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Abstract—Predictions of the fourth-order small perturbation
method (SPM) are examined for scattering from two rough sur-
faces in a layered geometry. Cross-polarized backscatter, in par-
ticular, is emphasized because use of the fourth-order SPM is
required to obtain this quantity. The formulation of the SPM
fields and incoherent ensemble-averaged normalized radar cross
sections (NRCSs) up to the third and the fourth order in sur-
face rms heights, respectively, are reviewed. It is shown that the
fourth-order NRCS includes distinct contributions from upper
and lower interface roughnesses, as well as an “interaction” term
that couples the upper and lower interface roughnesses. A compar-
ison with NRCS values computed using the “numerically exact”
method of moments in the full bistatic scattering pattern is shown
for verification, and NRCS values at the second and the fourth
order are compared in order to assess the convergence of the
SPM series. Although the number of parameters inherent in the
two-layer rough surface scattering problem makes an exhaustive
study of scattering effects difficult, several illustrative examples
are presented to capture a range of scattering behaviors. The re-
sults emphasize the importance of interactions between the rough
surfaces in producing cross-polarized backscattering and also
indicate an increased significance of fourth-order contributions in
the two-layer geometry as compared to the single-layer case.

Index Terms—Layered media, remote sensing, rough surface
scattering.

I. INTRODUCTION

S EVERAL recent works [1]–[20] have examined the the-
ory of scattering from two rough surfaces in a layered

geometry (see Fig. 1). This problem is of interest due to its
applications in the remote sensing of soil moisture, sea ice, and
other geophysical effects as well as applications in optics. A
variety of methods for predicting scattering have been explored,
including both approximate [1]–[14] and numerically exact
[15]–[20] approaches. For randomly rough surfaces, approx-
imate methods (within their limits of applicability) have the
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Fig. 1. Cross section of the two-layer geometry. The unknown field coeffi-
cients {α, β,A,B,C,D, γ, δ} are labeled in their corresponding domains.

advantage of producing analytically averaged results, making
them much more computationally efficient than the Monte
Carlo simulations required with numerical methods. The an-
alytical methods that have been reported include the small
perturbation method (SPM) [1]–[7], geometrical optics (GO)
approximation [8]–[10], the small-slope approximation [11],
the “full-wave” method [12], and the integral equation method
[13], [14].

Many geophysical cases of interest for layered rough sur-
face geometries involve the use of lower microwave frequen-
cies; this is because only at such frequencies will sufficient
penetration occur to enable the observation of the lower
interface. The use of the SPM is motivated in such cases
because the inherent assumption of small surface height
compared to the observing wavelength becomes more applica-
ble at lower frequencies. It remains necessary that the surface
slopes are small parameters comparable to or smaller than the
ratio of the surface height to the electromagnetic wavelength.

The SPM produces a series expansion in surface heights for
scattered fields. Among the previous studies utilizing the SPM
for a two-layer geometry [1]–[7], the majority have utilized
only the first-order terms in the series; only [1]–[3] have in-
cluded higher order corrections. Generally, the first-order terms
should dominate scattered fields when the SPM is applicable,
so that utility of higher order corrections is limited in many
situations. However, for some quantities of interest (such as
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cross-polarized backscattering), first-order terms vanish, and
higher order terms are needed to obtain a nonzero prediction
[21]. An examination of higher order terms can also provide
insight into the accuracy of the first-order solution. Although
not considered in this paper, higher order corrections to the
coherent reflection coefficient are also necessary in studies of
thermal emission [22].

This paper examines higher order SPM corrections in the
two-layer problem in an attempt to provide some insight into
their properties, particularly with regard to cross-polarized
backscatter. Field solutions up to the third order in surface
height are used to enable the evaluation of the ensemble-
averaged incoherent normalized radar cross section (NRCS)
to the fourth order; note that fourth-order field corrections
to the coherent reflection coefficient [25] are not consid-
ered in what follows. It is shown that the fourth-order inco-
herent NRCS correction includes distinct contributions from
the upper and lower interface roughnesses, as well as an
“interaction” term that couples both interface roughnesses.
This interaction term is found to make significant contribu-
tions to cross-polarized backscatter returns. While the large
number of parameters in the two-layer geometry makes a
complete examination difficult, several example cases are
used to illustrate some of the scattering effects that can
occur.

The next section provides a brief review of the SPM solution
for field quantities, and Section III discusses the correspond-
ing NRCS evaluation. Section IV then presents a compar-
ison of SPM predictions in one geometry with those of a
numerical method for validation purposes. The comparisons
shown are for the full hemispherical bistatic scattering pat-
tern of the two-layer geometry considered. Further examina-
tions of the influence of various parameters on backscattering,
including surface roughness, layer thickness, incidence an-
gle, and layer dielectric properties, are then reported in
Section V.

II. REVIEW OF SPM SOLUTION FOR SCATTERED FIELDS

The SPM solution for the two-layer geometry was im-
plemented following the one-layer solution originally de-
veloped by Rice [23] and later extended to the third [24]
and higher [25] orders. Only an overview of the third-order
two-layer solution is provided here; the full formulation in-
cluding a recursive solution for arbitrary order is available
in [3].

The two-layer geometry of Fig. 1 includes interfaces one
(z1 = f1(x, y)) and two (z2 = −d+ f2(x, y)) that separate
three homogeneous regions q = 0 (the domain of excitation)
to q = 2. As in [23]–[25], f1 and f2 are initially considered
to be periodic functions with periods Px and Py in the x- and
y-directions, respectively. The corresponding surface Fourier
series coefficients at index n̄′ = (n,m) are written as h(1)

n̄′ and

h
(2)
n̄′ , respectively. The interfaces are assumed to be zero mean

value so that h(1)

0̄
= h

(2)

0̄
= 0.

Assuming plane wave incidence

�E−
0 = êie

i�k0−
0̄

·�r (1)

the periodic surface assumption results in a discretization of
scattered fields into Floquet mode series

�E+
0 =

∑
n̄

[
ĥn̄αn̄ + v̂n̄0+βn̄

]
ei

�k0+
n̄ ·�r

�E−
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ei
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where an e−iωt time dependence is used. A (+) or a (−)
superscript denotes upward or downward propagating waves
(i.e., positive or negative ẑ components of the wave vector).
Definitions of the polarization vectors ĥn̄ and v̂n̄q±, propagation

vectors �kq±n̄ , incident field polarization vectors êi, and magnetic
fields corresponding to the aforementioned electric fields are
provided in detail in [3, Ch. 3]. The goal of the SPM solution
is to determine the complex amplitudes (αn̄, βn̄, etc.) of the
Floquet modes.

To simplify the notation, let ςn̄ denote any of the complex
amplitudes

ςn̄ = {αn̄, An̄, Cn̄, γn̄, βn̄, Bn̄, Dn̄, δn̄}. (3)

The SPM solution procedure [3] provides the amplitudes ςn̄ as
a perturbation series in surface heights. At the zeroth order

ς
(0)
n̄′ = Γς δ̃n̄′ (4)

where δ̃n̄′ denotes the Kronecker delta function. The zeroth-
order field thus exists only in the specular direction (n̄′ =
0) having complex amplitudes Γς corresponding to the flat-
interface two-layer solution. At the first order

ς
(1)
n̄′ = h

(1)
n̄′ g

(1,0)
ς (n̄′) + h

(2)
n̄′ g

(0,1)
ς (n̄′) (5)

showing the “Bragg scattering” behavior of the first-order SPM
but, in this case, involving contributions from both interfaces
weighted by “kernel” functions g

(a,b)
ς (n̄′) that depend on the

region permittivities, layer depth, and incidence and scattering
angles. At the second order

ς
(2)
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h
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(6)

showing a sum of three terms with differing kernel functions.
At the third order, a sum of four contributions is obtained
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Note that both the second- and third-order field solutions in-
clude terms that depend only on the upper interface roughness,
terms that depend only on the lower interface roughness, and
terms that couple the two together.

III. NRCS EVALUATION

Ensemble-averaged NRCS values for an infinite surface are
derived from the field perturbation series by considering the
limit as the surface periods approach infinity [24]. The NRCS at
a particular scattering angle [related to (n̄′)] and in a particular
polarization can then be shown to be

σς =
K2

σ

〈
|ς|2

〉
δkxδky

(8)

where K2
σ = 4πk20 cos

2 θs with θs being the polar angle of
the scattered field and k0 = 2π/λ being the electromagnetic
wavenumber in region zero. The quantities δkx = (2π/Px)
and δky = (2π/Py) are found to cancel when 〈|hn̄′ |2〉 and
other surface roughness properties are related to the continuous
surface power spectral density.

It is assumed that surface roughness is described as a station-
ary Gaussian random process and that the roughness on the two
interfaces is statistically independent. Note that some previous
works have considered the case of correlated interfaces (e.g.,
[5]) in the first-order SPM, but such effects are outside the scope
of this paper. The ensemble-averaged incoherent NRCS up to
the fourth order in surface height is then a sum of the second-
and fourth-order cross sections

σincoh
ς = σ(2)

ς + σ(4)
ς (9)

where

σ(2)
ς =σ10−10

ς + σ01−01
ς

σ(4)
ς =σ20−20

ς + σ11−11
ς + σ02−02

ς

+ σ10−30
ς + σ01−03

ς + σ10−12
ς + σ01−21

ς (10)

with the superscripts (ab− cd) denoting a and b upper and
lower interface roughness terms, respectively, correlated with c
and d upper and lower interface roughness terms. Note that the
fourth-order correction to the NRCS can be either positive or
negative; cases where the total NRCS is negative indicate that
higher order SPM terms beyond the fourth order are required.
No negative σincoh

ς values occurred in the results to be shown.
Individual NRCS component contributions are
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where W (j)(kn̄′) represents the power spectral density of the
jth interface, assumed in the results shown to have an isotropic
Gaussian form

W (j)(kρ) =
u2
j l

2
j

4π
exp

(
−
k2ρl

2
j

4

)
, j = 1, 2 (20)

for kρ �= 0 and to be equal to zero for kρ = 0 (zero mean
profile). Here, uj and lj represent the rms height and correlation
length, respectively, of the jth interface. It is noted that natural
surfaces are more typically described in terms of exponential or
power-law spectral densities. The Gaussian form used here was
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selected to simplify the numerical computations and because
Gaussian correlation functions are often used as an initial
benchmark for comparison with other surface types. Other
power spectral densities will be considered in future work.

The integrations required in (13)–(19) are performed nu-
merically in polar coordinates over a domain that extends
from the origin to wavenumbers where the power spectral
density W (j)(kn̄1

) is negligible. Discretization tests showed
that approximately 20 points in azimuth by 20 points per
electromagnetic wavenumber (k0) provided sufficient accuracy
in the results to be shown.

The total NRCS can also be written as a sum of contributions
that separate the upper surface, lower surface, and interaction
effects

σincoh
ς = σupper

ς + σlower
ς + σinter

ς (21)

where

σupper
ς =σ10−10

ς + σ20−20
ς + σ10−30

ς (22)

σlower
ς =σ01−01

ς + σ02−02
ς + σ01−03

ς (23)

σinter
ς =σ11−11

ς + σ10−12
ς + σ01−21

ς . (24)

“Upper,” “lower,” and “interaction” ratios are also defined as
the ratio of these terms to the total cross section, e.g.,

rint =
σinter
ς

σincoh
ς

. (25)

These contribution ratios will be examined in Section V
for cross-polarized backscatter. A similar “fourth-order ratio”
σ
(4)
ς /σincoh

ς is illustrated for co-polarized backscatter in order
to assess SPM convergence.

In general, the relative importance of fourth-order terms will
increase as rms heights increase. Because the power spectral
densities in (11)–(19) are directly proportional to the corre-
sponding surface height variances and there is no other surface
rms height dependence, it is straightforward to scale individual
NRCS contributions as surface rms heights are varied. For this
reason, variations of surface rms heights are not considered in
what follows.

For cross-polarized backscatter, (21) can be rewritten as

σincoh
ς =u4

1σ̃
upper
ς + u4

2σ̃
lower
ς + u2

1u
2
2σ̃

inter
ς (26)

=u2
1u

2
2

(
u2
1

u2
2

σ̃upper
ς +

u2
2

u2
1

σ̃lower
ς + σ̃inter

ς

)
(27)

where the σ̃ quantities are computed with all rms heights
normalized to unity. This form clarifies the relative importance
of the upper, lower, and interaction terms as the surface rms
heights are varied. In particular, the interaction term is more
likely to make significant contributions when the surface height
variances are equal since, in that case, all terms in the series are
weighted equally. However, the relative contributions of each
term remain dependent on layer properties, interface correlation
lengths, and the scattering geometry.

IV. COMPARISON WITH NUMERICAL METHOD

Because the derivation of the SPM kernel functions requires
a great deal of algebra, it is important to verify that the resulting
implementations are accurate. Several approaches were used for
verification, including comparison with a numerical solution
of the SPM equations. Once a verified code was available,
a final verification and SPM accuracy test was performed
by comparing SPM predictions with those of a “numerically
exact” solution of the two-layer problem. The numerically exact
method used was the method of moments (MOM) for a 3-D
scattering problem (i.e., “2-D” surface profiles). The general
formulation of the MOM method used is described in [26],
and the implementation was extended to allow for the two-
layer dielectric medium geometry of interest. A similar MOM
approach was also used in previous studies [9], [10] to assess a
GO method in the two-layer problem.

The MOM simulation used surface profiles of 16 by 16 elec-
tromagnetic wavelengths, discretized into 512 by 512 points
on each interface. Because there are four field components dis-
cretized at each surface point (on each interface), the final solu-
tion involves approximately two million unknowns. An iterative
solution of the MOM matrix equation is used, combined with a
“canonical grid” acceleration of the matrix-vector multiply for
coupling of unknowns on a single interface. Coupling between
interfaces is implemented without acceleration in the current
code and dominates the computation. A parallelized implemen-
tation of the cross-interface coupling using eight processors
enabled solutions to be obtained in approximately 10 CPU
hours (per incident polarization) for a single surface realization.
A Monte Carlo simulation over 64 surface realizations was then
achieved through the use of 512 processors (i.e., 64 groups of
8). Supercomputing resources at the Maui High Performance
Computing Center [27] were used in the final computations.

One issue in the MOM computations is the use of a “tapered
wave” incident field to reduce edge truncation effects. While
the tapered wave achieves this goal, it effectively introduces
an averaging of cross sections over a small range of scatter-
ing angles. This averaging is only of concern in situations
where cross sections vary rapidly with angle. Cross-polarized
backscatter in the plane of incidence is one such case: the
tapered wave averages very small in-plane cross-polarization
results with larger out-of-plane cross-polarized returns, result-
ing in increased MOM cross-polarized levels. Similar behaviors
happen for the bistatic HH NRCS in the cross-plane (φs = 90◦)
for small height surfaces. These effects can be reduced by
increasing the surface size simulated, but such increases were
not possible given the limited CPU resources available for the
results shown. Differences between MOM and SPM predictions
in these cases should therefore not be taken as meaningful. It
is noted that a recent paper has described a new method for
eliminating the use of tapered wave illuminations [28], but this
approach has yet to be extended to the two-layer problem.

The case used in the comparison had rms heights and correla-
tion lengths of 0.02λ and 0.5λ, respectively, on both interfaces.
The relative permittivities of regions 1 and 2 are 5.4 + i0.44
and 11.27 + i1, respectively, and the layer thickness is 0.2λ.
NRCS values in the complete bistatic hemisphere were com-
puted for incidence angle θi = 40◦.



3378 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 9, SEPTEMBER 2012

Fig. 2. Comparison of SPM and MOM bistatic scattering patterns: HH
polarization. u1 = u2 = 0.02λ, l1 = l2 = 0.5λ, ε1 = 5.4 + i0.44, ε2 =
11.27 + i, d = 0.2λ, and θi = 40◦.

Fig. 3. Comparison of SPM and MOM bistatic scattering patterns for the
configuration of Fig. 2: VH polarization.

Fig. 2 plots HH ensemble-averaged incoherent NRCS re-
turns in decibels from the fourth-order SPM (upper left) and
the MOM (upper right), as well as the difference between
MOM and second-order SPM decibel values (lower left) and
between MOM and fourth-order SPM decibel values (lower
right). Similar plots for V H and V V polarizations are provided
in Figs. 3 and 4; HV polarization is similar in most respects
to V H and therefore was not plotted. The plot formats are a
projection of the hemisphere onto a horizontal plane, in which
the horizontal and vertical axes represent sin θs cosφs and
sin θs sinφs, respectively. The incident field approaches from
the left along the horizontal axis so that the horizontal axis of
the plot is the plane of incidence.

The results show typical behaviors for rough surface hemi-
spherical scattering patterns in the small height limit, including
larger co-pol returns in the specular region, small cross-pol

Fig. 4. Comparison of SPM and MOM bistatic scattering patterns for the
configuration of Fig. 2: VV polarization.

Fig. 5. Comparison of SPM and MOM in-plane bistatic scattering patterns for
the configuration of Fig. 2.

returns in the plane of incidence, and small HH returns in
the cross-plane (φs = 90◦). Note that coherent scattering is
removed from the MOM simulations so that only incoher-
ent responses are compared. The ratio plots (illustrated in
decibels) show larger differences in the small cross-sectional
regions (as discussed previously) but otherwise show good
agreement (with some speckle due to the finite number of
MOM realizations) between the MOM and SPM in all po-
larizations. A reduction in differences between the SPM and
MOM is also apparent when fourth-order contributions are
included, particularly in the “backward” portion of the hemi-
sphere (i.e., the second and third quadrants). These results
show that the fourth-order SPM can make appreciable contri-
butions to co-pol returns even for the relatively flat interfaces
considered and that the fourth-order SPM is sufficient in this
example.

Fig. 5 illustrates the same comparison for HH and V V
returns in the plane of incidence and again shows a good
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Fig. 6. Backscattered (upper left) HH and (upper right) V V NRCS at
θi = 40◦ as a function of upper surface correlation length (horizontal axis),
with lower surface correlation length indicated in legend. Fourth-order ratios

σ
(4)
ς /σincoh

ς are also illustrated for (lower left) HH and (lower right) V V .
u1 = u2 = 0.02λ, ε1 = 5.4 + i0.44, ε2 = 11.27 + i, and d = 0.2λ.

agreement between SPM and MOM predictions, as well
as the significance of the fourth-order contribution at some
angles.

V. INFLUENCE OF CORRELATION LENGTHS AND LAYER

PROPERTIES ON BACKSCATTERING

A. Surface Correlation Lengths

Although the influence of surface rms height on individ-
ual SPM contributions is clear, changes in surface correlation
lengths require recomputation of the fourth-order integrations
(13)–(19). Generally, longer correlation length surfaces have
narrower power spectral densities so that contributions from
SPM kernel functions in the integration are more limited to
regions near the origin in wavenumber space.

Fig. 6 plots the HH and the V V backscattered NRCS at θi =
40◦, as well as the HH and V V fourth-order ratios, as a func-
tion of the upper and lower surface correlation lengths for the
configuration of Figs. 2–5. A trend of reduced cross-sectional
levels as the correlation lengths increase (i.e., “smoother” sur-
faces since surface rms heights are kept constant) is observed.
Cross sections are observed to approach constant values for
larger upper correlation lengths that depend on the correlation
length of the lower interface. These behaviors reflect the fact
that upper and lower interface terms are combined, with the
rougher surface (i.e., smaller correlation length in this case)
eventually dominating the total two-layer return. A contrary
trend of increasing NRCS levels with correlation length occurs
for very small correlation lengths, with a maximum achieved
in this case around a correlation length of 0.25 wavelengths.
This maximum is associated with the dependence of the surface
power spectral density on correlation length (20).

Fourth-order co-pol ratios in Fig. 6 show that fourth-order
contributions are relatively weak for the shorter correlation
lengths but become more important when both interface corre-
lation lengths are large (where total second-order contributions
become small). Because the fourth-order contribution can be

Fig. 7. Backscattered (upper left) V H NRCS at θi = 40◦ as a function of up-
per surface correlation length (horizontal axis), with lower surface correlation
length indicated in legend. (Upper right) Upper, (lower left) interaction, and
(lower right) lower contribution ratios are also illustrated. u1 = u2 = 0.02λ,
ε1 = 5.4 + i0.44, ε2 = 11.27 + i, and d = 0.2λ.

positive or negative, rapid decreases are observed on the decibel
scale used when a sign change of the fourth order contribution
occurs.

The influence of surface correlation lengths on cross-
polarized backscatter is illustrated in Fig. 7, which includes the
total V H NRCS as well as the upper, lower, and interaction
ratios, defined as in (25). Cross-pol total NRCS levels are very
low but would increase as rms height to the fourth power for
rougher surfaces. Similar behaviors are observed for the total
NRCS as in the co-pol cases. Upper interface contributions
dominate the total return at smaller upper interface correlation
lengths, but interaction effects make significant contributions as
the upper correlation length increases. Lower interface contri-
butions are more significant in cases with a very smooth upper
interface. Note that interaction effects account for less than
10% of the total cross-pol return in this case only when the
upper surface is very smooth and the lower one is very rough.
When both surfaces are smooth, interaction effects dominate
the (small) cross-pol return.

B. Incidence Angle and Layer Depth

The preceding section considered backscattering at 40◦ inci-
dence angle at a fixed layer depth of 0.2λ. Fig. 8 plots HH and
V V NRCS values and fourth-order ratios for backscattering as
a function of incidence angle, with the layer depth (in wave-
lengths) as a parameter. The results show typical decreasing
backscatter returns with incidence angle, with only a small
influence of layer depth for these layer properties. Fourth-order
ratios show an increasing importance of the fourth-order con-
tribution at larger incidence angles (again where second-order
SPM contributions are smaller), as well as an increased impor-
tance for thinner layers (consistent with increased attenuation
in region one for thicker layers). Fourth-order contributions
decrease NRCS levels at smaller incidence angles but increase
them at larger angles, and the layer depth has a small effect on
the location of the transition in sign.
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Fig. 8. Backscattered (upper left) HH and (upper right) V V NRCS as a
function of incidence angle. Layer depth parameter indicated in legend. Fourth-
order ratios for (lower left) HH and (lower right) V V are also plotted. u1 =
u2 = 0.02λ, l1 = l2 = 0.5λ, ε1 = 5.4 + i0.44, and ε2 = 11.27 + i.

Fig. 9. Backscattered (upper left) V H NRCS returns for the configuration
of Fig. 8 as a function of incidence angle, with layer depth indicated in
legend. (Upper right) Upper, (lower left) interaction, and (lower right) lower
contribution ratios are also illustrated.

Cross-pol variations are investigated in Fig. 9, again by plot-
ting the total NRCS along with the upper, lower, and interaction
ratios. The results again show decreasing HV returns with
incidence angle, along with a moderate influence of the layer
depth, with thinner layers providing larger returns. For the
roughness properties and layer configuration considered, upper
and interaction terms dominate lower surface contributions in
all cases, and interaction effects become more significant at
larger observation angles and smaller layer depths. Note that
both interaction effects and lower surface returns are impacted
by attenuation in region one.

A clearer examination of the influence of layer depth is
provided in Fig. 10, which plots total HH , HV , and V V NRCS
returns as a function of layer depth, with the incidence angle as
a parameter. Oscillatory behaviors in NRCS are observed with
layer depth at all incidence angles, even in the fourth-order
cross-pol returns. These oscillations generally decrease with

Fig. 10. Backscattered (upper left) HH , (upper right) V H , and (lower left)
V V NRCS versus layer depth, with incidence angle as a parameter. u1 = u2 =
0.02λ, l1 = l2 = 0.5λ, ε1 = 5.4 + i0.44, and ε2 = 11.27 + i.

Fig. 11. Images of backscattered (upper left) HH and (upper right) V V
NRCS at θi = 40◦ as a function of the relative permittivities of regions one
and two. Fourth-order ratios are also illustrated for (lower left) HH and (lower
right) V V . u1 = u2 = 0.02λ, l1 = l2 = 0.5λ, and d = 0.2λ.

incidence angle due to increases in attenuation through region
one at larger incidence angles. Properties of these oscillations
strongly depend on the layered geometry investigated.

C. Effect of Dielectric Constants

The preceding examples have all utilized fixed dielectric
constants in the layered geometry. Fig. 11 illustrates HH and
V V NRCS returns and fourth-order ratios as the relative per-
mittivities of regions one and two are varied over 3, 3.5, . . . , 20
with zero imaginary parts in both regions. Backscattering at
40◦ is considered for a 0.2λ thick layer having equal rms
heights and correlation lengths of 0.02λ and 0.5λ, respectively.
Note that the case in which the two permittivities are equal
(the lower-to-upper diagonal of the images shown) represents a
single-layer case whose permittivity varies along the diagonal.
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Fig. 12. Images of (upper left) backscattered V H NRCS and (lower left)
upper, (upper right) interaction, and (lower right) lower contribution ratios at
θi = 40◦ as a function of the relative permittivities of regions one and two.
u1 = u2 = 0.02λ, l1 = l2 = 0.5λ, and d = 0.2λ.

The results for this geometry show a complex variation
with medium permittivities, with the largest co-pol returns
occurring in the cases with a small permittivity layer overlying a
larger permittivity medium. Fourth-order ratios are appreciable
(> −10 dB) in all cases, with the exception of regions near the
equal permittivity line (i.e., the single-layer case). In general,
these results suggest that fourth-order contributions to co-pol
returns can be more significant in the two-layer configuration
than in the single-layer case.

Cross-pol NRCS results in Fig. 12 show complex variations
similar to those observed for co-pol. Contributions to cross-
pol returns from the interaction and lower contributions vanish
identically along the image diagonal (the single-layer case),
but interaction contributions are otherwise significant. Lower
interface contributions for these roughness parameters are ap-
preciable only in the cases with larger differences between the
two region permittivities.

VI. CONCLUSION

The results of this paper demonstrate some of the possible
scattering effects that can occur in the two-layer rough surface
problem. Although a comprehensive evaluation of scattering in
this problem is difficult due to the large number of parameters
involved, the examples shown in Section V-C indicate that
fourth-order contributions in the SPM model can be more
significant in the two-layer problem than in the single layer case
(note that the case considered had equal roughness statistics on
both interfaces.) Properties of the cross-polarized backscatter,
available only at the fourth or higher order in the SPM, also
showed that interaction effects between the two surfaces can, in
some cases, be the dominant contribution to cross-pol returns.
The general behaviors of the results were consistent with an
expectation of an increased influence of the rougher interface
on total returns, as well as decreased influence of the lower in-

terface for cases with larger attenuation in region one. Because
the computation of the fourth-order SPM requires only a set
of double integrations for evaluation, it remains a reasonably
efficient method for application in data analysis and mission
planning for systems involving two-layer geometries.

Convergence of the SPM series for the two-layer geometry
should be expected to depend on properties of the surface
roughness, layered media, and scattering geometry, as shown
by the examples considered. While the accuracy of the fourth-
order SPM was demonstrated for one small height example
through a comparison with the MOM (see Section IV), it should
generally be expected that the fourth-order SPM is applica-
ble in cases where it produces a small-to-moderate correction
of the second-order SPM solution. In the cases where the
second-order SPM vanishes for a particular polarization (e.g.,
backscattered cross-polarization), it appears that applicability
can still be established by examination of other polarizations
for the same configuration (e.g., backscattered copolarization).
More detailed assessments of SPM applicability will require
further numerical studies beyond the scope of this paper or
the evaluation of the next-order term in the SPM NRCS series
(sixth order in power, requiring a fifth-order field solution for
stationary Gaussian process surfaces).
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