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This paper studies the dynamic responses of an elastically connected double-functionally graded beam
system (DFGBS) carrying a moving harmonic load at a constant speed by using Euler–Bernoulli beam the-
ory. The two functionally graded (FG) beams are parallel and connected with each other continuously by
elastic springs. Six elastically connected double-functionally graded beam systems (DFGBSs) having dif-
ferent boundary conditions are considered. The point constraints in the form of supports are assumed to
be linear springs of large stiffness. It is assumed that the material properties follow a power-law variation
through the thickness direction of the beams. The equations of motion are derived with the aid of
Lagrange’s equations. The unknown functions denoting the transverse deflections of DFGBS are expressed
in polynomial form. Newmark method is employed to find the dynamic responses of DFGBS subjected to
a concentrated moving harmonic load. The influences of the different material distribution, velocity of the
moving harmonic load, forcing frequency, the rigidity of the elastic layer between the FG beams and the
boundary conditions on the dynamic responses are discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of functionally graded materials (FGMs) was first
introduced in 1984 as ultrahigh temperature-resistant materials
for aircrafts, space vehicles, nuclear and other engineering
applications. Since then, FGMs have attracted much interest as
heat-resistant materials. Functionally graded materials are heter-
ogeneous composite materials, in which the material properties
vary continuously from one interface to the other. This is
achieved by gradually varying the volume fraction of the constit-
uent materials. The continuity of the material properties reduces
the influence of the presence of interfaces and avoids high inter-
facial stresses. The outcome of this is that this class of materials
can survive environments with high-temperature gradients, while
maintaining the desired structural integrity. Investigations on the
dynamic characteristics of FG structures have been an area of
intensive research over the last decade (see Refs. [1–23]).

The dynamic response of beam-type structures to moving loads
has been well documented in hundreds of contributions during the
past few decades, owing to their extensive use in many engineer-
ing applications, such as bridges, guideways, railroads, overhead
cranes and gun-tubes. Under the action of a moving load or mass,
a beam-type structure produces larger deflections and higher
ll rights reserved.
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stresses than it does under an equivalent load applied statically.
Such a structure is very important in engineering applications,
especially in transportation system and in the design of machining
process. Numerous previous studies have been reported in this
field [24–40]. However, most of the published papers related to
moving load problems are given for homogeneous beams, and re-
search efforts devoted to vibration of FG beams under moving
loads are very limited. For example, Yang et al. [41] studied free
and forced vibrations of cracked FG beams subjected to an axial
force and a moving load were investigated by using the modal
expansion technique. S�ims�ek and Kocatürk [42] investigated the
free and forced vibration characteristics of a FG Euler–Bernoulli
beam under a moving harmonic load. Khalili et al. [43] employed
the Rayleigh–Ritz method in space domain and a step-by-step dif-
ferential quadrature method in time domain to study the transient
response of FG beams induced by moving loads. S�ims�ek [44] exam-
ined dynamic deflections and stresses of an FG simply-supported
beam subjected to a moving mass in the context of Euler–Bernoulli,
Timoshenko and the third order shear deformation beam theories.
S�ims�ek [45] performed the non-linear dynamic analysis of a func-
tionally graded beam with immovable supports under a moving
harmonic load. In a recent study, Yan et al. [46] studied the dy-
namic responses of FG Timoshenko beam with an open edge crack
resting on an elastic foundation subjected to a transverse load
moving at a constant speed.

A double-beam system, which consists of two parallel beams
joined by innumerable coupling elastic springs and dashpots, have
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a great importance in many fields of civil and mechanical engineer-
ing. Recently, the double-beam system has been used as a new
vibration absorber to control the vibration of a beam-type struc-
ture. Such a system for vibration isolation is called as a continuous
dynamic vibration absorber (CDVA) [47] or dynamic absorbing
beam system (DABS) [48]. A dynamic absorbing beam system
(DABS) consists of a main beam, a dynamic absorbing beam and
uniformly distributed-connecting springs and dampers between
the main and dynamic absorbing beam [48]. The dynamic absorb-
ing beam and viscoelastic layer between the beams are designed in
order to reduce the vibration experienced by the main beam. The
double-beam system is used to model floating-slab tracks, which
are widely used to control vibration from underground trains
[49]. In a system of the floating-slab tracks, an upper beam ac-
counts for the rail and a lower beam corresponds to the floating
slab. Railpads between the upper and the lower beams are repre-
sented by a continuous layer of springs and dashpots. In this con-
text, Shamalta and Metrikine [50] investigated the steady-state
dynamic response of an embedded railway track to a moving train.
The model for the track consists of a flexible plate performing ver-
tical vibrations, two beams that are connected to the plate by con-
tinuous viscoelastic elements and an elastic foundation that
supports the plate. Further, elastically connected concentric beams
are able to capture to mechanical behavior of multi-walled carbon
nanotubes in nanomechanics. The elastic layers provide a linear
model for inter-atomic Van der Waals forces [51]. Because of the
great practical importance in the fields of aerospace, civil and
mechanical engineering, the different problems associated with
the free and forced vibration analysis of the elastically connected
parallel-beam systems have been investigated by several research-
ers. For instance, free vibration analysis of two parallel simply sup-
ported beams continuously joined by a Winkler elastic layer was
presented by Oniszczuk [47]. Seelig and Hoppmann [52] studied
free vibration of a system of n elastically connected parallel beams
with various boundary conditions. In [52], frequencies obtained
from theoretical analysis were compared with those obtained from
experiment. It was concluded that for the lower modes, at least up
to the eighth, the agreement between the theory and experiment
was very good. Kessel [53] derived the resonance conditions for
an elastically connected simply-supported double-beam system
in which one of the members is subjected to a moving point load
that oscillates longitudinally along the beam about a fixed point
along the length of one of the beams. Rao [54] examined free flex-
ural vibration of elastically connected Timoshenko beams consid-
ering the effects of the shear deformation and the rotary inertia.
Chonan [55] studied the dynamical behavior of two identical
beams connected with a set of independent springs subjected to
an impulsive load by using Laplace transformations. Vu et al. [56]
presented an exact method for solving the vibration of a double-
beam system subject to harmonic excitation. Oniszczuk [57] inves-
tigated undamped forced transverse vibrations of an elastically
connected complex simply supported double-beam system. The
problem was formulated and solved in the case of simply sup-
ported beams. The classical modal expansion method was applied
to ascertain dynamic responses of beams due to arbitrarily distrib-
uted continuous loads. Several cases of particularly interesting
excitation loadings were investigated. The dynamic response for
a simply supported homogeneous isotropic double-beam system
subject to a moving constant load was investigated by Abu-Hilal
[58]. Zhang et al. [59] studied the free vibration and buckling of
an elastically connected simply-supported double-beam system
under compressive axial loading on the basis of the Bernoulli–Euler
beam theory. Based on Bernoulli–Euler beam theory, the effect of
compressive axial load on the properties of forced transverse
vibration of an elastically connected double-beam system was
investigated by Zhang et al. [60]. In this study, two different load-
ing conditions, uniformly distributed harmonic load and a concen-
trated harmonic force applied at the midspan of the beam, were
taken into account. Jun and Hongxing [61] developed an exact dy-
namic stiffness method for predicting the free vibration character-
istics of a three-beam system, which is composed of three non-
identical uniform beams of equal length connected by innumerable
coupling springs and dashpots. On the basis of Timoshenko beam
theory, Jun et al. [62] established an exact dynamic stiffness matrix
for an elastically connected three-beam system, which is com-
posed of three parallel beams of uniform properties with uniformly
distributed-connecting springs among them. Ariaei et al. [63]
investigated the dynamic behavior of n parallel identical elastically
connected Timoshenko beam subjected to a moving load with con-
stant magnitude. In this study, in order to decouple the governing
equations, each beam was divided into m + 1 segments, which are
separated by m intermediate connections. It leads to discontinu-
ities at each spring location in shear force proportional to vertical
displacement. In a recent study, S�ims�ek [64] have presented an
analytical method for the forced vibration of an elastically con-
nected double-carbon nanotube system (DCNTS) carrying a mov-
ing nanoparticle based on the nonlocal elasticity theory. A novel
state-space form for studying transverse vibrations of double-
beam systems, made of two outer elastic beams continuously
joined by an inner viscoelastic layer, has been presented by Palmeri
and Adhikari [65].

The above review clearly indicates that the majority of the
aforementioned works on the elastically connected beams are re-
lated to the free vibration analysis of beams made of homogeneous
material properties. Further, the works [53,57,58,63,64] related to
the forced vibration of double-beam systems subjected to moving
loads were limited to the particular cases of identical beams with
simply-supported boundary conditions, homogeneous material
properties. Also, in these works, the moving load is not harmonic,
namely it is a moving load with constant magnitude. Because,
the title problem with arbitrary boundary conditions and forcing
functions is difficult to solve. Under certain conditions, the prob-
lem becomes tractable. Also, closed-form solutions for the forced
response of damped double-beam systems can be obtained under
specialized cases. The present formulation is very useful to analyze
double or multiple-beam system with arbitrary forcing function
and arbitrary boundary conditions including elastic support, multi-
ple-beam system whose elements are made of different material
composition, those with variable cross-section etc. The dynamic
responses of the elastically connected functionally graded dou-
ble-beam system (DFGBS) with the different boundary conditions
of the two parallel beams to a moving harmonic load are not avail-
able in the open literature.

Therefore, based on the above discussion there is a strong
encouragement to gain an understanding of the entire subject of
vibration complex beam system and the mathematical modeling
of such phenomena. This paper focuses on the dynamic behavior
of DFGBS subjected to a moving harmonic load at a constant speed
based on Euler–Bernoulli beam theory. The two parallel function-
ally graded (FG) beams are connected with each other continuously
by elastic springs. Six elastically connected double-functionally
graded beam systems (DFGBSs) having different boundary condi-
tions, which are combination of pinned, clamped and free end sup-
ports, are considered. The point constraints of the supports are
modeled as linear springs of very large stiffness. These linear
springs of sufficiently large stiffness will ensure that the points
where the springs attached will remain stationary during the trans-
verse deformation of the beam. Material properties of the beams
vary continuously in the thickness direction according to the
power-law form. The equations of motion are derived with the
aid of Lagrange’s equations. The unknown functions denoting the
transverse deflections of DFGBS are expressed in polynomial form.
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Newmark method [66] is employed to find the dynamic responses
of DFGBS subjected to a concentrated moving harmonic load. The
influences of the different material distribution, velocity of the
moving harmonic load, forcing frequency, the rigidity of the elastic
layer between the FG beams and the boundary conditions on the
dynamic responses are discussed.

2. Theory and formulations

The physical model of the DFGBS under consideration is com-
posed of two parallel, slender, prismatic and functionally graded
beams connected each other by innumerable coupling springs with
the spring constant kw, as shown in Fig. 1. The beams are supported
with the aid of the elastic springs of very large stiffness at the end
of the beams. All beams have the same length L, width b, thickness
h. The top and the bottom beams are designated as the primary
beam and the secondary beam, respectively. The primary beam is
subjected to a moving harmonic load Q(t), which moves in the axial
direction of the beam with constant velocity, vQ. It is assumed that
the moving harmonic load is in contact with the primary beam
during the excitation, and the inertial effects of the moving load
are negligible.

In this study, it is assumed that material properties of the beam,
i.e., Young’s modulus E and mass density q, vary continuously in
the thickness direction (z axis) according to the power-law form.
Therefore, the material properties are the functions of the z coordi-
nate, namely E = E(z) and q = q(z). According to the rule of mixture,
the effective material property, P, can be expressed as

P ¼ PT VT þ PBVB ð1Þ

where PT and PB are the material properties of the top and the bot-
tom surfaces of the beam, VT and VB are the volume fractions of the
top and bottom surfaces of the beam and related by

VT þ VB ¼ 1 ð2Þ

The effective material properties of the FG beam is defined by the
power-law form introduced by [67]. The volume fraction of the
upper constituent of the beam is assumed to be given by

VT ¼
z
h
þ 1

2

� �k

ð3Þ

where k is the power-law exponent which dictates the material
variation profile through the thickness of the beam. Fig. 2 shows
variation of the volume fraction of the upper constituent, VT,
through the thickness of the beam.
Fig. 1. An elastically connected double-functionally graded beam syst
F
th
Therefore, from Eqs. (1)–(3), the effective Young’s modulus E
and the effective mass density q of the FG beam can be expressed
as follows:

EðzÞ ¼ ðET � EBÞ
z
h
þ 1

2

� �k

þ EB ð4aÞ

qðzÞ ¼ ðqT � qBÞ
z
h
þ 1

2

� �k

þ qB ð4bÞ

It is evident from Eqs. (4a–b) that when z = �h/2, E = EB, q = qB and
when z = h/2, E = ET, q = qT. Considering the small deformations and
assuming the material of FG beam obeys Hooke’s law, the internal
strain energy of DFGBS based on the Euler–Bernoulli beam theory
is given as

Uint ¼
1
2

X2

i¼1

Z L=2

�L=2
Axx

@uiðx; tÞ
@x

� �2

� 2Bxx
@uiðx; tÞ
@x

� �
@2wiðx; tÞ

@x2

 !"(

þ Dxx
@2wiðx; tÞ

@x2

 !2
3
5dx

9=
; ð5Þ

where subscripts i = 1, 2 denote the primary and the secondary
beams, respectively. ui and wi are the axial and the transverse
displacements of the ith beam, x is the spatial co-ordinate and t
denotes time. Axx, Bxx and Dxx are extensional, coupling and bending
rigidities, respectively and defined as follows:

ðAxx;Bxx;DxxÞ ¼
Z

A
EðzÞð1; z; z2ÞdA ð6Þ

Potential energy induced by the elastic layer between the beams is
given as
em (DFGBS) subjected to a concentrated moving harmonic load.
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Uel ¼
1
2

Z L=2

�L=2
kwðw1 �w2Þ2dx ð7Þ

where kw is the spring constant of the elastic layer. Additive strain
energy function of the translational, the rotational and the exten-
sional springs at the ends of the beams is given as

Usup ¼
1
2

X2

i¼1

kei u1ðxsi; tÞ½ �2 þ kti½w1ðxsi; tÞ�2 þ kri
@w1ðxsi; tÞ

@x

� �2
( )

þ 1
2

X4

i¼3

kei½u2ðxsi; tÞ�2 þ kti½w2ðxsi; tÞ�2 þ kri
@w2ðxsi; tÞ

@x

� �2
( )

ð8Þ
where kei, kti and kri are the spring constants of the extensional,
translational and the rotational springs, respectively. xsi (xs1 =
xs3 = �L/2, xs2 = xs4 = L/2) denotes the location of the ith support.
Potential of the concentrated moving harmonic load at any instant
is given below
Table 1
The spring constants for the different boundary conditions.

Boundary conditions Left end spring c

ke1 = kt1 = kr1 = 1

ke1 = kt1 = kr1 = 1

ke1 ¼ kt1 ¼ 1� 1
kr1 ¼ 0

ke1 = kt1 = kr1 = 1

Fig. 3. The effect of the number of polynomial term on the non-dimensional

Fig. 4. The effect of the number of time step on the non-dimensional defl
Uext ¼ �
Z L=2

�L=2
QðtÞdðx� xQ ðtÞÞw1ðx; tÞdx ð9aÞ

QðtÞ ¼ Q 0sinðXtÞ ð9bÞ

xQ ðtÞ ¼ �L=2þ vQ t; �L=2 6 xQ ðtÞ 6 L=2; 0 6 t 6 L=vQ ð9cÞ

where d( � ) is the Dirac delta function, Q0 is the amplitude of the
moving harmonic load, X is the excitation frequency of the moving
harmonic load, xQ(t) is the location of the moving load at any in-
stant. Including the rotary inertia and the axial inertia effects, the
kinetic energy of the beam, Ke, at any instant can be expressed as

Ke ¼
1
2

X2

i¼1

Z L=2

�L=2
IA

@uiðx; tÞ
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� �2

� 2IB
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@2wiðx; tÞ
@x@t

 !2
3
5dx

9=
; ð10Þ
onstants Right end spring constants

� 1012 N/m �1 ke2 = kt2 = kr3 = 1 � 1012 N/m �1

� 1012 N/m �1 kt2 ¼ 1� 1012 N=m � 1
ke2 ¼ kr3 ¼ 0

012 N=m � 1 kt2 ¼ 1� 1012 N=m � 1
ke2 ¼ kr3 ¼ 0

� 1012 N/m �1 ke2 = kt2 = kr3 = 0

deflections for 25 m/s, j = 100, (a) CC–CC DFGBS and (b) PP–PP DFGBS.

ections for 25 m/s, j = 100, (a) CC–CC DFGBS and (b) PP–PP DFGBS.
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The inertia terms (IA, IB, ID) appearing in Eq. (10) are defined as
follows:

ðIA; IB; IDÞ ¼
Z

A
qðzÞð1; z; z2ÞdA ð11Þ
Fig. 5. Variation of the non-dimensional dynamic deflections of CC–CC DFGBS with the
layer.
where q is the mass density of the beam. Equations of the motion
will be derived by using Lagrange’s equations. It is well-known that
Hamilton’s principle can be expressed as Lagrange’s equations
when the functions of infinite dimensions can be expressed in terms
moving load velocity for X = 0 and for various values of the stiffness of the elastic
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of generalized coordinates qi(t). Therefore, the transverse and the
axial displacements of DFGBS can be approximated as

w1ðx; tÞ
w2ðx; tÞ
u1ðx; tÞ
u2ðx; tÞ

8>>><
>>>:

9>>>=
>>>;
¼
PN
n¼1

AnðtÞxn�1

BnðtÞxn�1

CnðtÞxn�1

DnðtÞxn�1

8>>><
>>>:

9>>>=
>>>;

ð12Þ
Fig. 6. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS with the mo
By introducing the following definitions;

qn ¼ An n ¼ 1;2; . . . ;N ð13aÞ
qn ¼ Bn�N n ¼ N þ 1; . . . ;2N ð13bÞ
qn ¼ Cn�2N n ¼ 2N þ 1; . . . ;3N ð13cÞ
qn ¼ Dn�3N n ¼ 3N þ 1; . . . ;4N ð13dÞ
ving load velocity for X = 0 and for various values of the stiffness of the elastic layer.
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and then using the Lagrange’s equations given by Eq. (14)

d
dt

@Ke

@ _qn

� �
þ @Uint

@qn
þ @Uel

@qn
þ @Usup

@qn
þ @Uext

@qn
¼ 0 n ¼ 1;2;3; . . . ;4N

ð14Þ

yields the following system of equations of motion

½K�fqðtÞg þ ½KS�fqðtÞg þ ½M�f€qðtÞg ¼ fFðtÞg ð15Þ

where [K] is the stiffness matrix, the matrix [KS] exists due to the
linear springs at the end of the beams, [M] is the mass matrix,
Table 2
Maximum non-dimensional dynamic deflections of CC–CC DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 0.221 516 0.0003 530
0.3 0.255 434 0.0005 446
1 0.296 366 0.0007 376
3 0.325 324 0.0008 332

10 0 0.219 518 0.003 532
0.3 0.252 437 0.005 448
1 0.292 368 0.007 378
3 0.321 326 0.008 334

100 0 0.201 533 0.032 551
0.3 0.228 447 0.041 467
1 0.261 379 0.054 396
3 0.284 336 0.064 352

1000 0 0.128 492 0.107 687
0.3 0.143 375 0.125 582
1 0.165 280 0.147 493
3 0.180 248 0.162 435

10,000 0 0.112 466 0.110 538
0.3 0.129 389 0.127 462
1 0.149 337 0.147 390
3 0.164 300 0.162 341

Table 3
Maximum non-dimensional dynamic deflections of CP–CP DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 0.393 459 0.0014 377
0.3 0.453 387 0.0019 318
1 0.526 326 0.0026 268
3 0.578 288 0.0032 237

10 0 0.385 463 0.014 381
0.3 0.443 390 0.018 321
1 0.512 329 0.025 271
3 0.562 290 0.030 240

100 0 0.325 482 0.100 414
0.3 0.366 406 0.126 353
1 0.413 349 0.160 301
3 0.446 310 0.186 268

1000 0 0.208 337 0.199 567
0.3 0.238 297 0.227 490
1 0.274 266 0.260 414
3 0.300 251 0.284 352

10,000 0 0.197 455 0.197 460
0.3 0.227 387 0.227 385
1 0.263 321 0.264 322
3 0.290 285 0.290 288
{F(t)} is the time-dependent generalized load vector generated by
the concentrated moving harmonic load and {q(t)} = {A(t),B(t),
C(t),D(t)}T. The size of matrices [K], [KS] and [M] is 4N � 4N and
the size of vector {F(t)} is 4N. The expanded form of Eq. (15) and
the terms of [K], [KS], [M] and {F(t)} are given in Appendix at the
end of the paper. The equations of motion are solved by using the
implicit time integration method of Newmark-b and then the dis-
placements, velocities and accelerations of the beam at the consid-
ered point and time are determined for any time t between
0 6 t 6 L/vQ.
Table 4
Maximum non-dimensional dynamic deflections of PP–PP DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 0.927 279 0.008 269
0.3 1.069 235 0.011 228
1 1.241 198 0.015 192
3 1.362 175 0.018 170

10 0 0.885 280 0.076 277
0.3 1.014 238 0.100 234
1 1.167 202 0.132 198
3 1.276 179 0.158 176

100 0 0.636 300 0.377 320
0.3 0.706 254 0.457 273
1 0.786 216 0.556 234
3 0.841 183 0.627 215

1000 0 0.477 258 0.458 294
0.3 0.549 205 0.531 251
1 0.639 176 0.617 215
3 0.704 159 0.677 189

10,000 0 0.467 274 0.465 281
0.3 0.538 233 0.537 235
1 0.625 194 0.625 199
3 0.688 173 0.687 174

Table 5
Maximum non-dimensional dynamic deflections of CF–CF DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 2.892 95 0.148 75
0.3 3.316 80 0.194 62
1 3.819 66 0.258 54
3 4.175 61 0.310 46

10 0 2.217 98 0.832 85
0.3 2.488 84 1.026 72
1 2.790 68 1.266 62
3 3.015 61 1.466 56

100 0 1.596 88 1.421 88
0.3 1.825 75 1.659 75
1 2.100 62 1.951 62
3 2.295 55 2.156 55

1000 0 1.503 89 1.513 89
0.3 1.734 75 1.745 75
1 2.013 63 2.026 63
3 2.215 55 2.228 55

10,000 0 1.508 89 1.509 89
0.3 1.739 75 1.739 75
1 2.019 63 2.020 63
3 2.221 56 2.222 56
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3. Numerical results

In this section, the effects of the material composition, velocity
of the moving harmonic load, forcing frequency, the stiffness of the
elastic layer between the FG beams and the boundary conditions
on the dynamic responses of DFGBS are discussed in detail. The
physical system considered in this study is an elastically connected
double-beam system, composed of two parallel FG beams with
uniformly distributed-connecting springs among them. The FG
beams of DBGBS are composed of Steel (SUS304; E = 210 GPa,
q = 7800 kg/m3) and Alumina (Al2O3; Al; E = 390 GPa, q = 3960
kg/m3) and its properties change through the thickness of the
beam according to the power-law. The bottom surfaces of the FG
beams are pure steel, whereas the top surfaces of the beams are
pure alumina. The dimensions of the FG beams are as follows:
b = 0.5 m, h = 1 m, L = 20 m. Six models with different boundary
conditions are considered. These are:

� The primary beam clamped–clamped, the secondary beam
clamped–clamped (CC–CC).
� The primary beam clamped–pinned, the secondary beam

clamped–pinned (CP–CP).
� The primary beam pinned–pinned, the secondary beam pin-

ned–pinned (PP–PP).
� The primary beam clamped-free, the secondary beam clamped-

free (CF–CF).
� The primary beam pinned–pinned, the secondary beam

clamped–clamped (PP–CC).
� The primary beam pinned–pinned, the secondary beam

clamped-free (PP–CF).

In the above notation, the first letters denote the primary beam;
the second letters denote the secondary beam. The point con-
straints of the supports are modeled as linear springs of very large
stiffness. These linear springs of sufficiently large stiffness will
ensure that the points where the springs attached will remain sta-
tionary during the transverse deformation of the beam. For exam-
ple, the spring constants are taken as kei = kti = kri = 1 � 1012 N/m
Table 6
Maximum non-dimensional dynamic deflections of PP–CC DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 0.927 280 0.0013 372
0.3 1.069 235 0.0017 313
1 1.241 198 0.0024 263
3 1.365 175 0.0029 233

10 0 0.885 283 0.012 381
0.3 1.013 239 0.016 319
1 1.166 202 0.022 271
3 1.274 179 0.027 240

100 0 0.617 337 0.088 440
0.3 0.681 293 0.112 376
1 0.752 246 0.142 315
3 0.800 215 0.164 286

1000 0 0.237 395 0.172 600
0.3 0.262 339 0.195 508
1 0.292 290 0.223 424
3 0.313 260 0.242 369

10,000 0 0.152 443 0.152 514
0.3 0.173 384 0.173 431
1 0.199 329 0.199 354
3 0.217 291 0.218 314
for the clamped end, and kei = kti = 1 � 1012 N/m, kri = 0 for the pin-
ned end (see Table 1 for the other boundary conditions). In the
numerical analysis, in order to ensure the homogeneity among
the results of the six models with different end conditions, the dy-
namic deflections of the six models are normalized by the same
static deflection D = Q0 L3/48EsteelI of the fully steel beam under a
point load Q0 at the mid-span of the beam. Therefore, the normal-
ized dynamic deflections do not depend on the magnitude of the
moving load Q(t). The effect of the elastic layer stiffness is consid-
ered by the dimensionless parameter (j) as follows:

j ¼ kwL4

EsteelI
ð16Þ

Also, the dimensionless time t⁄ is defined by

t� ¼ xQ

L
¼ �L=2

L
þ vQ t

L
¼ �1

2
þ vQ t

L
ð17Þ

Therefore, when t⁄ = �0.5 the moving harmonic load is at the left
edge of the beam, i.e., xQ = �L/2, and when t⁄ = 0.5 the load is at
the right edge of the beam, i.e., xQ = L/2.

Figs. 3 and 4 show the effect of the number of the polynomial
term and the number of time step in Newmark integration method
on the maximum non-dimensional dynamic deflections of DFGBS
with CC–CC and PP–PP boundary conditions. These figures are gi-
ven for CC–CC and PP–PP boundary conditions with j = 100 for
the sake of the brevity since similar results are obtained for the
other boundary conditions and the other parameter. It is seen from
Figs. 3 and 4 that the dynamic deflections are saturated when
twelve terms are taken, and the numerical accuracy of the re-
sponses improved only slightly when the number of time step is
taken to be more than 100. From the analysis conducted, setting
the number of the modes to 12 and the number of time step to
500 is very satisfactory for the desired numerical precision in the
subsequent numerical calculations.

Figs. 5 and 6 present the maximum non-dimensional dynamic
deflections of the primary and the secondary beams of DFGBSs as
a function of the moving load velocity for the two different bound-
ary conditions. In these figures, the maximum dimensionless dy-
Table 7
Maximum non-dimensional dynamic deflections of PP–CF DFGBS and the corre-
sponding critical velocities for various values of the stiffness of the elastic layer, the
power-law exponent and for X = 0.

Stiffness
parameter, j

Power-law
exponent, k

Primary beam Secondary beam

Max.
(w1(x, t)/D)

vcr

(m/s)
Max.
(w2(x, t)/D)

vcr

(m/s)

1 0 0.927 277 0.013 110
0.3 1.069 235 0.018 94
1 1.241 198 0.024 80
3 1.365 175 0.029 71

10 0 0.885 283 0.101 139
0.3 1.013 239 0.128 120
1 1.166 202 0.165 104
3 1.275 179 0.193 94

100 0 0.624 322 0.227 231
0.3 0.689 283 0.324 201
1 0.763 243 0.380 177
3 0.813 214 0.420 159

1000 0 0.325 275 0.266 325
0.3 0.364 237 0.308 284
1 0.410 205 0.357 250
3 0.443 184 0.392 229

10,000 0 0.242 413 0.241 435
0.3 0.276 353 0.276 366
1 0.318 302 0.318 308
3 0.348 268 0.348 265
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namic deflections at the center of the beams are plotted versus the
corresponding velocities with 1 m/s increments for various values
of the power-law exponent (k = 0, 0.3, 1, 3) and the stiffness of the
elastic layer (j = 1, 10, 100, 1000, 10,000). In order to avoid the
inclusion of too many figures to this paper, only some curves for
CC–CC and PP–PP DFGBS will be shown. According to these figures,
it is discerned that the non-dimensional dynamic deflections gen-
erally improve until a certain value of the moving load velocity,
and after this value, increase in the velocity leads to a decrease
in the non-dimensional dynamic deflections. This velocity, which
makes the vibration amplitude reach its maximum value, is called
the critical velocity. It is seen from the figures that as the steel con-
stituent increases in DFGBs, i.e., the power-law exponent (k) in-
creases, the non-dimensional deflections of the primary and the
secondary beams also increase. The increasing in the power-law
exponent is seen to significantly decrease the structural stiffness
hence the bending rigidity. It should be noted that when the
power-law exponent (k) approaches to zero, the material proper-
ties of the two FG beam approach to those of pure alumina and
Fig. 7. Variation of the non-dimensional dynamic deflections of CC–CC DFGBS with the
elastic layer.
when the power-law exponent (k) approaches to infinity, the
material properties of the two FG beam approach to those of pure
steel. From the depicted results in Figs. 5 and 6, it is observed that
as the stiffness of the elastic layer parameter (j) increases the
deflections of the primary beam decrease while the deflections of
the secondary beam increase. When the stiffness of the elastic
layer parameter (j) takes very small value (i.e., j = 1), the deflec-
tions of the secondary beams are also very small. This is due to
the weak elastic coupling between the primary and the secondary
beams. Further investigation shows that the non-dimensional
deflections of the two beams become equal to each other for the
very large value of the stiffness of the elastic layer parameter
(i.e., j = 10,000). The situation for the very large values of j can
be defined as rigid coupling between the two beams. The deflec-
tions of the two beams are equal to each other since the two beams
behave like a single beam in the case of the rigid coupling. It should
be noted at this stage that Khalili et al. [43] and Yan et al. [46] com-
pared their results with the results of the author’s previous study
[42], which examines the dynamic behavior of a single FG beam
moving load frequency for v = 25 m/s and for various values of the stiffness of the
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under a moving harmonic load. The comparisons show that the
maximum non-dimensional deflections and the corresponding
critical velocities of the companion paper [42] are in good agree-
ment with the results of Refs. [43,46].

In Tables 2–7, the maximum magnitudes of the maximum non-
dimensional dynamic deflections of the primary and the secondary
beams and the corresponding critical velocities (the velocities at
which the maximum magnitudes of the maximum deflections to
be occurred) are provided for the six different boundary conditions,
different material properties and stiffness of the elastic layer. As
expected, DFGBS with CC–CC boundary conditions, which is the
most rigid model, gives the lowest deflections; on the other hand
the largest deflections are found for DFGBS with CF–CF boundary
conditions, which is the least rigid model. It is clearly seen that
for a fixed value of the stiffness of the elastic layer parameter
(j), the critical velocities of both beams of the all models decrease
when the power-law exponent increases. The critical velocity is
very sensitive to the power-law exponent (k). Hence, the critical
Fig. 8. Variation of the non-dimensional dynamic deflections of CC–CC DFGBS with the
elastic layer.
velocity can also be controlled by choosing suitable values of the
power-law exponent (k). Another important result from these ta-
bles is that the highest critical velocities are found for CC–CC
DFGBS, which is the most rigid model whereas the lowest critical
velocities are obtained for the CF–CF DFGBS, which is the least rigid
one. Based on the above two results on the critical velocity, it can
be said that the critical velocity decreases as the stiffness of the
system increases. However, a similar conclusion related to critical
velocity are not deduced from the data presented in Tables 2–7
even if the stiffness of the elastic layer parameter (j) increases
the stiffness of the system. Furthermore, it is interestingly found
that the rate of increase in the critical velocity due to an increase
in the power-law exponent (k) ranges from 32% to 38% for the all
boundary conditions regardless of the stiffness of the elastic layer
parameter (j). It is obvious from the tables that the critical veloc-
ities are generally very high for such beams made of steel and alu-
mina and it is very difficult to reach these velocities in practical
applications. For instance, it is found v = 516 m/s = 1857.6 km/h
moving load frequency for v = 50 m/s and for various values of the stiffness of the



M. S�ims�ek, S. Cansız / Composite Structures 94 (2012) 2861–2878 2871
and v = 279 m/s = 1044.2 km/h for CC–CC and PP–PP DFGBS with
k = 0, j = 1, respectively. On the other hand, for a single concrete
beam with the same geometrical properties, critical velocities are
found v = 147 m/s = 529.2 km/h and v = 79 m/s = 284.4 km/h for
CC–CC and PP–PP DFGBS, respectively. Therefore, concrete systems
are more vulnerable to damage under the service loads. For this
reason, construction of these systems from FGMs can be advanta-
geous for future applications. It can be seen from the tables that
for the all models with different material properties, the maximum
non-dimensional deflections of the two beams are the half of the
maximum normalized deflection of a single beam in the rigid cou-
pling case. This is due to the fact that in the case of the rigid cou-
pling, the two FG beams oscillate like a single beam with double
stiffness (2Dxx, 2Bxx, 2Axx). Also, it is worth pointing out that except
for CC–CC and PP–CC DFGBS, the critical velocity of the primary
and secondary beams is almost the same for the considered values
of j parameter in the rigid coupling situation. However, the critical
velocity of the primary and secondary beams become almost the
same for CC–CC and PP–CC DFGBS when j P 30000.
Fig. 9. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS with the
elastic layer.
In order to asses the influence of the excitation frequency of the
moving harmonic load on dynamic behavior of DFGBSs, the varia-
tion of the maximum absolute values of the non-dimensional dy-
namic deflections of the primary and the secondary beams with
the excitation frequency are given in Figs. 7–10 for the selected
values of the moving load velocity (v = 25, 50 m/s) and various val-
ues of the power-law exponent. In these figures, the maximum
absolute values of the dynamic deflections are considered since
the maximum displacements may be occurred in the negative re-
gion depending on the excitation frequency. However, in the case
of the moving load with constant magnitude, the maximum dis-
placement is always occurred in the positive region. It is shown
that very large displacements (peak values) are obtained at some
frequency values. This frequency value, which makes the displace-
ments very large, is the fundamental frequency of DFGBS. It is clear
that fundamental frequency of DFGBS decreases as the power-law
exponent increases. The reason for this behavior is considered to
be as follows: As stated earlier, DFGBSs become softer with an in-
crease in the power-law exponent (k), and it is known that free
moving load frequency for v = 25 m/s and for various values of the stiffness of the
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vibration frequencies decrease when structural rigidity decreases.
Related to the above interpretation, it seen from these figure that
fundamental frequency of CC–CC DFGBS is higher than that of
PP-PP DFGBS. The most important conclusion from these figures
Fig. 10. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS with the
elastic layer.

Fig. 11. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS of the pr
k = 0.3, (———) k = 1, ( ) k = 3, solid lines: Primary beam, dashed lines: Secondary b
is due to the fact that two fundamental frequencies are obtained
at some specific values of the elastic layer parameter (i.e., CC–CC
DFGBS with j = 1000 and PP-PP DFGBS with j = 100, 1000) for
the considered values of the excitation frequency. Also, the lowest
moving load frequency for v = 50 m/s and for various values of the stiffness of the

imary beam with the stiffness of the elastic layer for X = 0, ( ) k = 0, ( )
eam.
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fundamental frequency of DFGBS is not dependent on the stiffness
of the elastic layer parameter (j) and it is the same as for a single
beam (see the all first peaks). It should be noted at this stage that a
double-beam system has two infinite sequences of the natural fre-
quencies. One of them is called synchronous natural frequencies,
which are independent of the elastic layer between the beams
and are the same as for a single beam. In synchronous vibration,
the elastic layer between the beams is not deformed on the trans-
verse direction. The other set of natural frequencies is called asyn-
chronous natural frequencies, which are identical as for a single
beam vibrating on an elastic foundation of stiffness modulus 2kw

[47]. In this context, it can be summarized that a double-beam sys-
tem has two fundamental frequencies, which are called synchro-
nous (x11) and asynchronous fundamental frequency (x21). For
instance, when the power-law exponent is taken as (k = 1) for
PP-PP DFGBS (see Fig. 9), the first peak is seen at X = x11 =
50.047 rad/s for the all j values. This frequency is the synchronous
fundamental frequency, which is independent of the elastic layer
Fig. 12. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS with the
parameter. On the other hand, the second peak is obtained for
X = x21 = 78.84 rad/s, which causes also relatively large displace-
ment. This frequency, which depends on the elastic layer parame-
ter, is called asynchronous fundamental frequency. Moreover,
when the moving load velocity are increased from v = 25 m/s to
v = 50 m/s, the magnitude of the deflection peaks decrease, and
moreover the second deflection peak of PP-PP DFGBS are nearly
disappeared (see Fig. 10).

Fig. 11 shows the effect of the stiffness of the elastic layer
parameter (j) on the maximum non-dimensional deflections for
the different values of the power-law exponent and two different
moving load velocities (v = 25, 50 m/s). These figures reveal that
the primary and the secondary beams behave reversely as the
parameter j increases. For very large value of j, the two beam vi-
brate together as a unit and the deflection values of the two beams
approach to each other, as seen from the figures. As stated before,
this is due to the fact the coupling between the two beams in-
creases because of the increase in the parameter j.
power-law exponent for X = 0 for various values of the stiffness of the elastic layer.
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Figs. 12 and 13 the plot the maximum non-dimensional deflec-
tions of PP–PP DFGBS with the power-law exponent (k) for j = 1,
10, 100, 1000, 10,000 and four different moving load velocities.
For the sake of brevity, the results provided in this section are gi-
ven for only PP–PP DFGBS. The most important observation from
these figures that a prominent increase in the deflections occurs
when the power-law exponent changes between 0 and 5, but after
passing 5 all of the curves become flatter. In the case of the moving
load with constant magnitude shown in Fig. 12, the dynamic
deflections are steadily increase with the power-law exponent (k)
for the all considered velocity values. However, when the moving
load is harmonic as given in Fig. 13 (i.e., X = 25 rad/s), the dynamic
deflections decrease for v = 25 m/s even if the power-law exponent
increases in the interval 2 6 k 6 3.4. For instance, it is interesting to
note that when X = 25 rad/s, the maximum absolute value of w1/D
is found as Max. (jw1/Dj) = j�1.0399j = 1.0399 for k = 2.1 in the neg-
ative region. On the other hand, it is obtained as Max. (jw1/
Fig. 13. Variation of the non-dimensional dynamic deflections of PP–PP DFGBS with the
layer.
Dj) = j+1.0286j = 1.0286 for k = 3.3 in the positive region. This
may be due to the interaction among the moving load velocity,
the excitation frequency and the fundamental frequency which is
affected by the variation of k (namely, dynamic characteristic of
the problem). It is therefore concluded that the power-law expo-
nent has a great influence on the dynamic behavior of DFGBS
and the deflections of DFGBS can be controlled by choosing proper
values of k.

Figs. 14 and 15 show the time histories of the primary and the
secondary beams at the midspan for various values of the moving
load velocity (v = 25, 50, 75, 100 m/s). The power-law exponent is
kept constant as k = 1 and two different forcing frequencies (X = 0,
50 rad/s) are considered. Inspection of the figures reveals that the
deflection of the secondary beam is very small for the case of the
weak elastic coupling (i.e., j = 1) and as discussed before, the time
history curves of the two beams begin to close up while the power-
law exponent increases. The fundamental frequency of the DFGBS
power-law exponent for X = 25 rad/s for various values of the stiffness of the elastic



Fig. 14. Time history of the midspan deflections of PP–PP DFGBS for various values of the moving load velocity and k = 1, X = 0, ( ) primary beam, ( ) secondary
beam.
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is found as 50.047 rad/s and it is independent of the elastic layer
stiffness. When the forcing frequency is taken close to the funda-
mental frequency of the system (resonance case), very large dis-
placements are obtained (see Fig. 15). In contrast to the moving
constant load, it is seen that the dynamic deflections are continu-
ously decreased in the resonance case as the load velocity in-
creases. Although there is a little difference between the
deflection curves for j = 1000 in the case of the moving constant
load (see the last column of Fig. 14), the counterpart curves coin-
cide with each other in the resonance case for j = 1000 (see the last
column of Fig. 15).

4. Conclusions

In this article, a numerical method is presented to investigate
the dynamic behavior of DFGBS subjected to a moving harmonic
load at a constant speed based on Euler–Bernoulli beam theory.
The two parallel functionally graded (FG) beams are connected
with each other continuously by elastic springs. Six elastically con-
nected double-functionally graded beam systems (DFGBSs) having
different boundary conditions, which are combination of pinned,
clamped and free end supports, are considered. The point con-
straints of the supports are modeled as linear springs of very large
stiffness. These linear springs of sufficiently large stiffness will en-
sure that the points where the springs attached will remain sta-
tionary during the transverse deformation of the beam. Material
properties of the beams vary continuously in the thickness direc-
tion according to the power-law form. The equations of motion
are derived with the aid of Lagrange’s equations. The unknown
functions denoting the transverse deflections of DFGBS are ex-
pressed in polynomial form. Newmark method is employed to find
the dynamic responses of DFGBS subjected to a concentrated mov-
ing harmonic load. The influences of the different material distri-
bution, velocity of the moving harmonic load, forcing frequency,
the rigidity of the elastic layer between the FG beams and the
boundary conditions on the dynamic responses are discussed.
From the results analyzed above, the most important observations
are summarized as follows:

� The deflections of the primary beam decrease and those of the
secondary beam increase as the elastic layer stiffness parameter
increases, and they become to equal to each other in the case of
rigid coupling.
� The critical velocity is very sensitive to the power-law expo-

nent. The critical velocities of both beams of the all models
decrease when the power-law exponent increases for a fixed
value of the stiffness of the elastic layer parameter. Therefore,
the critical velocity can also be controlled by choosing the suit-
able values of the power-law exponent.
� The highest critical velocities are found for CC-CC DFGBS

whereas the lowest critical velocities are obtained for CF–CF
DFGBS. From the numerical results, it can be concluded that
the critical velocity decreases as the stiffness of the system
increases.



Fig. 15. Time history of the midspan deflections of PP–PP DFGBS for various values of the moving load velocity and k = 1, X = 50 rad/s, ( ) primary beam, ( )
secondary beam.
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� It is interesting to note that regardless of the stiffness of the
elastic layer parameter, the rate of increase in the critical veloc-
ity due to an increase in the power-law exponent changes from
%32 to %38 for the all models.
� The critical velocities of such beams made of steel and alumina

are much higher than those of similar concrete beams, and it is
very difficult to reach these velocities in practical applications.
This may be advantageous for future applications.
� The power-law exponent has a great influence on the dynamic

behavior of DFGBS and the deflections of DFGBS can be con-
trolled by choosing proper values of k.
� DFGBS has two fundamental frequencies, which are called syn-

chronous and asynchronous fundamental frequency. The syn-
chronous fundamental frequency is independent of the elastic
layer between the beams whereas asynchronous fundamental
frequency depends on the elastic layer.
� In contrast to the moving constant load, the dynamic deflec-

tions are continuously decreased in the resonance case as the
load velocity increases.
� The present formulation is very useful to analyze double or

multiple-beam system with arbitrary forcing function and arbi-
trary boundary conditions including elastic support, multiple-
beam system whose elements are made of different material
composition, those with variable cross-section, etc.
� New results are presented for dynamics of DFGBSs under mov-

ing loads which are of interest to the scientific and engineering
community in the area of FGM structures.
Appendix A

The equations of motion (15) can be written in an explicit form
as follows:
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where [K1]–[K10] are the stiffness matrices, [KS1]–[KS4] are the
matrices exist due to the linear springs at the end of the beams,
[M1]–[M8] are the mass matrices, {f} is the generalized load vector.
The components of matrices [KS1]–[KS4] are given here for the
clamped–clamped boundary condition, which is the most general
situation. These matrices can be constructed for the other boundary
conditions considered in this study by choosing appropriate spring
constants. It should be noted the size of all matrices in Eq. (A1) is
N � N. In Eq. (A1), the following abbreviations have been
introduced:
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Kmn
1 ¼ Dxx

Z L=2

�L=2
ðxm�1Þ00ðxn�1Þ00dxþ kw

Z L=2

�L=2
ðxm�1Þðxn�1Þdx

m;n ¼ 1;2; . . . ;N ðA2Þ

Kmn
2 ¼ �kw

Z L=2

�L=2
ðxm�1Þðxn�1Þdx m; n ¼ 1;2; . . . ;N ðA3Þ

Kmn
3 ¼ �Bxx

Z L=2

�L=2
ðxm�1Þ00ðxn�1Þ0dx m;n ¼ 1;2; . . . ;N ðA4Þ

Kmn
4 ¼ �kw

Z L=2

�L=2
ðxm�1Þðxn�1Þdx m; n ¼ 1;2; . . . ;N ðA5Þ

Kmn
5 ¼ Dxx

Z L=2

�L=2
ðxm�1Þ00ðxn�1Þ00dxþ kw

Z L=2

�L=2
ðxm�1Þðxn�1Þdx

m;n ¼ 1;2; . . . ;N ðA6Þ

Kmn
6 ¼ �Bxx

Z L=2

�L=2
ðxm�1Þ00ðxn�1Þ0dx m;n ¼ 1;2; . . . ;N ðA7Þ

Kmn
7 ¼ �Bxx

Z L=2

�L=2
ðxm�1Þ0ðxn�1Þ00dx m;n ¼ 1;2; . . . ;N ðA8Þ

Kmn
8 ¼ Axx

Z L=2
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Kmn
9 ¼ �Bxx
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Kmn
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ðxm�1Þ0ðxn�1Þ0dx m; n ¼ 1;2; . . . ;N ðA11Þ

Kmn
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ðA15Þ

Mmn
1 ¼ IA

Z L=2

�L=2
ðxm�1Þðxn�1Þdxþ ID

Z L=2

�L=2
ðxm�1Þ0ðxn�1Þ0dx

m;n ¼ 1;2; . . . ;N
ðA16Þ

Mmn
2 ¼ �IB

Z L=2

�L=2
ðxm�1Þ0ðxn�1Þdx m;n ¼ 1;2; . . . ;N ðA17Þ

Mmn
3 ¼ IA

Z L=2

�L=2
ðxm�1Þðxn�1Þdxþ ID

Z L=2

�L=2
ðxm�1Þ0ðxn�1Þ0dx

m;n ¼ 1;2; . . . ;N
ðA18Þ

Mmn
4 ¼ �IB

Z L=2

�L=2
ðxm�1Þ0ðxn�1Þdx m;n ¼ 1;2; . . . ;N ðA19Þ

Mmn
5 ¼ �IB

Z L=2

�L=2
ðxm�1Þðxn�1Þ0dx m;n ¼ 1;2; . . . ;N ðA20Þ

Mmn
6 ¼ IA

Z L=2

�L=2
ðxm�1Þðxn�1Þdx m;n ¼ 1;2; . . . ;N ðA21Þ

Mmn
7 ¼ �IB

Z L=2

�L=2
ðxm�1Þðxn�1Þ0dx m;n ¼ 1;2; . . . ;N ðA22Þ

Mmn
8 ¼ IA

Z L=2

�L=2
ðxm�1Þðxn�1Þdx m;n ¼ 1;2; . . . ;N ðA23Þ

fn ¼ QðtÞðxQ Þn�1 for 0 6 t 6 L=vQ n ¼ 1;2; . . . ;N ðA24Þ
fn ¼ 0 for t > L=vQ ðA25Þ
where the expressions ()0 and ()00 are the first and the second deriv-
atives with respect to x.

References

[1] Sankar BV. An elasticity solution for functionally graded beams. Compos Sci
Technol 2001;61(5):689–96.

[2] Chakraborty A, Gopalakrishnan S, Reddy JN. A new beam finite element for the
analysis of functionally graded materials. Int J Mech Sci 2003;45(3):519–39.

[3] Chakraborty A, Gopalakrishnan S. A spectrally formulated finite element for
wave propagation analysis in functionally graded beams. Int J Solids Struct
2003;40(10):2421–48.

[4] Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams
with simply supported edges. Mater Des 2007;28(5):1651–6.

[5] Zhong Z, Yu T. Analytical solution of a cantilever functionally graded beam.
Compos Sci Technol 2007;67(3–4):481–8.

[6] Ying J, Lü CF, Chen WQ. Two-dimensional elasticity solutions for functionally
graded beams resting on elastic foundations. Compos Struct 2008;84(3):
209–19.

[7] Kapuria S, Bhattacharyya M, Kumar AN. Bending and free vibration response of
layered functionally graded beams: a theoretical model and its experimental
validation. Compos Struct 2008;82(3):390–402.

[8] Yang J, Chen Y. Free vibration and buckling analyses of functionally graded
beams with edge cracks. Compos Struct 2008;83(1):48–60.

[9] Li XF. A unified approach for analyzing static and dynamic behaviors of
functionally graded Timoshenko and Euler–Bernoulli beams. J Sound Vib
2008;318(4–5):1210–29.

[10] Xiang HJ, Yang J. Free and forced vibration of a laminated FGM Timoshenko
beam of variable thickness under heat conduction. Compos Part B: Eng
2008;39(2):292–303.

[11] Kadoli R, Akhtar K, Ganesan N. Static analysis of functionally graded beams
using higher order shear deformation theory. Appl Math Model 2008;32(12):
2509–25.

[12] Benatta MA, Mechab I, Tounsi A, Adda Bedia EA. Static analysis of functionally
graded short beams including warping and shear deformation effects. Comput
Mater Sci 2008;44(2):765–73.

[13] Sallai BO, Tounsi A, Mechab I, Bachir BM, Meradjah M, Adda BEA. A theoretical
analysis of flexional bending of Al/Al2O3 S-FGM thick beams. Comput Mater Sci
2009;44(4):1344–50.

[14] Sina SA, Navazi HM, Haddadpour H. An analytical method for free vibration
analysis of functionally graded beams. Mater Des 2009;30(3):741–7.

[15] S�ims�ek M. Static analysis of a functionally graded beam under a uniformly
distributed load by Ritz method. Int J Eng Appl Sci 2009;1(3):1–11.

[16] Pradhan SC, Murmu T. Thermo-mechanical vibration of FGM sandwich beam
under variable elastic foundations using differential quadrature method. J
Sound Vib 2009;321(1–2):342–62.

[17] Ke LL, Yang J, Kitipornchai S, Xiang Y. Flexural vibration and elastic buckling of
a cracked Timoshenko beam made of functionally graded materials. Mech Adv
Mater Struct 2009;16:488–502.

[18] Kitipornchai S, Ke LL, Yang J, Xiang Y. Nonlinear vibration of edge cracked
functionally graded Timoshenko beams. J Sound Vib 2009;324(3–5):962–82.

[19] Ke LL, Yang J, Kitipornchai S. Postbuckling analysis of edge cracked functionally
graded Timoshenko beams under end shortening. Compos Struct 2009;90(2):
152–60.

[20] Ke LL, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded
carbon nanotube-reinforced composite beams. Compos Struct 2010;92(3):
676–83.

[21] S�ims�ek M. Fundamental frequency analysis of functionally graded beams by
using different higher-order beam theories. Nucl Eng Des 2010;240:697–705.

[22] Kocatürk T, S�ims�ek M, Akbas� S�D. Large displacement static analysis of a
cantilever Timoshenko beam composed of functionally graded material. Sci
Eng Compos Mater 2011;18(1):21–34.

[23] Fallah A, Aghdam MM. Nonlinear free vibration and post-buckling analysis of
functionally graded beams on nonlinear elastic foundation. Eur J Mech A –
Solid/A Solids 2011;30(4):571–83.

[24] Timoshenko S, Young DH. Vibration problems in engineering. New York: Van
Nostrand Company; 1955.

[25] Fryba L. Vibration of solids and structures under moving loads. Groningen, The
Netherlans: Noordhoff International; 1972.

[26] Lin YH, Trethewey W. Finite element analysis of elastic beams subjected to
moving dynamic loads. J Sound Vib 1990;136(2):323–42.

[27] Lee HP. Dynamic response of a beam with intermediate point constraints
subject to a moving load. J Sound Vib 1994;171(3):361–8.

[28] Henchi K, Fafard KM, Dhatt G, Talbot M. Dynamic behavior of multi-span
beams under moving loads. J Sound Vib 1997;199(1):33–50.

[29] Wang RT. Vibration of multi-span Timoshenko beams to a moving force. J
Sound Vib 1997;207(5):731–42.

[30] Zheng DY, Cheung YK, Au FTK, Cheng YS. Vibration of multi-span non-uniform
beams under moving loads by using modified beam vibration functions. J
Sound Vib 1998;212(3):455–67.

[31] Zhu XQ, Law SS. Moving force identification on multi-span continuous bridge. J
Sound Vib 1999;228(2):377–96.

[32] Abu-Hilal M, Mohsen M. Vibration of beams with general boundary conditions
due to moving harmonic load. J Sound Vib 2000;232(4):703–17.



2878 M. S�ims�ek, S. Cansız / Composite Structures 94 (2012) 2861–2878
[33] Michaltsos GT. Dynamic behaviour of a single-span beam subjected to loads
moving with variable speeds. J Sound Vib 2002;258(2):359–72.

[34] Dugush YA, Eisenberger M. Vibrations of non-uniform continuous beams
under moving loads. J Sound Vib 2002;254(5):911–26.

[35] Abu-Hilal M. Vibration of beams with general boundary conditions due to a
moving random load. Arch Appl Mech 2003;72(9):637–50.

[36] Garinei A. Vibrations of simple beam-like modelled bridge under harmonic
moving loads. Int J Eng Sci 2006;44(11–12):778–87.

[37] Kocatürk T, S�ims�ek M. Vibration of viscoelastic beams subjected to an
eccentric compressive force and a concentrated moving harmonic force. J
Sound Vib 2006;291(1–2):302–22.

[38] Kocatürk T, S�ims�ek M. Dynamic analysis of eccentrically prestressed
viscoelastic Timoshenko beams under a moving harmonic load. Comput
Struct 2006;84(31–32):2113–27.

[39] S�ims�ek M, Kocatürk T. Dynamic analysis of an eccentrically prestressed
damped beam under a moving harmonic force using higher order shear
deformation theory. ASCE J Struct Eng 2007;133(12):1733–41.

[40] S�ims�ek M, Kocatürk T. Nonlinear dynamic analysis of an eccentrically
prestressed damped beam under a concentrated moving harmonic load. J
Sound Vib 2009;320(1–2):235–53.

[41] Yang J, Chen Y, Xiang Y, Jia XL. Free and forced vibration of cracked
inhomogeneous beams under an axial force and a moving load. J Sound Vib
2008;312(1–2):166–81.

[42] S�ims�ek M, Kocatürk T. Free and forced vibration of a functionally graded beam
subjected to a concentrated moving harmonic load. Compos Struct
2009;90(4):465–73.

[43] Khalili SMR, Jafari AA, Eftekhari SA. A mixed Ritz-DQ method for forced
vibration of functionally graded beams carrying moving loads. Compos Struct
2010;92:2497–511.

[44] S�ims�ek M. Vibration analysis of a functionally graded beam under a moving
mass by using different beam theories. Compos Struct 2010;92(4):904–17.

[45] S�ims�ek M. Non-linear vibration analysis of a functionally graded Timoshenko
beam under action of a moving harmonic load. Compos Struct 2010;92:
2532–46.

[46] Yan T, Kitipornchai S, Yang J, He XQ. Dynamic behaviour of edge-cracked shear
deformable functionally graded beams on an elastic foundation under a
moving load. Compos Struct 2011;93(11):2992–3001.

[47] Oniszczuk Z. Free transverse vibrations of elastically connected simply
supported double-beam complex system. J Sound Vib 2000;232(2):387–403.

[48] Aida T, Toda S, Ogawa N, Imada Y. Vibration control of beams by beam-type
dynamic vibration absorbers. J Eng Mech 1992;118(2):248–58.
[49] Hussein MFM, Hunt HEM. Modelling of floating-slab tracks with continuous
slabs under oscillating moving loads. J Sound Vib 2006;297:37–54.

[50] Shamalta M, Metrikine AV. Analytical study of the dynamic response of an
embedded railway track to a moving load. Arc Appl Mech 2003;73:131–46.

[51] Kelly SG, Srinivas S. Free vibrations of elastically connected stretched beams. J
Sound Vib 2009;326:883–93.

[52] Seelig JM, Hoppmann II WH. Normal mode vibrations of systems of elastically
connected parallel bars. J Acoust Soc Am 1964;36(1):93–9.

[53] Kessel PG. Resonances excited in an elastically connected double-beam system
by a cyclic moving load. J Acoust Soc Am 1966;40(3):684–7.

[54] Rao SS. Natural vibrations of systems of elastically connected Timoshenko
beams. J Acoust Soc Am 1974;55(6):1232–7.

[55] Chonan S. Dynamical behaviours of elastically connected double-beam
systems subjected to an impulsive load. Bull JSME 1976;19(132):595–603.

[56] Vu HV, Ordonez AM, Karnopp BH. Vibration of a double-beam system. J Sound
Vib 2000;229(4):807–22.

[57] Oniszczuk Z. Forced transverse vibrations of an elastically connected complex
simply supported double-beam system. J Sound Vib 2003;264:273–86.

[58] Abu-Hilal M. Dynamic response of a double Euler–Bernoulli beam due to a
moving constant load. J Sound Vib 2006;297:477–91.

[59] Zhang YQ, Lu Y, Wang SL, Liu X. Vibration and buckling of a double-beam
system under compressive axial loading. J Sound Vib 2008;318:341–52.

[60] Zhang YQ, Lu Y, Ma GW. Effect of compressive axial load on forced transverse
vibrations of a double-beam system. Int J Mech Sci 2008;50:299–305.

[61] Jun L, Hongxing H. Dynamic stiffness vibration analysis of an elastically
connected three-beam system. Appl Acoust 2008;69:591–600.

[62] Jun L, Yong C, Hongxing H. Exact dynamic stiffness matrix of a Timoshenko
three-beam system. Int J Mech Sci 2008;50:1023–34.

[63] Ariei A, Ziaei-Rad S, Ghayour M. Transverse vibration of a multiple-
Timoshenko beam system with intermediate elastic connections due to a
moving load. Arch Appl Mech 2011;81:263–81.

[64] S�ims�ek M. Nonlocal effects in the forced vibration of an elastically connected
double-carbon nanotube system under a moving nanoparticle. Comput Mater
Sci 2011;50(7):2112–23.

[65] Palmeri A, Adhikari S. A Galerkin-type state-space approach for transverse
vibrations of slender double-beam systems with viscoelastic inner layer. J
Sound Vib 2011;330:6372–86.

[66] Newmark NM. A method of computation for structural dynamics. ASCE Eng
Mech Div 1959;85:67–94.

[67] Wakashima K, Hirano T, Niino M. Space applications of advanced structural
materials. ESA 1990;SP:303–97.


	Dynamics of elastically connected double-functionally graded beam systems  with different boundary conditions under action of a moving harmonic load
	1 Introduction
	2 Theory and formulations
	3 Numerical results
	4 Conclusions
	Appendix A 
	References


