 Comparison of our magnetic moments with the results of available studies (in unit of μN )

Models �0
cbb �+

ccb

BD [30] –0.191 0.466

AL1 [30] –0.193 0.475

AL2 [30] –0.192 0.471

AP1 [30] –0.195 0.479

AP2 [30] –0.193 0.473

HCCQM [35] –0.203 0.502

NRQDM [39] –0.223 0.565

Power law [64] -0.197 0.476

RLP [65] –0.20 0.49

NRQM [66] –0.193 0.475

RTQM [67] –0.20 0.53

Bag model [68] –0.205 0.505

NRQM-I [68] –0.21 0.54

EMS [69] –0.205 0.508

SCS [69] –0.200 0.522

EBM [70] –0.187 0.455

This work (QDM) –0.227 0.581

This work (LCSR) −0.19 ± 0.06 0.61 ± 0.21

3.3 Comparison with literature

In this subsection, for completeness, we compare our results with the different models from the literature. The results are given
in Table 3. For the sake of comparison, we also give different models, namely BD, AL1, AL2, AP1, AP2 potential models [30],
hypercentral constituent quark model (HCCQM) [35], nonrelativistic quark–diquark model (NRQDM) [39], power-law potential
[64], relativistic logarithmic potential (RLP) [65], nonrelativistic quark model (NRQM) [66], relativistic three-quark model (RTQM)
[67], bag model and nonrelativistic quark model (NRQM-I) [68], effective mass (EMS) and screened charge scheme (SCS) [69] and
extended bag model (EBM) [70].

Table 3 shows that magnetic moment of �0
cbb changes from −0.19 ± 0.06 to –0.227, whereas magnetic moment of �+

ccb changes
from 0.466 to 0.61 ± 0.21 in unit of μN , respectively. The results of the references agree well with one another. This can be due to
the fact that magnetic moments of triply heavy baryons are virtually governed by the magnetic moments of heavy quarks. Therefore,
all the models in the table gave almost similar results.

4 Concluding remarks and final notes

In this work, we have calculated magnetic moment of spin–1/2 triply heavy baryons, �0
cbb and �+

ccb, via light-cone QCD sum rules
and quark–diquark model. A quark–diquark interpolating current was used in QCD sum rules analysis and a nonrelativistic approach
was welcomed in the quark–diquark model.

Our results for the magnetic moments of both light-cone QCD sum rules and quark–diquark methods agree well within each
other. Comparing with the predictions of other theoretical methods, it can be seen that our results also agree with the references.

By this time, no experimental data of magnetic moments are available for the triply heavy baryons. We hope these results will
motivate other theoretical studies in the near future. We also look forward to see experimental data on magnetic moments of triply
heavy baryons from future experimental facilities.

Appendix: The explicit expressions of �QCD function

In this appendix, we present the explicit expression for the function �QCD obtained from the LCSR in subsection 2.1. It is acquired
by selecting the ε/q/ structure as follows

�QCD = 3(−1 + t)2

83886080π6

[
3eQ′mQ′

(
I [5, 1, 3] − 3I [5, 1, 4] + 3I [5, 1, 5] − I [5, 1, 6]

123
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− 3(I [5, 2, 3] − 2I [5, 2, 4] + I [5, 2, 5]
− I [5, 3, 3] + I [5, 3, 4]) − I [5, 4, 3]

)

+ eQmQ′
(
I [5, 2, 2] − 2I [5, 2, 3] + I [5, 2, 4] − 3I [5, 3, 2]

+ 4I [5, 3, 3] − I [5, 3, 4] + 3I [5, 4, 2] − 2I [5, 4, 3] − I [5, 5, 2]
)

− eQ′mQ

(
− I [5, 2, 2] + 2I [5, 2, 3] − I [5, 2, 4] + 3I [5, 3, 2]

− 4I [5, 3, 3] + I [5, 3, 4] − 3I [5, 4, 2] + 2I [5, 4, 3] + I [5, 5, 2]
)

− eQmQ

(
3072I [5, 3, 1] + 11I [5, 3, 2] − 28I [5, 3, 3]

+ 20I [5, 3, 4] + 3072I [5, 4, 1] − 22I [5, 4, 2] + 28I [5, 4, 3]

+ 3072I [5, 5, 1] + 11I [5, 5, 2] + 3072I [5, 6, 1]
)]

+ m2
QmQ′

20971520π6

[
− eQ′(1 + t)2

(
I [4, 1, 2] − 2I [4, 1, 3] + I [4, 1, 4]

− 2I [4, 2, 2] + 2I [4, 2, 3] + I [4, 3, 2]
)

+ eQ
(

256(1 + t)2 I [4, 2, 1] + (3 − 2t + 3t2)I [4, 2, 2]
− 4I [4, 2, 3] − 4t2 I [4, 2, 3] + 256I [4, 3, 1] + 512t I [4, 3, 1]

+ 256t2 I [4, 3, 1] − 3I [4, 3, 2] + 2t I [4, 3, 2] − 3t2 I [4, 3, 2] + 256(1 + t)2 I [4, 4, 1]
)]

+ 〈g2
s G

2〉
113246208π6 (−1 + t)

[
14(−1 + t)eQmQ′

(
I [3, 1, 2] − 2I [3, 1, 3] + I [3, 1, 4] − 2I [3, 2, 2] + 2I [3, 2, 3] + I [3, 3, 2]

)

+ 3(−1 + t)eQ′mQ′
(
I [3, 1, 2] − 2I [3, 1, 3] + I [3, 1, 4]

− 2I [3, 2, 2] + 2I [3, 2, 3] + I [3, 3, 2]
)

− (1 + t)eQ′mQ

(
64I [3, 2, 1] − I [3, 2, 2] + 2I [3, 2, 3]

+ 64I [3, 3, 1] + I [3, 3, 2] + 64I [3, 4, 1]
)

− (1 + t)eQmQ

(
832I [3, 2, 1] + 8I [3, 2, 2] + 5I [3, 2, 3]

+ 832I [3, 3, 1] − 8I [3, 3, 2] + 832I [3, 4, 1]
)]

. (27)

The functions I[n, m, l] is defined as:

I [n,m, l] =
∫ s0

α

ds
∫ 1

0
dv

∫ 1

0
dw

(
α + s

)n
vmwl (28)

where α = (2mQ + mQ′)2.
It should be noted that in the expressions given in Eq. (27), we have given only the terms that make significant contributions to

the numerical values of the magnetic moments. Contributions not given here are taken into account in numerical calculations, but
for simplicity they are not shown in the text.
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