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Abstract. We consider the spectral stability of certain traveling wave solutions for the Boussi-
nesq ‘abc’ system. More precisely, we consider the explicit sech2(x) like solutions of the form
(ϕ(x − wt), ψ(x − wt) = (ϕ, const.ϕ), exhibited by M. Chen, [7], [8] and we provide a complete
rigorous characterization of the spectral stability in all cases for which a = c < 0, b > 0.

1. Introduction and results

1.1. The general Boussinesq ‘abcd’ model. In this work, we are concerned with the Boussi-
nesq system

(1)

∣∣∣∣ ηt + ux + (ηu)x + auxxx − bηxxt = 0
ut + ηx + uux + cηxxx − duxxt = 0.

The first formal derivation for this system has appeared in the work of Bona-Chen-Saut, [5] to
describe the (essentially two dimensional) motion of small-amplitude long waves on the surface
of an ideal fluid under the force of gravity. Here, η represents the vertical deviation of the free
surface from its rest position, while u is the horizontal velocity at time t. In the case of zero
surface tension τ = 0, the constants a, b, c, d must satisfy in addition the consistency conditions
a+ b = 1

2(θ2 − 1/3) and c+ d = 1
2(1− θ2) > 0. In the case of non-zero surface tension however,

one only requires a+ b+ c+ d = 1
3 − τ . For this reason (as well as from the pure mathematical

interest in the analysis of (1)), one may as well consider (1) for all values of the parameters.
Systems of the form (1) have been the subject of intensive investigation over the last decade.

In particular, the role of the parameters a, b, c, d in the actual fluid models has been explored in
great detail in the original paper [5] and later in [6]. It was argued that only models in the form
(1), for which one has linear and nonlinear well-posedness are physically relevant. We refer the
reader to these two papers for further discussion and some precise conditions, under which one
has such well-posedness theorems.

Regarding explicit traveling wave solutions, Chen, has considered various cases of interest
in [7], [8]. In fact, she has written down numerous traveling wave solutions (i.e. in the form
(η, u) = (ϕ(x−wt), ψ(x−wt)), where in fact some of them are not necessarily homoclinic to zero
at ±∞. In a subsequent paper, [9], Chen has also found new and explicit multi-pulsed traveling
wave solutions.

In [11], Chen-Chen-Nguyen consider another relevant case, namely the BBM system, which
(a = c = 0, b = d = 1

6). They construct periodic traveling wave solutions for the BBM case, as
well as in more general situations. In [2], the authors explore the existence theory for the the
BBM system as well as its relations to the single BBM equation.
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We wish to discuss another aspect of (1), which is its Hamiltonian formulation. Since it is
derived from the Euler equation by ignoring the effects of the dissipation, one generally expects
such systems to exhibit a Hamiltonian structure. This is however not generally the case, unless
one imposes some further restrictions on the parameters. Indeed, if b = d, one can easily check
that

H(η, u) =

∫
−cη2x − au2x + η2 + (1 + η)u2dx

Furthermore, H(η, u) is positive definite only if a, c < 0. From this point of view, it looks natural
to consider the case b = d and a, c < 0. In order to focus our discussion, we shall concentrate
then on this version

(2)

∣∣∣∣ ηt + ux + (ηu)x + auxxx − bηxxt = 0
ut + ηx + uux + cηxxx − buxxt = 0.

We will refer to (2) as the Boussinesq ‘abc’ system. It is a standard practice that stable coherent
structures, such as traveling pulses etc. are produced as constrained minimizers of the corre-
sponding (positive definite) Hamiltonians, with respect to a fixed conserved quantity. In fact,
this program has been mostly carried out, at least in the Hamiltonian cases, in a series of papers
by Chen, Nguyen and Sun. More precisely, in [12], the authors have shown that traveling waves
for (1) exist in the regime1 b = d, a, c < 0, ac > b2. In addition, they have also shown stability of
such waves in the sense of a ‘set stability’ of the set of minimizers. In the companion paper [13],
the authors have considered the general case b = d > 0, a, c < 0, which in particular allows for
small surface tension.

The existence of a traveling wave was proved for every speed |w| ∈ (0,min(1,
√
ac
b )).This is the

so-called subsonic regime. Finally, we point out to a recent work by Chen, Curtis, Deconinck,
Lee and Nguyen, [10] in which the authors study numerically various aspects of spectral stabil-
ity/instability of some solitary waves of (1), including the multipulsed solutions exhibited in [9].
In the same paper, the authors also study (numerically) the transverse stability/instability of the
same waves, viewed as solutions to the two dimensional problem.

The purpose of this paper is to study rigorously the spectral stability of some explicit traveling
waves in the regime b = d > 0, a, c < 0. This would be achieved via the use of the instabilities
indices counting formulas of Kapitula, Kevrekidis and Sandstede, [15], [16] and the subsequent
refinement by Kapitula, Stefanov [17].

1.2. The traveling wave solutions. In this section, we follow almost verbatim the description
of some explicit solutions of interest of (1), given by Chen, [7], see also the more detailed exposition
of the same results in [8]. More precisely, the solutions of interest are traveling waves, that is in
the form

η = ϕ(x− wt), u(x, t) = ψ(x− wt).
A direct computation shows that if we require that the pair (ϕ,ψ) vanishes at ±∞, then it
satisfies the system

(3)

∣∣∣∣ (1 + c∂2x)ϕ− w(1− b∂2x)ψ + ψ2

2 = 0
−w(1− b∂2x)ϕ+ (1 + a∂2x)ψ + ϕψ = 0.

The typical ansatz that one starts with, in order to simplify the system (3) to a single equation
is ψ = Bϕ. This has been worked out by Chen, [7], [8]. The following result is contained in the
said papers.

1which in particular requires that a+ b+ c+ d < 0, corresponding to a “large” surface tension τ > 1
3
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Theorem 1. (Chen, [7], [8]) Let the parameters a, b, c in the system satisfy one of the following

(1) a+ b 6= 0, p = c+b
a+b > 0, (p− 1/2)((b− a)p− b) > 0

(2) a = c = −b, b > 0

Then, there are the following (pair of) exact traveling wave solutions (i.e. solutions of (3))
(ϕ(x− wt), ψ(x− wt)), where

ϕ(x) = η0sech
2(λx)

ψ(x) = B(η0)η0sech
2(λx)

and

w = w(η0) = ± 3 + 2η0√
3(3 + η0)

; λ =
1

2

√
2η0

3(a− b) + 2b(η0 + 3)
; B(η0) = ±

√
3

η0 + 3
,

and η0 is a constant that satisfies

(1) η0 = 3(1−2p)
2p in Case (1)

(2) η0 > −3, η0 6= 0 in Case (2).

1.3. Different notions of stability. Before we state our results, we pause to discuss the various
definitions of stability. First, one says that the solitary wave solution (ϕw, ψw) is orbitally stable,
if for every ε > 0, there exists δ > 0, so that whenever ‖(f, g) − (ϕw, ψw)‖X < δ, one has that
the corresponding solutions (η, u) : (f, g) = (η, u)|t=0

sup
t>0

inf
x0
‖(η(x− x0, t), u(x− x0, t))− (ϕ(x− wt), ψ(x− wt))‖X < ε.

Note that we have not quite specified a space X, since this usually depends on the particular
problem at hand (and mostly on the available conserved quantities), but suffices to say that
X is usually chosen to be a natural energy space for the problem. This notion of (nonlinear)
stability has been of course successfully used to treat a great deal of important problems, due
to the versatility of the classical Benjamin and Grillakis-Shatah-Strauss approaches. However,
it looks like these methods are not readily applicable (if at all) to the Boussinesq ‘abc’ system.
We encourage the interested reader to consult the discussion in [12], where a weaker, but related
stability was established in the regime ac > b2 and additional smallness assumption on the wave
is required as well. This is why, one needs to develop an alternative approach to this important
problem, which is one of the main goals of this work.

In this paper, we will concentrate on spectral stability. There is also (the closely related and
almost equivalent) notion of linear stability, which we also mention below. In order to introduce
the object of our study, as well as to motivate its relevance, let us perform a linearization of the
nonlinear system (2). Using the ansatz∣∣∣∣ η = ϕ(x− wt) + v(t, x− wt)

u = ψ(x− wt) + z(t, x− wt),

in (2) and ignoring all quadratic terms in the form O(v2), O(vz), O(z2) leads to the following
linearized problem

(1− b∂2x)

(
v
z

)
t

= −∂x
(

0 1
1 0

)(
1 + c∂2x bw∂2x + ψ − w

bw∂2x + ψ − w 1 + a∂2x + ϕ

)
Letting

(4) L =

(
1 + c∂2x bw∂2x + ψ − w

bw∂2x + ψ − w 1 + a∂2x + ϕ

)
, J = −∂x(1− b∂2x)−1

(
0 1
1 0

)
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the linearized problem that we need to consider may be written in the form

(5) ut = JLu

Note that in the whole line context, L is a self-adjoint operator, when considered with the natural
domain D(L) = H2(R1)×H2(R1). Letting H := JL, we see that the problem (5) is in the form
ut = Hu. The study of linear problems in this form is at the basis of the deep theory of C0

semigroups. Informally, if the Cauchy problem ut = Hu has global solutions for all smooth
and decaying data, we say that H generates a C0 semigroup {T (t)}t>0 via the exponential map
T (t) = etH . Furthermore, we say that we have linear stability for the linearized problem ut = Hu,
whenever the growth rate of the semigroup is zero or equivalently limt→∞ e

−δt‖T (t)f‖ = 0 for all
δ > 0 and for all sufficiently smooth and decaying functions f . Finally, we say that the system
is spectrally stable, if σ(H) ⊂ {z : <z ≤ 0}. It is well-known that if H generates a C0 semigroup,
then linear stability implies spectral stability, but not vice versa. Nevertheless, the two notions
are very closely related and in many cases (including the ones under consideration), they are
indeed equivalent. For the purposes of a formal definition, we proceed as follows

Definition 1. We say that the problem (5) is unstable, if there is f ∈ H2(R1) × H2(R1) and
λ : <λ > 0, so that

(6) JLf = λf .

Otherwise, the problem (5) is stable. That is, stability is equivalent to the absence of solutions of
(6) with λ : <λ > 0.

1.4. Main results. We are now ready to state our results. We chose to split them in two cases,
just as in Theorem 1. For the case a = c = −b, b > 0, we have

Theorem 2. Let a = c = −b, b > 0. Then, the traveling wave solutions of the ‘abc’ system

(7)

(
η0sech

2

(
x− wt

2
√
b

)
,±η0

√
3

η0 + 3
sech2

(
x− wt

2
√
b

))
with speed w = ± 3+2η0√

3(3+η0)
are stable, for all η0 : η0 ∈ (−9

4 , 0). Equivalently, all waves in (7) are

stable, for all speeds |w| < 1.

Note that |w| < 1 is equivalent to η0 ∈ (−9
4 , 0), so we assume this henceforth. In the remaining

case, we assume only a = c < 0, b = d > 0, but observe that in this case, Theorem 1 requires that
η0 = −3/2, w = 0, that is the traveling waves become standing waves.

Theorem 3. Let a = c < 0, b = d > 0. Then, the standing wave solutions of the Boussinesq
system

ϕ(x) = −3

2
sech2

(
x

2
√
−a

)
, ψ(x) = ± 3√

2
sech2

(
x

2
√
−a

)
are spectrally stable if and only if

(8) 〈(a∂2x + 1− ϕ)−1(ϕ− bϕ′′), (ϕ− bϕ′′)〉 ≤ 8
√
−a
(

9

2
+

12

5

b

|a|
− 3

10

b2

a2

)
.

In particular, the condition (8) holds ( and thus the waves are spectrally stable), whenever

0 ≤ b

−a
< 8.00163,
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On the other hand, the condition (8) fails ( and thus the waves are spectrally unstable), if

b

−a
> 8.82864.

Remark: Note that while, we cannot explicitly compute the value (a∂2x + 1−ϕ)−1(ϕ− bϕ′′)
in (8), we obtain estimates, which imply some pretty good results for the stability/instability
intervals. One can in fact push this further to narrow the gap between the stability and instability
regions, predicted by (8). This can be done in principle with any degree of accuracy, but it
increases the complexity the argument.

2. Preliminaries

In this section, we collect some preliminary results, which will be useful in the sequel.

2.1. Some spectral properties of L. We shall need some spectral information about the op-
erator L. We collect the results in the following

Proposition 1. Let a, c < 0 and w : 0 ≤ |w| < min
(

1,
√
ac
|b|

)
. Then, the self-adjoint operator L

has the following spectral properties

• Then the operator L has an eigenvalue at zero, with an eigenvector

(
ϕ′

ψ′

)
.

• There is κ > 0, so that the essential spectrum is in σess(L) ⊂ [κ,∞).

Proof. The first property is easy to establish, this is the usual eigenvalue at zero generated by
translational invariance. For the proof, all one needs to do is take a spatial derivative in the

defining system (3), whence L

(
ϕ′

ψ′

)
=

(
0
0

)
.

Regarding the essential spectrum, we reduce matters to the Weyl’s theorem (using the vanishing
of the waves at ±∞), which ensures that

σess.(L) = σess.(L0) = σ[

(
1 + c∂2x bw∂2x − w
bw∂2x − w 1 + a∂2x

)
]

That is, it remains to check that the matrix differential operator L0 > κ. By Fourier transforming
L0, it will suffice to check that the matrix

L0(ξ) =

(
1− cξ2 −w(bξ2 + 1)

−w(bξ2 + 1) 1− aξ2
)

is positive definite for all ξ ∈ R1. Since 1− cξ2 ≥ 1, it will suffice to check that the determinant
has a positive minimum over ξ ∈ R1. We have

det(L0(ξ)) = ξ4(ac− b2w2) + ξ2(−a− c− 2bw2) + (1− w2) ≥ (1− w2) + 2ξ2(
√
ac− |b|w2),

where in the last inequality, we have used −a − c ≥ 2
√
ac. The strict positivity follows by

observing that
√
ac ≥ |b|w ≥ |b|w2, since w < 1. �

2.2. Instability index count. In this section, we introduce the instability indices counting
formulas, which in many cases of interest can in fact be used to determine accurately both
stability and instability regimes for the waves under consideration. As we have mentioned above,
this theory has been under development for some time, see [18], [14], [19], but we use a recent
formulation due to Kapitula-Kevrekidis and Sandstede (KKS), [15] (see also [16]). In fact, even
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the (KKS) index count formula is not directly applicable2 to the problem of (5), which is why
Kapitula and Stefanov, [17] have found an approach, based on the KKS of the theory, which
covers this situation. In order to simplify the exposition, we will restrict to a corollary of the
main result in [17]. More precisely, a the stability problem in the form is considered in the form

(9) ∂xLu = λu,

where L is a self-adjoint linear differential operator with domain D(L) = Hs(R1) for some s. It
is assumed that for the operator L,

(1) there are n(L) = N < +∞ negative eigenvalues3 (counting multiplicity), so that each of

the corresponding eigenvectors {fj}Nj=1 belong to H1/2(R1).

(2) there is a κ > 0 such that σess(L) ⊂ [κ2,+∞)

(3) dim[ker(L)] = 1, ker(L) = span{ψ0}, ψ0 real-valued function, ψ0 ∈ H∞(R1) ∩ Ḣ−1(R1).

Here, Ḣ−1(R1) is the homogeneous Sobolev space, defined via the norm

‖u‖Ḣ−1(R1) :=

(∫
R1

|û(ξ)|2

|ξ|2
dξ

)1/2

.

or equivalently, u = ∂xz in sense of distributions, where z ∈ L2 and ‖u‖Ḣ−1(R1) := ‖z‖L2 . In that

case, we have

Theorem 4. (Theorem 3.5, [17]) For the eigenvalue problem

(10) ∂xLu = λu, u ∈ L2(R1),

where the self-adjoint operator L satisfies D(L) = Hs(R1) for some s > 0, assume that

〈L−1∂−1x ψ0, ∂
−1
x ψ0〉 6= 0.

Then, the number of solutions of (9), nunstable(L), with λ : <λ > 0 satisfies4

(11) 0 ≤ nunstable(∂xL) = n(L)− n
(
〈L−1∂−1x ψ0, ∂

−1
x ψ0〉

)
mod 2.

Of course, our eigenvalue problem (6) does not immediately fit the form of Theorem 4. First,
Theorem 4 applies for scalar-valued operators L, while we need to deal with vector-valued opera-
tors. This is a minor issue and in fact, one sees easily that the arguments in [17] carry over easily
in the case, where L is a vector-valued self-adjoint operator as well. A second, more substantive
issue is that the form of (6) is not quite the one in (10). Namely, we have that the operator J ,
while still skew-symmetric is not equal to ∂x.

In order to fix that, we need to recast the eigenvalue problem (6) in a slightly different form.

Indeed, letting f = (1 − b∂2x)−1/2g and taking (1 − b∂2x)1/2 on both sides of (6), we may rewrite
it as follows

−∂x
(

0 1
1 0

)
(1− b∂2x)−1/2L(1− b∂2x)−1/2g = λg.

If we now introduce

J̃ := −∂x
(

0 1
1 0

)
; L̃ := (1− b∂2x)−1/2L(1− b∂2x)−1/2,

2due to a crucial assumption for invertibility of the skew-symmetric operator J , which is not satisfied for ∂x
acting on R1

3We will henceforth denote by n(M) the number of negative eigenvalues (counting multiplicities) of a self-adjoint
operator M

4here ∂−1
x ψ0 is any L2 function f , so that ψ0 = ∂xf in distributional sense
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we easily see that J̃ is still anti-symmetric, L̃ is self-adjoint and we have managed to represent
the eigenvalue problem in the form J̃ L̃g = λg. Note that the operator J̃ is very similar to ∂x,

except for the action of the invertible symmetric operator

(
0 1
1 0

)
on it. It is not hard to see

that the result of Theorem 4 applies to it (while it still fails the standard conditions of the KKS

theory, due to the non-invertibility of J̃). Note that one needs to replace ∂−1x by J̃−1 in the

formula (11). Furthermore, the number of unstable modes for the two systems (JL and J̃ L̃) is

clearly the same, due to the simple transformation (1 − b∂2x)−1/2 connecting the corresponding
eigenfunctions.

Thus, if we can verify the conditions under which Theorem 4 applies, we get the stability index
formula

(12) nunstable(JL) = nunstable(J̃ L̃) = n(L̃)− n(〈L̃−1J̃−1ψ0, J̃
−1ψ0〉) mod 2.

Since by Proposition 1, L

(
ϕ′

ψ′

)
= 0, we conclude that L̃[(1 − b∂2x)1/2

(
ϕ′

ψ′

)
] = 0. It follows

that ψ0 = ∂x(1− b∂2x)1/2
(
ϕ
ψ

)
and

〈L̃−1J̃−1ψ0, J̃
−1ψ0〉 = 〈L−1[(1− b∂2x)

(
0 1
1 0

)(
ϕ
ψ

)
], (1− b∂2x)

(
0 1
1 0

)(
ϕ
ψ

)
〉 =

= 〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉

Thus, we conclude that we will have established spectral stability for (6), if we can verify the

conditions (1), (2), (3) of Theorem 4 for the operator L̃, n(L̃) = 1 and

(13) 〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 < 0.

and instability otherwise.
Concretely, we will verify the conditions on L̃ in Proposition 2 below, after which, we compute

the quantity in (13) in Proposition 3.

Proposition 2. The self-adjoint operator L̃ = (1− b∂2x)−1/2L(1− b∂2x)−1/2 satisfies

(1) σess.(L̃) ⊂ [κ,∞) for some positive κ.

(2) n(L̃) = 1.

(3) Ker(L̃) = span{(1− b∂2x)1/2
(
ϕ′

ψ′

)
}.

in the following cases

• a = c = −b, b > 0, B = ±
√

3
3+η0

, w = ± 3+2η0√
3(3+η0)

, η0 ∈ (−9
4 , 0).

• a = c < 0, b > 0, w = 0, B = ±
√

2.

Proposition 3. Regarding the instability index, we have

• For a = c = −b, b > 0, w = ± 3+2η0√
3(3+η0)

, B(η0) = ±
√

3
3+η0

, and for all η0 ∈ (−9
4 , 0),

〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 < 0
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• For a = c < 0, b > 0, w = 0, B = ±
√

2,

〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 =

=
1

3

(
8
√
−a
(
−9

2
− 12

5

b

|a|
+

3

10

b2

a2

)
+ 〈(a∂2x + 1− ϕ)−1f, f〉

)
In particular,

〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 < 0, 0 <

b

−a
< 8.00163,

〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 > 0,

b

−a
> 8.82864.

Theorem 2 follows by virtue of Proposition 2 and Proposition 3. Thus, it remains to prove
these two.

3. Proof of Proposition 2

We start with the gap condition for σess.(L̃) stated in Proposition 2.

3.1. L̃ is strictly positive. The idea is contained in Proposition 1. Write

L̃ = (1−b∂2x)−1/2L(1−b∂2x)−1/2 = (1−b∂2x)−1/2L0(1−b∂2x)−1/2+(1−b∂2x)−1/2(L−L0)(1−b∂2x)−1/2,

where L − L0 is a multiplication by smooth and decaying potential. It is also not hard to see

that (1 − b∂2x)−1/2 is given by a convolution kernel K : K(x) =
∫∞
−∞

e2πixξ√
1+4π2bξ2

dξ, which decays

faster than polynomial at ±∞. It follows that the operator (1− b∂2x)−1/2(L−L0)(1− b∂2x)−1/2 is
a compact operator on L2(R1) and hence By Weyl’s theorem

σess.(L̃) = σess.((1− b∂2x)−1/2L0(1− b∂2x)−1/2) = σ((1− b∂2x)−1/2L0(1− b∂2x)−1/2)

Thus, as we have explained in the proof of Proposition 1, it will suffice to check that the matrix

(1 + 4π2bξ2)−1/2L0(ξ)(1 + 4π2bξ2)−1/2

is positive definite. But since L0(ξ) is positive definite, the result follows. Note that this only

shows that σess.(L̃) ≥ 0. Since we need to show an actual gap between σess.(L̃) and zero, it suffices
to observe (by the arguments in Proposition 1) that the eigenvalues of L0(ξ) have the rate of O(ξ2)

for large ξ, which implies that the positive eigenvalues of (1 + 4π2bξ2)−1/2L0(ξ)(1 + 4π2bξ2)−1/2

have the rate of O(1).

3.2. The negative eigenvalue and the zero eigenvalue are both simple. We now pass to
the harder task of establishing the existence and simplicity of a negative eigenvalue for L̃ as well

as the simplicity of the zero eigenvalue. Note that as we have already observed L

(
ϕ′

ψ′

)
= 0. It

follows that

L̃[(1− b∂2x)1/2
(
ϕ′

ψ′

)
] = (1− b∂2x)−1/2[L

(
ϕ′

ψ′

)
] = 0.

Thus, we have already identified one element of Ker(L̃), but it still remains to prove that

dim(Ker(L̃)) = 1, in addition to the existence and the simplicity of the negative eigenvalue

of L̃.
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Next, we find it convenient to introduce the following notation for the eigenvalues of a self-
adjoint operator L. Indeed, assume that L = L∗ is bounded from below, L ≥ −c, we order5 the
eigenvalues as follows

inf spec(L) = λ0(L) ≤ λ1(L) ≤ . . . .
Recall also the following max min principle, due to Courant

λ0(L) = inf
‖f‖=1

〈Lf, f〉, λ1(L) = sup
g 6=0

inf
‖f‖=1,f⊥g

〈Lf, f〉, λ2(L) = sup
g1,g2:g1 6=ag2

inf
‖f‖=1,f⊥span[g1,g2]

〈Lf, f〉.

Clearly, our claims can be recast in the more compact form

(14) λ0(L̃) < 0 = λ1(L̃) < λ2(L̃).

matters from L̃ to standard second order differential operators, like L.

Lemma 1. Let a, c < 0, b > 0 and w : 0 ≤ |w| < min
(

1,
√
ac
|b|

)
. Then

• all eigenvectors of L from (4), corresponding to non-positive eigenvalues, belong to
H∞(R1) = ∩∞l=1H

l(R1).
• If L is any bounded from below self-adjoint operator, for which
λ0(L) < 0 = λ1(L) < λ2(L), and S is a bounded invertible operator, then

λ0(S
∗LS) < 0 = λ1(S

∗LS) < λ2(S
∗LS).

• If L has the property λ0(L) < 0 = λ1(L) < λ2(L), then so does

L̃ = (1− b∂2x)−1/2L(1− b∂2x)−1/2. That is, (14) holds.

Proof. (Lemma 1)
Take the eigenvector f , corresponding to −a2, a ≥ 0, i.e. Lf = −a2f . As observed in the

proof of Proposition 1, we can represent L = L0 + V, where V is smooth and decaying matrix
potential. In addition, recall L0 ≥ κ, hence L0 + a2 ≥ κId and hence invertible. It follows that
the eigenvalue problem at −a2 can be rewritten in the equivalent form

f = −(L0 + a2)−1[Vf ]

Clearly, (L0+a2)−1 : L2 → H2, whence we get immediately that f ∈ H2, if f ∈ L2. Bootstrapping
this argument (recall V ∈ C∞) yields f ∈ H4, H6 etc. In the end, f ∈ H∞.

Next, we have

λ0(S
∗LS) = inf

f :‖f‖=1
〈S∗LSf, f〉 = inf

f 6=0

〈LSf, Sf〉
‖f‖2

= inf
g 6=0

〈Lg, g〉
‖S−1g‖2

< 0,

since λ0(L) = infg:‖g‖=1〈Lg, g〉 < 0. Since λ1(L) = 0, it follows that there is h, so that
infg⊥h〈Lg, g〉 ≥ 0. Thus,

λ1(S
∗LS) ≥ inf

f⊥Sh

〈S∗LSf, f〉
‖f‖2

= inf
g⊥h

〈Lg, g〉
‖S−1g‖2

≥ 0.

Since 0 is still an eigenvalue for L with say eigenvector χ, it follows that S−1χ is an eigenvector
to S∗LS, so 0 is also an eigenvalue for S∗LS and hence λ1(S

∗LS) = 0.
Regarding λ2(S

∗LS), we already know that λ2(S
∗LS) > λ1(S

∗LS) = 0. Assuming the contrary
would mean that λ2(S

∗LS) = 0, that is 0 is a double eigenvalue for S∗LS, say with linearly
independent eigenvectors f1, f2. From this and the invertibility of S, it follows that S−1f1, S

−1f2
are two linearly independent vectors in Ker(L), a contradiction with the assumption that 0 is a
simple eigenvalue for L.

5We follow the standard convention that if an equality appears multiple times in the sequence of eigenvalues,
that signifies that eigenvalue has the same multiplicity
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The result regarding (1−b∂2x)−1/2L(1−b∂2x)−1/2 follows in a similar way, although clearly cannot

go through the previous claim (since (1 − b∂2x)−1/2 does not have a bounded inverse). To show

that λ0(L̃) < 0, take an eigenvector say g0 : ‖g0‖ = 1, corresponding to the negative eigenvalue

−a2 for L. Note that by the first claim, such a g0 is smooth, so in particular (1 − b∂2x)1/2g0 is
well-defined, smooth and non-zero. We have

λ0(L̃) ≤ 〈L̃(1− b∂2x)1/2g0, (1− b∂2x)1/2g0〉
‖(1− b∂2x)1/2g0‖2

=
〈Lg0, g0〉

‖(1− b∂2x)1/2g0‖2
= − a20
‖(1− b∂2x)1/2g0‖2

< 0.

Next, to show that λ1(L) ≥ 0 (the fact that 0 is an eigenvalue for L̃ was established already),
recall that since L has a simple negative eigenvalue, with eigenfunction g0, we have

inf
g:g⊥g0

〈Lg, g〉 = 0.

It follows that

λ1(L̃) ≥ inf
f⊥(1−b∂2x)−1/2g0

〈L̃f, f〉
‖f‖2

= inf
h⊥g0

〈Lh, h〉
‖(1− b∂2x)1/2h‖2

≥ 0.

Regarding the proof of λ2(L̃) > 0, we start with λ2(L̃) ≥ λ1(L̃) = 0 and we reach a contradiction
as before (i.e. we generate two linearly independent vectors in Ker(L)), if we assume that

λ2(L̃) = 0. �

Using Lemma 1, allows us to reduce the proof of (14) to the proof of

(15) λ1(L) < 0 = λ1(L) < λ2(L),

which we now concentrate on.
We have

L =

(
1 + a∂2x bw∂2x + ψ − w

bw∂2x + ψ − w 1 + a∂2x + ϕ

)
=

= (1 + a∂2x)Id+ (bw∂2x − w)

(
0 1
1 0

)
+

(
0 ψ
ψ ϕ

)

Introduce an orthogonal matrix T =

(
1√
2

1√
2

− 1√
2

1√
2

)
and observe that

(
0 1
1 0

)
= T−1

(
1 0
0 −1

)
T.

It follows that

L = T−1
(

(1 + a∂2x)Id+ (bw∂2x − w + ψ)

(
1 0
0 −1

)
+
ϕ

2

(
1 1
1 1

))
T,

whence, by unitary equivalence, it suffices to consider the operator inside the parentheses. That
is, we consider

(16) M =

(
−∂2x(−a− bw) + (1− w) + ψ + ϕ

2
ϕ
2

ϕ
2 −∂2x(−a+ bw) + (1 + w)− ψ + ϕ

2

)
We shall need the following
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Lemma 2. Let α, λ > 0 and Q ∈ R1. Then, the Hill operator

L = −∂2x + α2 −Qsech2(λx) ≥ 0

if and only if

(17) α2 + αλ ≥ Q.

Proof. This is standard result, which follows from the ones found in the literature by a simple
change of variables. First, if Q ≤ 0, we see right away that L > 0 and also the inequality (17) is
satisfied as well. So, assume Q > 0. Consider Lf = σf and introduce f(x) = g(λx). We have
(after dividing by λ2 and assigning y = λx)

[−∂yy +
α2

λ2
− Q

λ2
sech2(y)]g =

σ

λ2
g(y)

Recall that the negative the operator −∂yy − Zsech2(y) are km = −
[(
Z + 1

4

) 1
2 −m− 1

2

]2
, pro-

vided
(
Z + 1

4

) 1
2 −m− 1

2 > 0, m = 0, 1, 2... [see [1]]. Note that k0 = inf σ(−∂yy −Zsech2(y)) and
hence, to avoid negative spectrum, we need to have

0 ≤ α2

λ2
+ k0 =

α2

λ2
−

[(
Q

λ2
+

1

4

) 1
2

− 1

2

]2
Solving this last inequality yields (17). �

We are now ready to proceed with the count of n(L̃) in each particular case of consideration.

Case I: a = c = −b, b > 0

Going back to the operator M , we can rewrite it as

M = S

 −∂2x + 1
b +

B+ 1
2

b(1−w)ϕ
ϕ

2b
√
1−w2

ϕ

2b
√
1−w2

−∂2x + 1
b +

−B+ 1
2

b(1+w)ϕ

S

where S =

( √
b(1− w) 0

0
√
b(1 + w)

)
. Thus, according to Lemma 1, we have reduced matters

to

M1 = (−∂2x +
1

b
)Id+ ϕ

 B+ 1
2

b(1−w)
1

2b
√
1−w2

1
2b
√
1−w2

−B+ 1
2

b(1+w)


Diagonalizing this last symmetric matrix yields the representation B+ 1

2
b(1−w)

1
2b
√
1−w2

1
2b
√
1−w2

ϕ
−B+ 1

2
b(1+w)

 = U∗

(
1+2Bw+

√
4B2+4Bw+1

2b(1−w2)
0

0 1+2Bw−
√
4B2+4Bw+1

2b(1−w2)

)
U

for some orthogonal matrix U . Factoring out U∗, U again and using Lemma 1 once more reduces
us to the operator

M2 =

(
L1 0
0 L2

)
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which contains the following Hill operators on the main diagonal

L1 = −∂2x +
1

b
+ η0

1 + 2Bw +
√

4B2 + 4Bw + 1

2b (1− w2)
sech2

(
x

2
√
b

)
;

L2 = −∂2x +
1

b
+ η0

1 + 2Bw −
√

4B2 + 4Bw + 1

2b (1− w2)
sech2

(
x

2
√
b

)
Note that n(L̃) = n(L1) + n(L2).

Using the formulas

B(η0) = ±
√

3

3 + η0
, w(η0) = ± 3 + 2η0√

3(3 + η0)

yields

L1 = −∂2x +
1

b
− 3

b
sech2

(
x

2
√
b

)
;

L2 = −∂2x +
1

b
− 3η0
b(9 + 4η0)

sech2
(

x

2
√
b

)
According to the formulas for the eigenvalues in Lemma 2 (with α = 1√

b
, λ = 1

2
√
b
,Q = 3

b > 0) we

have that

λ1(L1) =
α2

λ2
−

(√
Q

λ2
+

1

4
− 3

2

)2

= 2− (
√

12.25− 1.5)2 = 0,

which indicates that L1 has one negative eigenvalue and the next one is zero, whence n(L1) = 1

for all η0 > −3. Thus, n(L̃) = 1 + n(L2). It is also immediately clear that for η0 ∈ (−9
4 , 0),

L2 > 0 and hence n(L̃) = 1.

Case II: a = c < 0, b = d > 0, a+ b 6= 0

In this case, we have p = c+b
a+b = 1, η0 = 3(1−2p)

2p = −3
2 and thus w(η0) = w(−3/2) = 0,

λ = 1
2
√
−a , B(η0) = ±

√
2. This simplifies the computations quite a bit. In fact, starting from the

operator M , defined in (16), we see that it has the form

M = (a∂2x + 1)Id+

(
B + 1

2
1
2

1
2 −B + 1

2

)
ϕ

Recall that here B = ±
√

2. Consider first B =
√

2. Diagonalizing the matrix vian an orthogonal
matrix S yields the representation( √

2 + 1
2

1
2

1
2 −

√
2 + 1

2

)
= S−1

(
2 0
0 −1

)
S,

S =
1√
6

( √
3 + 2

√
2

√
3− 2

√
2

−
√

3− 2
√

2
√

3 + 2
√

2

)
Thus, in this case, we have represented the operator L in the form

(18) L = (ST )∗
(
−a∂2x + 1 + 2ϕ 0

0 −a∂2x + 1− ϕ

)
ST,

where S, T are explicit orthogonal matrices. It is now clear that since η0 = −3
2 < 0, we have that

ϕ(x) < 0 and hence the operator a∂2x + 1 − ϕ > 0. On the other hand, LKdV = a∂2x + 1 + 2ϕ
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is well known to have a zero eigenvalue (with eigenfunction ϕ′) and an unique simple negative
eigenvalue.

For the case B = −
√

2, we have (18), with

S =
1√
6

( √
3− 2

√
2

√
3 + 2

√
2√

3 + 2
√

2 −
√

3− 2
√

2

)

4. Proof of Proposition 3

The purpose of this section is to compute the quantity appearing in (13), whose negativity will
be equivalent to the stability of the waves. Thus, we need to find

L−1[(1− b∂2x)

(
ψ
ϕ

)
].

Here, our considerations need to be split in two cases: a = c = −b, and a = c < 0, b > 0.
The case a = c = −b is easier to manage, since in int we have a a free parameter w = w(η0) that

we can differentiate with respect to in (3). The remaining case is harder, because the parameter
η0 = −3/2, whence w = 0 and one cannot apply the same technique.

4.1. The case a = c = −b, b > 0. Taking a derivative with respect to w in (3), we find

L[

(
∂wϕ
∂wψ

)
= (1− b∂2x)

(
ψ
ϕ

)
,

whence

L−1[(1− b∂2x)

(
ψ
ϕ

)
] =

(
∂wϕ
∂wψ

)
.

We obtain

〈L−1[(1− b∂2x)

(
ψ
ϕ

)
], (1− b∂2x)

(
ψ
ϕ

)
〉 = 〈(1− b∂2x)

(
ψ
ϕ

)
,

(
∂wϕ
∂wψ

)
〉 =

= ∂w[〈ϕ,ψ〉+ b〈ϕ′, ψ′〉] = ∂w[B(η0)

∫
ϕ(ξ)2 + b(ϕ′(ξ))2dξ] =

= B∂w[

∫
R

[ϕ2(ξ) + bϕ′2(ξ)]dξ] + ∂wB

∫
R

[ϕ2(ξ) + bϕ′2(ξ)]dξ =

=
16
√
b

5

[
B
dη20
dw

+ η20
dB

dw

]
=

16
√
b

5

[
2B + η0

dB

dη0

]
η0
dη0
dw

=: d(w)

We are now ready to compute this last expression in the cases of interest.

4.1.1. B(η0) = −
√

3
3+η0

, w = − 3+2η0√
3(3+η0)

. We have

dη0
dw

= −2
√

3(3 + η0)
3
2

2η0 + 9
,
dB

dη0
=

√
3

2

1

(3 + η0)
3
2

and

d(w) = − 48
√

3b

10(3 + η0)
3
2

(4 + η0)η0
dη0
dw

< 0

for −9
4 < η0 < 0.
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4.1.2. B(η0) =
√

3
3+η0

, w = 3+2η0√
3(3+η0)

. We have

dη0
dw

=
2
√

3(3 + η0)
3
2

2η0 + 9
,
dB

dη0
= −
√

3

2

1

(3 + η0)
3
2

hence

d(w) =
48
√

3b

10(3 + η0)
3
2

(4 + η0)η0
dη0
dw

< 0.

for −9
4 < η0 < 0.

4.2. The case: a = c < 0, b > 0. As we have discussed above, we have explicit formulas for all
the quantities involved. Namely, we have w = 0, λ = 1

2
√
−a , B = ±

√
2. Thus,

ϕ(x) = −3

2
sech2

(
x

2
√
−a

)
.

4.2.1. Case B =
√

2. We need to compute

〈L−1
(

(1− b∂2x)ψ
(1− b∂2x)ϕ

)
,

(
(1− b∂2x)ψ
(1− b∂2x)ϕ

)
〉

To that end, we use the representation (18). We have

I = 〈L−1
(

(1− b∂2x)ψ
(1− b∂2x)ϕ

)
,

(
(1− b∂2x)ψ
(1− b∂2x)ϕ

)
〉 =

= 〈
(
a∂2x + 1 + 2ϕ 0

0 a∂2x + 1− ϕ

)
[ST

( √
2

1

)
(1− b∂2x)ϕ], ST

( √
2

1

)
(1− b∂2x)ϕ〉

A direct computation shows that ST

( √
2

1

)
=

(
2
√

2
3

− 1√
3

)
, whence our index I can be computed

as follows

I =
8

3
〈(a∂2x + 1 + 2ϕ)−1[(1− b∂2x)ϕ], (1− b∂2x)ϕ〉+

1

3
〈(a∂2x + 1− ϕ)−1[(1− b∂2x)ϕ], (1− b∂2x)ϕ〉

Denote f = (1− b∂2x)ϕ and

LKdV = a∂2x + 1 + 2ϕ

LHill = a∂2x + 1− ϕ
Note that by Weyl’s theorem σess.(LHill) = [1,∞). On the other hand, by the fact that ϕ < 0,
the potential −ϕ > 0 and hence, by the results for absence of embedded eigenvalues, σ(LHill) =
σess.(LHill) = [1,∞). We now compute the index

I =
1

3
(8〈L−1KdV f, f〉+ 〈L−1Hillf, f〉).

To that end, we differentiate the equation

aϕ′′ + ϕ+ ϕ2 = 0

with respect to a. We get6

(19) LKdV ϕa = −ϕ′′,

6we use the notation ϕa = ∂aϕ denotes the derivative with respect to a



STABILITY OF TRAVELING WAVES IN THE ‘ABC’ SYSTEM 15

whence L−1KdV [ϕ′′] = −ϕa. Using that LKdV ϕ = ϕ2 = −aϕ′′−ϕ and the above relation, we obtain
that

−ϕ = aL−1KdV ϕ
′′ + L−1KdV ϕ = −aϕa + L−1KdV ϕ.

It follows that

L−1KdV ϕ = aϕa − ϕ,(20)

L−1KdV f = (a+ b)ϕa − ϕ.(21)

and

〈L−1KdV f, f〉 = (a+ b)〈ϕa, ϕ〉 − b(a+ b)〈ϕa, ϕ′′〉 − 〈ϕ,ϕ〉+ b〈ϕ,ϕ′′〉.
By direct computations

〈ϕa, ϕ〉 =
1

2

d

da

∫ +∞

−∞
ϕ2dx = − 3

2
√
−a

,

〈ϕ,ϕ′′〉 = −
∫ +∞

−∞
ϕ′2dx = − 6

5
√
−a

,

〈ϕa, ϕ′′〉 = −1

2

d

da

∫ +∞

−∞
ϕ′2dx = − 3

10|a|
√
−a

,

〈ϕ,ϕ〉 =
9

2

√
−a
∫ +∞

−∞
sech4(y)dy = 6

√
−a.

As a consequence,

〈L−1KdV f, f〉 = −3(a+ b)

2
√
−a

+
3b(a+ b)

10|a|
√
−a
− 6
√
−a− 6b

5
√
−a

=

= −9

2

√
−a− 12

5

b√
−a

+
3b2

10|a|
√
−a

=
√
−a
(
−9

2
− 12

5

b

|a|
+

3

10

b2

a2

)
.

This yields the desired computation for the terms involving L−1KdV . We turn our attention

to L−1Hill. The situation here is a bit trickier, since we cannot compute explicitly the quantities

L−1Hill[ϕ], L−1Hill[ϕ
′′], as required in the formula for I. Instead, we need to rely on estimates. To

start with, observe that

LHill[ϕ] = aϕ′′ + ϕ− ϕ2 = −2ϕ2 = 2aϕ′′ + 2ϕ,

whence

(22) L−1Hill[aϕ
′′ + ϕ] =

ϕ

2
.

Since we need to compute L−1Hill[f ] = L−1Hill[ϕ − bϕ
′′], we project the vector f onto aϕ′′ + ϕ and

its orthogonal subspace as follows

f = ϕ− bϕ′′ = 〈ϕ− bϕ
′′, aϕ′′ + ϕ〉

‖aϕ′′ + ϕ‖2
(aϕ′′ + ϕ) + g

Calculations then show that since

‖ϕ′′‖2 = 〈ϕ′′, ϕ′′〉 =
6

7|a|
√
−a

,

we have that

f =

(
7

9
+

2

9

b

|a|

)
(aϕ′′ + ϕ) + g
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whence

L−1Hill[f ] =

(
7

9
+

2

9

b

|a|

)
ϕ

2
+ L−1Hill[g].

Thus, the quantity that needs to be computed is

〈L−1Hillf, f〉 =
1

2

(
7

9
+

2

9

b

|a|

)
〈ϕ− bϕ′′, ϕ〉+ 〈L−1Hillg, f〉 =

=
1

2

(
7

9
+

2

9

b

|a|

)
〈ϕ− bϕ′′, ϕ〉+ 〈L−1Hillg, g〉+

1

2

(
7

9
+

2

9

b

|a|

)
〈g, ϕ〉

All of these can be computed explicitly, except for 〈L−1Hillg, g〉, which we estimate by

0 < 〈L−1Hillg, g〉 ≤ ‖g‖
2, which holds since σ(LHill) ⊂ [1,∞). Thus,

〈L−1Hillf, f〉 ≤
1

2

(
7

9
+

2

9

b

|a|

)
〈ϕ− bϕ′′, ϕ〉+ ‖g‖2 +

1

2

(
7

9
+

2

9

b

|a|

)
〈g, ϕ〉 =

=
√
−a
(

22

45

b2

a2
+

2

9

b

|a|
+

26

9

)
and on the other hand

〈L−1Hillf, f〉 >
1

2

(
7

9
+

2

9

b

|a|

)
〈ϕ− bϕ′′, ϕ〉+ 1

2

(
7

9
+

2

9

b

|a|

)
〈g, ϕ〉 =

√
−a
(

4

45

b2

a2
+

46

45

b

|a|
+

112

45

)
.

Thus, we obtain the following estimate for the instability index I

3I = 8〈L−1KdV f, f〉+ 〈L−1Hillf, f〉 ≤
√
−a
(

8

(
−9

2
− 12b

5|a|
+

3b2

10a2

)
+

(
22

45

b2

a2
+

2

9

b√
−a

+
26

9

))
=

=
2
√
−a

45

(
65
b2

a2
− 427

b√
−a
− 745

)
On the other hand, we have the following estimate from below

3I = 8〈L−1KdV f, f〉+ 〈L−1Hillf, f〉 >
√
−a
(

8

(
−9

2
− 12b

5|a|
+

3b2

10a2

)
+

(
4

45

b2

a2
+

46

45

b

|a|
+

112

45

))
=

2
√
−a

45

(
56
b2

a2
− 409

b

|a|
− 754

)
.

The picture below shows the graphs of the two estimates of 3I/
√
−a. If one solves the corre-

sponding quadratic equations, we see that we have stability, whenever

0 ≤ b

−a
<

1

130

(
427 + 3

√
41781

)
∼ 8.00163.

and instability, when

b

−a
>

1

112

(
409 + 3

√
37353

)
∼ 8.82864.
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Figure 1. The picture shows the graphs of the function 2
45

(
65z2 − 427z − 745

)
is in blue, while 2

45(56z2 − 409z − 754) in red. Note that the graphs do coincide
for z = 1, which is the case, since there g = 0 and the computations becomes
precise.

4.2.2. Case B = −
√

2. In this case, the computation for the index is the same since

I = 〈L−1
(

(1− b∂2x)ψ
(1− b∂2x)ϕ

)
,

(
(1− b∂2x)ψ
(1− b∂2x)ϕ

)
〉 =

= 〈
(
a∂2x + 1 + 2ϕ 0

0 a∂2x + 1− ϕ

)
[ST

(
−
√

2
1

)
(1− b∂2x)ϕ], ST

(
−
√

2
1

)
(1− b∂2x)ϕ〉 =

=
1

3
(8〈L−1KdV f, f〉+ 〈L−1Hillf, f〉),

where in the last line, we have used that ST

( √
2

1

)
=

(
2
√

2
3

− 1√
3

)
as above. The rest of the

argument proceeds in exactly the same way, since the exact same quantity is being computed.
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