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0. Introduction

It is well known that every automorphism of the polynomial ring k[x], where k is a 
field, is determined by the assignment x �→ ax + b for some a ∈ k× := k \ {0} and b ∈ k. 
Every automorphism of k[x1, x2] is tame, that is, it is generated by affine and elementary 
automorphisms (defined below). This result was first proved by Jung [10] in 1942 for 
characteristic zero and then by van der Kulk [20] in 1953 for arbitrary characteristic. 
A structure theorem for the automorphism group of k[x1, x2] was also given in [20]. 
The automorphism group of k[x1, x2, x3] has not yet been fully understood, and the 
best result in this direction is the existence of wild automorphisms (e.g. the Nagata 
automorphism) by Shestakov–Umirbaev [16].

The automorphism group of the skew polynomial ring kq[x1, . . . , xn], where q ∈ k×

is not a root of unity and n ≥ 2, was completely described by Alev and Chamarie [2, 
Theorem 1.4.6] in 1992. Since then, many researchers have been successfully computing 
the automorphism groups of classes of interesting infinite-dimensional noncommutative 
algebras, including certain quantum groups, generalized quantum Weyl algebras, skew 
polynomial rings and many more – see [2–5,8,19,21,22], among others. In particular, 
Yakimov has proved the Andruskiewitsch–Dumas conjecture and the Launois–Lenagan 
conjecture by using a rigidity theorem for quantum tori, see [21,22], each of which de-
termines the automorphism group of a family of quantized algebras with parameter q
being not a root of unity. See also [9] for a uniform approach to these two conjectures.

Determining the automorphism group of an algebra is generally a very difficult prob-
lem. In [6] we introduced the discriminant method to compute automorphism groups of 
some noncommutative algebras. In this paper we continue to develop new methods and 
extend ideas from [6] for both discriminants and automorphism groups.

Suppose A is a filtered algebra with filtration {FiA}i≥0 such that the associated graded 
algebra grA is generated in degree 1. An automorphism g of A is affine if g(F1A) ⊂ F1A. 
An automorphism h of the polynomial extension A[t] is called triangular if there is a 
g ∈ Aut(A), c ∈ k× and r in the center of A such that

h(t) = ct + r and h(x) = g(x) ∈ A for all x ∈ A.

As in [6], we use the discriminant to control automorphisms and locally nilpotent deriva-
tions. Let C(A) denote the center of A. Here is the discriminant criterion for affine 
automorphisms.

Theorem 1. Assume k is a field of characteristic 0. Let A be a filtered algebra, finite 
over its center, such that the associated graded ring grA is a connected graded domain. 
Suppose that the v-discriminant dv(A/C(A)) is dominating for some v ≥ 1. Then the 
following hold.

(1) Every automorphism of A is affine, and Aut(A) is an algebraic group that fits into 
the exact sequence
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1 → (k×)r → Aut(A) → S → 1, (*)

where r ≥ 0 and S is a finite group. If S can be realized as a subgroup of Aut(A), 
then Aut(A) = S � (k×)r.

(2) Every automorphism of the polynomial extension A[t] is triangular.
(3) Every locally nilpotent derivation of A is zero.

The terminology will be explained in Section 1. This is proved below (in slightly more 
general form) as Theorem 1.13.

The discriminant criterion is very effective in computing the automorphism group 
for a large class of noncommutative algebras (examples can be found in [6] and in this 
paper), but the computation of the discriminant can be difficult. It would be nice to 
develop new theories and efficient computational tools for the discriminant in the setting 
of noncommutative algebra.

In this paper we apply our methods to two families of quantized algebras: quantum 
Weyl algebras and skew polynomial rings. We recall these next.

Let q be a nonzero scalar in k and let Aq be the q-quantum Weyl algebra, the algebra 
generated by x and y subject to the relation yx = qxy + 1 (we assume that q �= 1, but 
q need not be a root of unity). Consider the tensor product B := Aq1 ⊗ · · · ⊗ Aqm of 
quantum Weyl algebras, where qi ∈ k× \ {1} for all i. Since we are not assuming that 
the qi are roots of unity, B need not be finite over its center and so the hypotheses of 
Theorem 1 might fail; however, the conclusions hold.

Theorem 2. Let k be a field. Let B = Aq1 ⊗ · · · ⊗ Aqm and assume that qi �= 1 for all 
i = 1, . . . , m. Then the following hold.

(1) Every automorphism of B is affine, and Aut(B) is an algebraic group that fits into 
an exact sequence of the form (*), with r = m.

(2) The automorphism group of B[t] is triangular.
(3) If char k = 0, then every locally nilpotent derivation of B is zero.

See Section 5 for the proof. As a consequence of Theorem 2, the following hold (The-
orem 5.7):

• If qi �= ±1 and qi �= q±1
j for all i �= j, then Aut(B) = (k×)m.

• If qi = q �= ±1 for all i, then Aut(B) = Sm � (k×)m.

Let {pij ∈ k× | 1 ≤ i < j ≤ n} be a set of parameters, and set pji = p−1
ij and 

pii = pjj = 1 for all i < j. In this paper, a skew polynomial ring is defined to be the 
algebra generated by x1, . . . , xn subject to the relations xjxi = pijxixj for all i < j, 
and is denoted by kpij

[x1, . . . , xn]. Recall from [14, Chapter 13] that a PI algebra is one 
which satisfies a polynomial identity. Skew polynomial rings are PI if and only if they 
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are finite over their center; hence the skew polynomial ring kpij
[x1, . . . , xn] is PI if and 

only if each pij is a root of unity. The automorphism groups of skew polynomial rings 
have been studied by several authors [2,22]. The next result says that the discriminant 
criterion works well for PI skew polynomial rings.

Theorem 3 (Theorem 3.1). Let A = kpij
[x1, . . . , xn] be a PI skew polynomial ring over 

the commutative domain k. Then the following are equivalent.

(1) dw(A/C(A)) is dominating, where w = rk(A/C(A)).
(2) Every automorphism of A is affine.
(3) Every automorphism of A[t] is triangular.
(4) C(A) ⊂ k〈xα1

1 , . . . , xαn
n 〉 for some α1, . . . , αn ≥ 2.

If Z ⊂ k, then the above are also equivalent to

(5) Every locally nilpotent derivation is zero.

Note that the implication (1) ⇒ (5) fails when char k �= 0 [6, Example 3.9].
One example is kq[x1, . . . , xn] with n even and q �= 1 a primitive �th root of unity. In 

this case, C(A) = k[x�
1, . . . , x

�
n], so part (4) of the above holds. Therefore all of (1)–(5) 

hold. By part (2), Aut(kq[x1, . . . , xn]) is affine. An easy computation shows that

Aut(kq[x1, . . . , xn]) =
{

(k×)n if q �= ±1,
Sn � (k×)n if q = −1.

(0.3.1)

If n is odd and q is a root of unity, then Aut(kq[x1, . . . , xn]) is not affine – see Exam-
ple 1.8 – and is much more complicated. The structure of Aut(kq[x1, . . . , xn]) is not well 
understood for n odd, even when n = 3.

We have some results concerning automorphisms of not necessarily PI skew polynomial 
rings. We need to introduce some notation. For any 1 ≤ s ≤ n, let

Ts = {(d1, . . . , d̂s, . . . , dn) ∈ Nn−1 |
n∏

j=1
j �=s

p
dj

ij = pis ∀ i �= s}.

We show in Theorem 3.8 that in the PI case, if Ts = ∅ for all s, then every automorphism 
of A is affine. Note also that in the PI case, if Ts is nonempty, then Ts is in fact infinite. 
If we drop the PI assumption and we allow at most one Ts to be infinite, we can still 
understand the automorphism group, as described in the next result.

An automorphism g of kpij
[x1, . . . , xn] is called elementary if there is an s and an 

element f generated by x1, . . . , ̂xs, . . . , xn such that
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g(xi) =
{
xi i �= s

xs + f i = s.

An automorphism of kpij
[x1, . . . , xn] is called tame if it is generated by affine and ele-

mentary automorphisms.

Theorem 4. Let A = kpij
[x1, . . . , xn] be a (not necessarily PI) skew polynomial algebra 

over the commutative domain k, and suppose that xi is not central in A for all i. Let 
s0 be some integer between 1 and n. Suppose that Ts is finite for all s �= s0. Then every 
automorphism of A is tame.

This is proved as a consequence of Theorem 3.11.
The paper is laid out as follows. In Section 1, we introduce the notion of the discrimi-

nant and prove Theorem 1 – note that this result can be viewed as a generalization of [6, 
Theorem 3]. In Section 2, we compute the discriminants of skew polynomial rings over 
their center. In Section 3, we prove that Aut(kpij

[x1, . . . , xn]) is affine if and only if the 
discriminant is dominating and then prove Theorems 3 and 4. We discuss some prop-
erties of automorphisms and discriminants in Section 4. In the final section, we prove 
Theorem 2.

1. The discriminant controls automorphisms

Throughout the rest of the paper let k be a commutative domain, and sometimes we 
further assume that k is a field. Modules, vector spaces, algebras, tensor products, and 
morphisms are over k. All algebras are associative with unit.

The beginning of this section overlaps with the paper [6]. We start by recalling the 
concept of the discriminant in the noncommutative setting. Let R be a commutative 
algebra and let B and F be algebras both of which contain R as a subalgebra. In 
applications, F would be either R or a ring of fractions of R. An R-linear map tr : B → F

is called a trace map if tr(ab) = tr(ba) for all a, b ∈ B.
If B is the w × w-matrix algebra Mw(R) over R, we have the internal trace trint :

B → R defined to be the usual matrix trace, namely, trint((rij)) =
∑w

i=1 rii. Let B be 
an R-algebra, let F be a localization of R, and suppose that BF := B ⊗R F is finitely 
generated free over F . Then left multiplication defines a natural embedding of R-algebras 
lm : B → BF → EndF (BF ) ∼= Mw(F ), where w is the rank rk(BF /F ). Then we define 
the regular trace map by composing:

trreg : B lm−−→ Mw(F ) trint−−−→ F.

Usually we use the regular trace even if other trace maps exist. The following definition 
is well known; see Reiner’s book [15]. Let R× denote the set of invertible elements in R. 
If f, g ∈ R and f = cg for some c ∈ R×, then we write f =R× g.
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Definition 1.1. (See [6, Definition 1.3].) Let tr : B → F be a trace map and v be a fixed 
integer. Let Z := {zi}vi=1 be a subset of B.

(1) The discriminant of Z is defined to be

dv(Z : tr) = det(tr(zizj))v×v ∈ F.

(2) (See [15, Section 10, p. 126].) The v-discriminant ideal (or v-discriminant R-module) 
Dv(B : tr) is the R-submodule of F generated by the set of elements dv(Z : tr) for 
all Z = {zi}vi=1 ⊂ B.

(3) Suppose B is an R-algebra which is finitely generated free over R of rank w. In this 
case, we take F = R. The discriminant of B over R is defined to be

d(B/R) =R× dw(Z : tr),

where Z is an R-basis of B. Note that d(B/R) is well-defined up to a scalar in R×

[15, p. 66, Exer 4.13].

We refer to the books [1,15,18] for the classical definition of discriminant and its 
connection with the above definition.

To cover a larger class of algebras, in particular those that are not free over their 
center, we need a modified version of the discriminant. Let B be a domain. A normal 
element x ∈ B divides y ∈ B if y = wx for some w ∈ B. If D := {di}i∈I is a set of 
elements in B, a normal element x ∈ B is called a common divisor of D if x divides di
for all i ∈ I. We say a normal element x ∈ B is the greatest common divisor or gcd of D, 
denoted by gcdD, if

(1) x is a common divisor of D, and
(2) any common divisor y of D divides x.

It follows from part (2) that the gcd of any subset D ⊂ B (if it exists) is unique up to a 
scalar in B×.

Note that the gcd in B may be different from the gcd in R, if both exist. For example, 
the gcd in R could be 1 while the gcd in B is non-trivial. By definition, the gcd in R is a 
divisor of the gcd in B. Of course, the gcd in B may be more difficult to compute since 
B is typically noncommutative.

Definition 1.2. Let tr : B → R be a trace map and v a positive integer. Let Z = {zi}vi=1
and Z ′ = {z′i}vi=1 be v-element subsets of B.

(1) The discriminant of the pair (Z, Z ′) is defined to be

dv(Z,Z ′ : tr) = det(tr(ziz′j))v×v ∈ R.
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(2) The modified v-discriminant ideal MDv(B : tr) is the ideal of R generated by the 
set of elements dv(Z, Z ′ : tr) for all Z, Z ′ ⊂ B.

(3) The v-discriminant dv(B/R) is defined to be the gcd in B of the elements dv(Z, Z ′ :
tr) for all Z, Z ′ ⊂ B. Equivalently, the v-discriminant dv(B/R) is the gcd in B of 
the elements in MDv(B : tr).

If dv(B/R) exists, then the ideal (dv(B/R)) of B generated by dv(B/R) is the smallest 
principal ideal of B which is generated by a normal element and contains MDv(B : tr)B.

It is clear that Dv(B : tr) ⊂ MDv(B : tr). Equality should hold under reasonable 
hypotheses. For example, if B is an R-algebra which is finitely generated free over R and 
if w = rk(B/R), then MDw(B : tr) equals Dw(B : tr), both of which are generated by 
the single element d(B/R). In this case it is also true that d(B/R) =B× dw(B/R). This 
follows from (1.10.2), which states that if Z and Z ′ are two R-bases of B, then

d(B/R) =R× dw(Z,Z ′ : tr).

If v1 < v2 and if dv1(B/R) and dv2(B/R) exist, then dv1(B/R) divides dv2(B/R), by 
Lemma 1.4(5), and if v > rk(B/R), then dv(B/R) = 0 (Lemma 1.9(2)).

If B is not free as an R-module, then to use Definition 1.2, we let F be a localization 
of R, typically its field of fractions, we let tr : B → F be the regular trace, and we assume 
that the image of tr is in R. (This happens frequently when R is the center of B – see 
Lemma 2.7(9), for example.)

In [6], we computed some discriminants. Here are some new examples.

Example 1.3. Let k be a commutative domain such that 2 is nonzero in k. In parts (2) 
and (3) we further assume that 3 is nonzero in k and that ξ ∈ k is a primitive third root 
of unity. Some details in the computations are omitted.

(1) Let R be a commutative domain, 0 �= x ∈ R, and let A =
(

R R
xR R

)
. Then the 

center of A is R and Z := {e11, e12, xe21, e22} is an R-basis of A. By using the regular 
trace tr, we have

tr(e11) = 2, tr(e12) = 0, tr(xe21) = 0, tr(e22) = 2.

Using these traces and the fact tr is R-linear, we have the matrix

(tr(zizj))4×4 =

⎛⎜⎝2 0 0 0
0 0 2x 0
0 2x 0 0
0 0 0 2

⎞⎟⎠
and the discriminant d(A/R) is −24x2.
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(2) Let B = kpij
[x1, x2, x3], where p12 = −1, p13 = ξ and p23 = 1. Then the center R is 

the polynomial ring generated by x6
1, x2

2 and x3
3. The algebra B is a free R-module 

with basis

Z := {xi1
1 xi2

2 xi3
3 | 0 ≤ i1 ≤ 5, 0 ≤ i2 ≤ 1, 0 ≤ i3 ≤ 2}.

The rank of B over R is 36. One can check that the regular traces are

tr(1) = 36, tr(f) = 0 ∀ f ∈ Z \ {1}.

The discriminant d(B/R) is (x5
1x2x

2
3)36 (Proposition 2.8).

(3) Let C = kpij
[x1, x2, x3], where p12 = −1, p13 = −1, and p23 = 1. Then the center 

R is generated by x2
1, x2

2, x2
3, and x2x3. So R is not a polynomial ring and C is not 

free over R. The rank of C over R is 4 and C is generated by the set {1, x1, x2, x3,

x1x2, x1x3} over R. If F is the field of fractions of R, then one can show that the 
image of the regular trace tr : C → F is in R. By a degree argument, the regular 
traces are

tr(1) = 4, tr(x1) = tr(x2) = tr(x3) = tr(x1x2) = tr(x1x3) = 0.

Since C is not free over R, we compute the modified discriminant ideal. A non-trivial 
computation shows that MD4(C : tr) is the ideal generated by x4

1x
i
2x

4−i
3 for i =

0, 1, 2, 3, 4 and d4(C/R) =k× x4
1. In this example, it is also possible to compute 

dv(C/R) for other v:

dv(C/R) =k×

⎧⎪⎪⎨⎪⎪⎩
0 v > 4,
x2

1 v = 3,
1 v < 3.

(4) Let D = kpij
[x1, x2, x3], where p12 = −1, p13 = −1, and p23 = i where i2 = −1. 

Then the center R is generated by x2
1, x4

2, x4
3, and x1x

2
2x

2
3. As in the last example, R

is not a polynomial ring and D is not free over R, but the image of the regular trace 
is in R. The rank of D over R is 16 and D is generated by xi

1x
j
2x

k
3 , where 0 ≤ i ≤ 1, 

0 ≤ j, k ≤ 3 and (i, j, k) �= (1, 2, 2). One can check that

tr(1) = 16, tr(xi
1x

j
2x

k
3) = 0

for all 0 ≤ i ≤ 1, 0 ≤ j, k ≤ 3, and (i, j, k) �= (1, 2, 2) (Lemma 2.7(8)). The modified 
discriminant ideal MD16(D : tr) is generated by x48

2 x48
3 · f , where f ranges over 

elements of the form (x1x
−2
2 x2

3)i1(x1x
2
2x

−2
3 )i2(x1x

−2
2 x−2

3 )i3 for all 0 ≤ i1, i2, i3 ≤ 8. 
As a consequence, d16(D/R) =k× x16

2 x16
3 (Lemma 1.11(4)).

(5) Let E = kpij
[x1, x2, x3], where p12 = −1, p13 = ξ, and p23 = −1. Then the center R

is generated by x6
1, x2

2, x6
3, and x3

1x
3
3, which is not a polynomial ring. The modified 
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discriminant ideal MD36(D : tr) is generated by

(x2
1x2x

2
3)36x3i

1 x
3(36−i)
3 for 0 ≤ i ≤ 36,

and so d36(E/R) =k× (x2
1x2x

2
3)36 (Lemma 1.11(4)).

One of our key lemmas is the following, which suggests that the discriminant controls 
automorphisms.

Lemma 1.4. Retain the notation as in Definitions 1.1 and 1.2. Suppose that tr is the 
regular trace and that the image of tr is in R. Let g be an automorphism of B such that 
g and g−1 preserve R.

(1) (See [6, Lemma 1.8(5)].) The discriminant ideal Dw(B : tr) is g-invariant, where 
w = rk(B/R).

(2) (See [6, Lemma 1.8(6)].) If B is a finitely generated free module over R, then the 
discriminant d(B/R) is g-invariant up to a unit of R.

(3) The modified discriminant ideal MDv(B : tr) is g-invariant for all v.
(4) The v-discriminant dv(B/R) is g-invariant up to a unit in B, for all v.
(5) For integers v1 < v2, MDv2(B : tr) ⊂ MDv1(B : tr). So if dv1(B/R) and dv2(B/R)

exist, then dv1(B/R) divides dv2(B/R). As a consequence, the quotient dv2(B/R)/
dv1(B/R) is g-invariant up to a unit in B.

Proof. (3) By [6, Lemma 1.8(2)], tr(g(x)) = g(tr(x)) for all x ∈ B. This implies that 
g(dv(Z, Z ′ : tr)) = dv(g(Z), g(Z ′) : tr) for any Z, Z ′ ⊂ B. Therefore g(MDv(B : tr)) ⊂
MDv(B : tr). Similarly, g−1(MDv(B : tr)) ⊂ MDv(B : tr). These imply that g(MDv(B :
tr)) = MDv(B : tr). The proof of (4) is similar.

(5) Let Z and Z ′ be any v2-element subsets of B as in Definition 1.2. Use X for any 
v1-element subset of Z and Y for Z\X. We similarly define X ′ and Y ′. By linear algebra,

dv2(Z,Z ′ : tr) = det(tr(ziz′j))v2×v2

=
∑

X⊂Z,X′⊂Z′

± det(tr(xix
′
j))v1×v1 det(tr(yiy′j))(v2−v1)×(v2−v1)

=
∑

X⊂Z,X′⊂Z′

±dv1(X,X ′ : tr)dv2−v1(Y, Y ′ : tr),

which is in MDv1(B : tr). Hence MDv2(B : tr) ⊂ MDv1(B : tr) and the second assertion 
follows. The consequence is clear. �

The next proposition says that the discriminant controls locally nilpotent derivations. 
Recall that a k-linear map ∂ : B → B is called a derivation if the Leibniz rule

∂(xy) = ∂(x)y + x∂(y)
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holds for all x, y ∈ B. We call ∂ locally nilpotent if for every x ∈ B, ∂n(x) = 0 for some n. 
Given a locally nilpotent derivation ∂ (and assuming that Q ⊂ k), the exponential map 
exp(∂) : B → B is defined by

exp(∂)(x) =
∞∑
i=0

1
i!∂

i(x) for all x ∈ B.

Since ∂ is locally nilpotent, exp(∂) is an algebra automorphism of B with inverse 
exp(−∂).

Proposition 1.5. Assume that Q ⊂ k and that B× = k×. Let R be the center of B. Suppose 
that tr is the regular trace and that the image of tr is in R, and suppose that dv(B/R)
exists. If ∂ is a locally nilpotent derivation of B, then ∂(dv(B/R)) = 0. Similarly, if B
is finitely generated free over R, then ∂(d(B/R)) = 0.

Proof. For any c ∈ k, consider the algebra automorphism

exp(c∂) : x �−→
∞∑
i=0

ci

i! ∂
i(x) for all x ∈ B.

Let x = dv(B/R) (or d(B/R) in the second case). Then, by Lemma 1.4(4), exp(c∂)(x) =
λcx ∈ kx for some λc ∈ k×. This is true for all c ∈ Q. Since ∂ is locally nilpotent, there 
are only finitely many nonzero ∂i(x) terms for i = 0, 1, 2, . . . . By using the Vandermonde 
determinant, ∂i(x) ∈ kx for all i. If ∂(x) = ax, then ∂i(x) = aix for all i. Since ∂ is 
locally nilpotent, a = 0 and ∂(x) = 0. �

This proposition fails when k has positive characteristic [6, Example 3.9].
Let C =

⊕
i Ci be a graded algebra over k. We say C is connected graded if Ci = 0

for i < 0 and C0 = k, and C is locally finite if each Ci is finitely generated over k. We 
now consider filtered rings A. Let Y be a finitely generated free k-submodule of A such 
that k ∩ Y = {0}. Consider the standard filtration defined by FnA := (k + Y )n for all 
n ≥ 0. Assume that this filtration is exhaustive and that the associated graded ring grA
is connected graded. For each element f ∈ FnA \ Fn−1A, the associated element in grA
is defined to be gr f = f + Fn−1A ∈ (grF A)n. The degree of a nonzero element f ∈ A, 
denoted by deg f , is defined to be the degree of gr f .

Suppose now A is generated by Y =
⊕n

i=1 kxi, so with the standard filtration, the 
nonzero elements of Y have degree 1. A monomial xb1

1 · · ·xbn
n is said to have degree 

component-wise less than (or, cwlt, for short) xa1
1 · · ·xan

n if bi ≤ ai for all i and bi0 < ai0
for some i0. We write f = cxb1

1 · · ·xbn
n + (cwlt) if f − cxb1

1 · · ·xbn
n is a linear combination 

of monomials with degree component-wise less than xb1
1 · · ·xbn

n .

Definition 1.6. Retain the above notation. Suppose that Y =
⊕n

i=1 kxi generates A as 
an algebra.
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(1) A nonzero element f ∈ A is called locally (−s)-dominating if, up to a permutation, 
f can be written as f(x1, x2, . . . , xn−s) such that, for every g ∈ Aut(A), one has
(a) deg f(y1, . . . , yn−s) ≥ deg f , where yi = g(xi) for all i ≤ n − s, and
(b) deg f(y1, . . . , yn−s) > deg f if, further, deg yi0 > 1 for some i0 ≤ n − s.

(2) Suppose grA is a connected graded domain. A nonzero element f ∈ A generated 
by {x1, . . . , xn−s} (up to a permutation of {xi}ni=1) is called (−s)-dominating if, for 
every N-filtered PI algebra T with grT a connected graded domain, and for every 
subset {y1, . . . , yn−s} ⊂ T that is linearly independent in the quotient k-module 
T/F0T , there is a lift of f , say f(x1, . . . , xn−s), in the free algebra k〈x1, . . . , xn−s〉, 
such that the following hold: either f(y1, . . . , yn−s) = 0 or
(a) deg f(y1, . . . , yn−s) ≥ deg f , and
(b) deg f(y1, . . . , yn−s) > deg f if, further, deg yi0 > 1 for some i0 ≤ n − s.

If f = xb1
1 · · ·xbn−s

n−s + (cwlt) for some b1, . . . , bn−s ≥ 1, then f is (−s)-dominating: 
see the proof of [6, Lemma 2.2]. It is easy to check that (−s)-dominating elements are 
indeed locally (−s)-dominating.

Note that the notation of “0-dominating” is exactly the notation of “dominating” of 
[6, Definition 2.1(2)] and the notation of “locally 0-dominating” is exactly the notation 
of “locally dominating” of [6, Definition 2.1(1)].

Definition 1.7. Let (A, Y ) be defined as above. In particular, Y =
⊕n

i=1 kxi generates A
as an algebra.

(1) An algebra automorphism g of A is said to be (−s)-affine if deg g(xi) = 1 for all but 
s-many values of i. A 0-affine automorphism is also called an affine automorphism 
[6, Definition 2.4(1)].

(2) Let C be an algebra over k. A k-algebra automorphism g of A ⊗ C is said to be 
(−s)-C-affine if g(xi) ⊂ (Y ⊕ k) ⊗ C for all but s-many values of i. A 0-C-affine 
automorphism is also called a C-affine automorphism.

The definition of (−s)-affine depends on the choice of generators – one can construct 
an example showing this just by a linear change of variables. This is unfortunate, but this 
definition does work well for a natural choice of generators for skew polynomial algebras.

Note that any elementary automorphism is (−1)-affine. The next example shows that 
not every automorphism is affine.

Example 1.8. For q ∈ k×, let kq[x1, . . . , xn] be the q-skew polynomial ring generated 
by {x1, . . . , xn} and subject to the relations xjxi = qxixj for all i < j. Suppose q is a 
primitive �th root of unity for some � > 1. If n is odd, then there is an automorphism 
which is elementary and (−1)-affine, but not affine:

xi �→
{
xi if i < n,

x + x�−1x · · ·x�−1 x if i = n.
n 1 2 n−2 n−1
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On the other hand, if n is even, then every automorphism of kq[x1, . . . , xn] is affine: see 
the next section.

The Nagata automorphism of the ordinary polynomial algebra k[x1, x2, x3] is 
(−2)-affine but not a composite of (−1)-affine automorphisms [16].

The definition of a (−s)-affine automorphism (and that of a (−s)-dominating element) 
depends on Y (or on the filtration of A). But in most cases, there is an obvious choice 
of filtration.

We conclude this section by proving Theorem 1.13. This is a generalization of the 
main result of [6], namely, [6, Theorem 3]. We need to develop a few tools, first. Let R
be a central subalgebra of A and let F be a ring of fractions of R (for example, the field 
of fractions of R). Write AF := A ⊗R F and suppose that AF is finitely generated free 
over F .

Here is a list of linear algebra facts without proof.

Lemma 1.9. Suppose that AF is finitely generated free over F and that v is a positive 
integer. Let tr be the regular trace map tr : AF → F . Let Z := {zi}vi=1 and Z ′ := {z′i}vi=1
be subsets of A, and suppose y1 ∈ A.

(1) Let Z2 = {y1, z2, . . . , zv} and Z3 = {y1 + z1, z2, . . . , zv}. Then

dv(Z3, Z
′ : tr) = dv(Z,Z ′ : tr) + dv(Z2, Z

′ : tr).

(2) If Z is linearly dependent over F , then dv(Z, Z ′ : tr) = 0.
(3) If Z1 = {cz1, z2, . . . , zv} for c ∈ F , then dv(Z1, Z ′ : tr) = cdv(Z, Z ′ : tr).
(4) Let X be a generating set of A over R. Then dv(Z, Z ′ : tr) is an R-linear combination 

of elements dv(X1, X2 : tr), where X1 and X2 consist of v elements in X.

Definition 1.10. A subset b = {b1, . . . , bw} ⊂ A is called a semi-basis of A if it is an 
F -basis of AF , where bi is viewed as bi ⊗ 1 ∈ AF . In this case w is the rank of A over R. 
The set b is called a quasi-basis of A (with respect to X) if

(1) b = {b1, . . . , bw} is a semi-basis of A, and
(2) There is a set of elements X = {xj}j∈J containing b such that A is generated by X

as an R-module and every element xj ∈ X is of the form cbi for some c ∈ F and 
bi ∈ b. We denote the element c by (xj : bi).

Let Z := {z1, . . . , zw} be a subset of A. If b is a semi-basis, then for each i,

zi =
w∑

aijbj for some aij ∈ F .

j=1
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The w × w-matrix (aij) is denoted by (Z : b). Let X be a set of generators of A as an 
R-module, and assume that X contains b. Let X/b denote the subset of F consisting of 
nonzero scalars of the form det(Z : b) for all Z ⊂ X with |Z| = w. Let

D(X/b) = {dw(b : tr)ff ′ | f, f ′ ∈ X/b}.

Note that if Z and Z ′ are w-element subsets of X, then

dw(Z,Z ′ : tr) = det(tr(ziz′j)) = det((Z : b)(tr(bibj))(Z ′ : b)t)

= det(Z : b) det(Z ′ : b) det(tr(bibj))

= det(Z : b) det(Z ′ : b)dw(b : tr) ∈ D(X/b). (1.10.1)

For any integer v, define

Dv(X) = {dv(Z,Z ′ : tr) | Z,Z ′ ⊂ X}.

Then Dw(X) = D(X/b). As a consequence of (1.10.1), if Z and Z ′ are two R-bases of A, 
then

dw(Z,Z ′ : tr) =R× dw(b : tr). (1.10.2)

If b = {b1, . . . , bw} is a quasi-basis with respect to X = {xj}j∈J , then for each i, let Ci

be the set of nonzero elements of the form (xj : bi) for all j. It is easy to see that every 
element in X/b is of the form c1c2 · · · cw, where ci ∈ Ci for each i. Let

Dc(X/b) = {dw(b : tr)
w∏
i=1

(cic′i) | ci, c′i ∈ Ci}.

If b is a quasi-basis with respect to X, then D(X/b) = Dc(X/b).

Lemma 1.11. Let X be a set of generators of A as an R-module and w = rk(A/R).

(1) For any v ≥ 1, the modified v-discriminant ideal MDv(A : tr) is generated by 
dv(Z, Z ′ : tr) for all Z, Z ′ ⊂ X.

(2) For any v ≥ 1, the v-discriminant dv(A/R) is the gcd of Dv(X).
(3) If b is a semi-basis of A, then dw(A/R) = gcdD(X/b).
(4) If b is a quasi-basis of A with respect to X, then dw(A/R) = gcdDc(X/b).

Proof. (1) This follows from Lemma 1.9(4).
(2), (3) and (4) follow from the definition and part (1). �
Let C be an algebra. We say that A ⊗ C is A-closed if, for every 0 �= f ∈ A and 

x, y ∈ A ⊗ C, the equation xy = f implies that x, y ∈ A up to units of A ⊗ C. For 
example, if C is connected graded and A ⊗ C is a domain, then A ⊗ C is A-closed.
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Lemma 1.12. Let C be a k-flat commutative algebra such that A ⊗C is a domain and let 
v be a positive integer.

(1) MDv(A ⊗ C : tr⊗C) = MDv(A : tr) ⊗ C.
(2) Suppose A ⊗ C is A-closed. If dv(A/R) exists, then dv(A ⊗ C/R ⊗ C) exists and 

equals dv(A/R).

Proof. (1) Let X be a set of generators of A as an R-module. Then X is also a set of 
generators of A ⊗ C as an R⊗ C-module. The assertion follows from Lemma 1.11(1).

(2) Suppose d := dv(A/R) exists. Then it is the gcd of dv(Z, Z ′ : tr) in A for all 
Z, Z ′ ⊂ X (Lemma 1.11(2)). Let d′ be a common divisor of dv(Z, Z ′ : tr) in A ⊗C for all 
Z, Z ′ ⊂ X. Then we may assume that d′ is in A by the A-closedness of A ⊗C. Hence d′

divides d. Therefore d is the gcd of {dv(Z, Z ′ : tr) | Z, Z ′ ⊂ X} in A ⊗ C. The assertion 
follows from Lemma 1.11(2). �

As before let A be a filtered algebra with standard filtration FnA = (k ⊕ Y )n, where 
Y :=

⊕n
i=1 kxi generates A, and assume that the associated graded ring grA is a con-

nected graded domain. Let C(A) denote the center of A. The discriminant of A can also 
control the automorphism group of A[t]. For any g ∈ Aut(A), c ∈ k× and r ∈ C(A), the 
map

σ : t �→ ct + r, x �→ g(x) for all x ∈ A (1.12.1)

determines uniquely a triangular automorphism of A[t]. The non-affine automorphisms 
given in Example 1.8 can be viewed as elementary triangular automorphisms of the Ore 
extension D[xn; τ ], where D is the subalgebra generated by {x1, . . . , xn−1}. We associate 

the triangular automorphism σ (1.12.1) with the upper triangular matrix 
(
g r
0 c

)
. The 

triangular automorphisms form a subgroup of Aut(A[t]), denoted by 
(

Aut(A) C(A)
0 k×

)
or Auttr(A[t]). Explicit examples are computed in [6, Theorems 4.10 and 4.11].

Now we are ready to prove Theorem 1, which is a discriminant criterion for affine 
automorphisms.

Theorem 1.13. Let A be an algebra and let Y be a k-subspace of A which generates A as 
an algebra. Give A the standard filtration FnA = (k+Y )n and suppose that the associated 
graded ring grA is a connected graded domain. Suppose also that A has finite rank over 
its center C(A). Assume that there is an integer v ≥ 1 such that the v-discriminant 
dv(A/C(A)) is locally dominating with respect to Y . In parts (2–5) we further assume 
that dv(A/C(A)) is dominating with respect to Y . Then the following hold.

(1) Every automorphism of A is affine.
(2) Aut(A[t]) = Auttr(A[t]).
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Suppose that Z ⊂ k in parts (3,4,5) and further that k is a field in part (5).

(3) Every locally nilpotent derivation ∂ of A[t] is of the form

∂(x) = 0 for all x ∈ A, ∂(t) = r for some r ∈ C(A).

(4) Every locally nilpotent derivation of A is zero.
(5) Aut(A) is an algebraic group that fits into an exact sequence

1 → (k×)r → Aut(A) → S → 1

for some finite group S. Indeed, Aut(A) = S � (k×)r.

Proof. (1) Let g ∈ Aut(A). By Lemma 1.4(4), dv(A/C(A)) is g-invariant. By [6, 
Lemma 2.6], g is affine.

(2) Note that A ⊗ k[t] is A-closed (taking C = k[t]), and (A[t])× = A×. By 
Lemma 1.12(2), dv(A/C(A)) =A× dv(A[t]/C(A[t])). Then the proof of [6, Lemma 3.2]
works for dv(A/C(A)). Let h ∈ Aut(A[t]). By [6, Lemma 3.2(2)], h(xi) ∈ Y ⊕ k ⊂ A, or 
h(A) ⊂ A. Applying [6, Lemma 3.2(2)] to h′ := h−1, we have h′(A) ⊂ A. Thus h|A and 
h′|A are inverse to each other and hence h|A ∈ Aut(A). The rest is the same as the proof 
of [6, Theorem 3.5].

(3), (4) and (5). By localizing the commutative domain k, we may assume that k is 
a field of characteristic zero. The rest of the proof follows from the proof of [6, Theo-
rem 3.5(2,3,4)]. �

In this paper we only consider standard filtrations. As explained in [6, Example 5.8], 
the ideas presented here may be applied to non-standard filtrations.

2. The discriminant and skew polynomial rings

In the first half of this section we discuss some properties related to the center of skew 
polynomial rings. In the second half of the section, we compute the discriminant of the 
skew polynomial ring over its center.

Recall that the skew polynomial ring kpij
[x1, . . . , xn] is a connected graded Koszul 

algebra that is generated by xi with deg xi = 1, and subject to the quadratic relations 
xjxi = pijxixj for all i < j, where pij ∈ k× for all i < j. We also write kpij

[xn] for 
the skew polynomial ring kpij

[x1, . . . , xn]. It is well known that, if k is a field, then 
kpij

[xn] is a noetherian domain of Gelfand–Kirillov dimension, Krull dimension, and 
global dimension n [14]. If the parameters pij are generic, then Aut(kpij

[xn]) = (k×)n
[2,22]. In this paper we are interested in the case when the pij are not generic.

Consider the following two conditions:

(H1) xi is not central in kpij
[xn] for all i = 1, . . . , n.

(H2) pij is a root of unity for all i < j.
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Note that (H2) is equivalent to the following:

(H2’) There are positive integers φij and a primitive root of unity q such that pij = qφij

for all i < j; the element q is a generator of the subgroup of k× generated by {φij}.

Throughout the rest of this section let A = kpij
[xn]. Note that every monomial 

xd1
1 · · ·xdn

n is normal in A. Condition (H1) ensures that A is not a commutative poly-
nomial ring. Condition (H2) implies that A is PI. Since A is Zn-graded with deg xi =
(0, . . . , 1, . . . , 0), where 1 is in the ith position, the center of A is Zn-graded. Thus the 
center of A has a k-linear basis consisting of monomials.

Definition 2.1. For each i, define an automorphism φi of A, called a conjugation auto-
morphism or conjugation by xi, by

φi(xj) = pijxj ∀ i, j

(where, as earlier, pii = 1 for all i and pij = p−1
ji if i > j).

For each monomial f := xd1
1 · · ·xdn

n , φi(f) =
∏n

j=1 p
dj

ij f . Hence φi(f) = f if and only if ∏n
j=1 p

dj

ij = 1. Since φi is conjugation by xi, xi commutes with f if and only if φi(f) = f , 
and then if and only if 

∏n
j=1 p

dj

ij = 1. Define

T = {(d1, . . . , dn) ∈ Nn |
n∏

j=1
p
dj

ij = 1 ∀ i}.

If W is any subset of Nn, let

XW = {xd1
1 · · ·xdn

n | (d1, . . . , dn) ∈ W}.

Lemma 2.2. Retain the above notation. Then the following hold.

(1) The center C(A) of A has a monomial basis {f | f ∈ XT }.
(2) Assume (H2) and that k is a field. Then C(A) is Cohen–Macaulay.

Proof. (1) This is clear.
(2) If char k = 0, this is well known [17, Theorem 2.2(3)]. Now we assume that 

char k = p > 0. Let S be the abelian group generated by the conjugation automorphisms 
φi. Then S is a finite group and C(A) is the fixed subring AS . The order of φi equals the 
order of the subgroup G of k× generated by {pi1, pi2, . . . , pin}. Since G is a subgroup of 
k×, it is cyclic. We may assume that the base field k is finite. Then |k| = pN for some N
and k× is a cyclic group of order pN − 1. Thus the order of G is coprime to p. Since each 
φi has order coprime to p, the order of S is coprime to p. As a consequence, the group 
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algebra kS is semisimple. Then AS is Cohen–Macaulay by [12, Lemma 3.2(b)] (note that 
the proof of [12, Lemma 3.2(b)] only uses the fact kS is semisimple, not the hypothesis 
char k = 0). �

When n is large, it is not easy to understand C(A) or T completely. The following 
lemma is useful in a special case.

Lemma 2.3. Assume (H2). The following are equivalent.

(1) The center C(A) is a polynomial ring.
(2) There are positive integers a1, . . . , an such that (d1, . . . , dn) ∈ T if and only if ai | di

for all i. In other words, T is generated by (0, . . . , 0, ai, 0, . . . , 0) for i = 1, . . . , n, 
where ai is in the ith position, and the Nn-solutions (d1, . . . , dn) to the system of 
equations

n∏
j=1

p
dj

ij = 1, for all i = 1, . . . , n (2.3.1)

form the set {
∑n

i=1 bi(0, . . . , 0, ai, 0, . . . , 0) | bi ≥ 0}.
(3) There are positive integers a1, . . . , an such that C(A) is generated by xai

i for 
i = 1, . . . , n.

(4) A is finitely generated free over C(A).

Proof. (1) ⇒ (2) By localizing k, we may assume that k is a field. Since C(A) and A have 
the same Gelfand–Kirillov dimension, the number of generators in C(A) must be n. Let 
ai be the minimal integer such that (0, . . . , 0, ai, 0, . . . , 0) ∈ T . Then xai

i ∈ C(A), but is 
not generated by any other elements in C(A). Let m be the graded ideal C(A)≥1. Then 
the images of xai

i in m/m2 (still denoted by xai
i ) are linearly independent elements; since 

m/m2 is a free k-module of rank n, we have m/m2 = ⊕n
i=1kx

ai
i . Thus C(A) is generated 

by xai
i . The assertion follows.

(2) ⇒ (3) and (3) ⇒ (4) are clear.
(4) ⇒ (1) Let F be the field of fractions of k. Then A ⊗F is finitely generated free over 

C(A) ⊗F . Since F is a field, C(A) ⊗F has global dimension n [11, Lemma 1.11]. The only 
connected graded commutative algebra of finite global dimension is the polynomial ring. 
So C(A) ⊗F is a polynomial ring. By the proof of (1) ⇒ (2) for k = F , C(A) ⊗F is gen-
erated by xai

i s. Therefore C(A) is generated by xai
i . Thus C(A) is a polynomial ring. �

Example 2.4. Let q be a primitive �th root of unity, and write pij = qφij for some 
integers φij .

(1) If det(φij) is invertible in Z/(�), then the center of A is k[x�
1, . . . , x

�
n]. To see this, 

let xd1
1 · · ·xdn

n be in the center. By the definition of T , we have 
∏n

j=1 p
dj

ij = 1 for all 
i, or equivalently,



S. Ceken et al. / Advances in Mathematics 286 (2016) 754–801 771
n∑
j=1

φijdj ≡ 0 (mod �).

Since det(φij)n×n is invertible in Z/(�), di ≡ 0 (mod �), or � | di. It is clear that 
x�
i ∈ C(A). Thus C(A) = k[x�

1, . . . , x
�
n].

Note that we may take φii = 0 and φji = −φij . Then the matrix (φij) is skew-
symmetric. Hence det(φij) being invertible can only happen when n is even.

(2) A special case of (1) is when φij = 1 for all i < j (or pij = q for all i < j). When 
n is even, then, by linear algebra, det(φij) = 1, which is invertible for any �. In this 
case the center of kq[x1, . . . , xn] is k[x�

1, . . . , x
�
n].

(3) When n is odd, there are different kinds of examples for which C(A) is a polynomial 
ring. Let n = 3 and q be a primitive �th root of unity. Suppose � = abc, where 
a, b, c ≥ 2 are pairwise coprime. Let p12 = qab, p13 = qac, and p23 = qbc. Then 
one can check that the center of kpij

[x1, x2, x3] is k[xbc
1 , xac

2 , xab
3 ]. Higher dimensional 

examples can be constructed in a similar way.
(4) Again let n = 3, q be a primitive �th root of unity, and � = abc, where a, b, c ≥ 2 are 

pairwise coprime. Let p12 = qa, p13 = q−b, and p23 = qc. Then the center C(A) is 
not a polynomial ring. To see this, note that the monomials x�

1, x
�
2, x

�
3, x

c
1x

b
2x

a
3 , and 

so on, are generators of C(A), but xc
1 is not in the center. By Lemma 2.3, C(A) is 

not a polynomial ring, and in this case, C(A) ⊂ k〈xc
1, x

b
2, x

a
3〉.

Note that under the hypothesis (H2), the subgroup of k× generated by {pij} is 〈q〉
for some root of unity q.

Lemma 2.5. Assume (H1) and (H2), hence (H2’). Assume that the group generated by 
{pij} is 〈q〉, where q is a primitive �th root of unity and � is a prime number. If C(A)
is not a polynomial ring, then there is a solution (d1, d2, . . . , dn) ∈ Nn to the system of 
equations

n∏
j=1

p
dj

ij = 1, for all i = 1, . . . , n

such that ds = 1 for some s.

Proof. Since xi /∈ C(A) and x�
i ∈ C(A), we have

� = min
a>0

{xa
i ∈ C(A)}.

Since C(A) is not a polynomial ring, there is a solution d := (d1, d2, . . . , dn) to system 
of equations given in the lemma such that some ds is not divisible by �. Note that any 
multiple of d is still a solution. By replacing d by a multiple of d, we have ds ≡ 1
(mod �) (as � is prime). Finally, by replacing ds by 1 (as p�is = 1) we obtain the desired 
solution. �
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Next we compute the discriminant d(A/R) when R is a polynomial ring. We start 
with an easy lemma. Let Λ be an abelian group and let B be a Λ-graded algebra. Then 
the center of B is also Λ-graded.

Lemma 2.6. Let B be a Λ-graded algebra and R a central graded subalgebra of B. Suppose 
that R× = k×. For every v ≥ 1 and any sets of homogeneous elements Z = {zi}vi=1
and Z ′ = {z′i}vi=1, the discriminant dv(Z, Z ′ : tr) is either 0 or homogeneous of degree ∑v

i=1(deg zi + deg z′i). As a consequence, if B is a finitely generated graded free module 
over R, then d(B/R) is homogeneous.

Proof. The consequence is clear, so we prove the main assertion.
Let F be the graded field of fractions of C(B). Since C(B) is graded, we can choose 

a semi-basis b = {b1, . . . , bw} of B consisting of homogeneous elements bi, where w =
rk(B/C(B)). Then B is a finitely generated graded free module over F with basis b. 
For each homogeneous element f , tr(f) is either 0 or homogeneous of degree deg(f). In 
particular, tr(ziz′j) is either 0 or homogeneous of degree deg(ziz′j) = deg(zi) + deg(z′j). 
By definition, dv(Z, Z ′ : tr) is the determinant det(tr(ziz′j))v×v, which is a signed sum 
of elements ∑

σ∈Sv

tr(z1z
′
σ(1)) tr(z2z

′
σ(2)) · · · tr(zvz′σ(v)).

Each above element is either 0 or homogeneous of degree 
∑v

i=1(deg zi + deg z′i). Hence 
dv(Z, Z ′ : tr) is either 0 or homogeneous of degree 

∑v
i=1(deg zi + deg z′i). �

We may consider kpij
[xn] as either Z-graded or Zn-graded. Let kpij

[x±1
n ] denote the 

algebra kpij
[x±1

1 , . . . , x±1
n ]. By a monomial in kpij

[x±1
n ], we mean an element of the form 

cxa1
1 · · ·xan

n for some ai ∈ Z and some 0 �= c ∈ k.

Lemma 2.7. Let A = kpij
[xn] and B = kpij

[x±1
n ] with the natural Zn-grading. Let C(A)

be the center of A. In parts (6)–(9) suppose (H2) and let tr : A → F be the regular trace, 
where F is the field of fractions of C(A).

(1) Every homogeneous element in B is a monomial.
(2) Let f be a homogeneous element in B. Then f ∈ A if and only if deg f ∈ Nn.
(3) For any set D of monomials in A, gcdD exists and is a monomial.
(4) The center of A (respectively, B) is a Zn-graded subalgebra of A (respectively, B).
(5) There is a generating set X of the C(A)-module A consisting of monomials.
(6) If A satisfies (H2), then A has a quasi-basis b.
(7) The rank rk(A/C(A)) is nonzero in k.
(8) For every monomial f ∈ B, tr(f) �= 0 if and only if f ∈ C(B).
(9) The image of tr : A → F is in C(A).
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Proof. (1)–(5) are straightforward.
(6) Since B is a graded division ring, its center is a graded field. Hence B is finitely 

generated graded free over C(B) with a basis b ⊂ X. It is easy to check that b is a 
quasi-basis.

(7) Since rk(A/C(A)) = rk(B/C(B)), it suffices to show that rk(B/C(B)) is nonzero 
in k. By localizing k, we may assume that k is a field. If char k = 0, the assertion is 
trivial, so we assume that char k = p > 0.

Following the proof of Lemma 2.2(2), let S be the abelian group generated by the 
automorphisms φi. Then S is a finite group and C(B) = BS . Since each pij is a root of 
unity, by replacing k by the subfield generated by the pij’s, we may assume k is finite. 
Then |k| = pN for some N . By the proof of Lemma 2.2(2), the order of S is coprime 
to p. Since C(B) is a Zn-graded field, B is a finite dimensional free module over C(B)
with a monomial basis b = {b1 = 1, . . . , bw}. Let S∨ be the dual group of S. Define 
a map Φ : b → S∨ by Φ(bi)(φj) = φj(bi)b−1

i . If bibj = bkc for some c ∈ C(B), then 
one can check that Φ(bi)Φ(bj) = Φ(bk). This observation implies that Φ is injective and 
the image of Φ is a subgroup of S∨. Therefore the order of b, namely, rk(B/C(B)), is a 
divisor of |S|, which is coprime to p. Equivalently, rk(B/C(B)) �= 0 in k.

(8) The regular trace map tr : A → F (or tr : B → F ) can be defined by composing

tr : A → A⊗C(A) C(B) = B
lm−−→ Mw(C(B)) trint−−−→ C(B) =−→ F,

where lm is the left multiplication map. For any monomial f in A (or in B), tr(f) is 
either zero or of degree equal to deg(f) – that is, the map tr is homogeneous of degree 0 
with respect to the Zn-grading. Thus if tr(f) �= 0, then tr(f) ∈ C(B) is a scalar multiple 
of f ∈ B, so f is in C(B). If f ∈ C(B), then tr(f) = wf , where w = rk(A/C(A)) is 
nonzero in k, by part (7).

(9) Since the map tr is homogeneous of degree 0, the image im tr(A) is in A by part (2). 
Hence im tr(A) ⊂ A ∩ C(B) = C(A). �
Proposition 2.8. Consider A as a Zn-graded algebra. Let R = k[xα1

1 , . . . , xαn
n ] be a central 

subalgebra of A, where the αi are positive integers. Let r =
∏n

i=1 αi. Then

d(A/R) =k× rr(
n∏

i=1
xαi−1
i )r.

As a consequence, if R is the center of A and αi > 1 for all i, then d(A/R) is dominating.

Proof. First note that there is a graded basis Z := {xβ1
1 · · ·xβn

n | 0 ≤ βi < αi ∀i} of A
over R, so the rank of A over R is r =

∏n
i=1 αi.

Let b := {z1 = 1, z2, . . . , zr} be a monomial basis of A over R. For every element 
zj := xβ1

1 · · ·xβn
n in the basis b, let z′j be the monomial xβ′

1
1 · · ·xβ′

n
n , where
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β′
i =

{
0 if βi = 0,
αi − βi if βi �= 0.

One can check that z′j is the unique element in the basis such that zjz′j ∈ R. For example, 
z′1 = 1. Then tr(zjzs) = 0 unless zs = z′j , and in that case tr(zjz′j) = rzjz

′
j . Therefore 

det(tr(zizj)) =k× rr
∏r

j=1 zjz
′
j . An easy combinatorial argument gives the result.

For the consequence, note that the rank r is nonzero in k by Lemma 2.7(7). Then 
d(A/R) is of the form given in [6, Lemma 2.2(1)], which is dominating. �

From Lemma 2.3, we see that if the center of A is a commutative polynomial ring, 
then the center is of the form k[xα1

1 , . . . , xαn
n ]. So as an immediate consequence of this, 

together with Proposition 2.8 and Theorem 1, if (H2) holds and if the center of A
is a commutative polynomial ring, then every automorphism of A is affine and every 
automorphism of A[t] is triangular.

We also consider the discriminant when C(A) is not a polynomial ring. The goal is 
an explicit condition that ensures that the discriminant is dominating. We recall some 
notation. Fix a parameter set {pij | 1 ≤ i < j ≤ n} and impose the usual conditions 
(pji = p−1

ij , pii = 1) to define pij for all 1 ≤ i, j ≤ n. For any 1 ≤ s ≤ n, let

Ts = {(d1, . . . , d̂s, . . . , dn) ∈ Nn−1 |
n∏

j=1
j �=s

p
dj

ij = pis ∀ i �= s}.

Lemma 2.9. Retain the above notation.

(1) If (d1, . . . , d̂s, . . . , dn) ∈ Ts, then the equation 
∏n

j=1,j �=s p
dj

ij = pis also holds for i = s.
(2) Ts = {(d1, . . . , d̂s, . . . , dn) ∈ Nn−1 | xd1

1 · · ·x−1
s · · ·xdn

n ∈ C(kpij
[x±1

n ])}.

Proof. Both are easy to check. �
By Lemma 2.9(1), (d1, . . . , d̂s, . . . , dn) ∈ Ts if and only if (d1, . . . , d̂s, . . . , dn) is an 

Nn−1-solution to the system of equations

n∏
j=1
j �=s

p
dj

ij = pis, ∀ i. (2.9.1)

The next lemma is easy and the proof is omitted.

Lemma 2.10. Let B be a Λ-graded domain, where Λ is a linearly ordered group. Let c
be a homogeneous element in B and a, b ∈ B such that ab = c. Then both a and b are 
homogeneous.
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For d := (d1, . . . , d̂s, . . . , dn) in Ts, define fd =xd1
1 · · · x̂s · · ·xdn

n . Then by Lemma 2.9(2), 
xifd = psifdxi for all i. Therefore the map

g(cfd, s) : xi �→
{
xi if i �= s,
xs + cfd if i = s

(2.10.1)

extends to an algebra automorphism of A, where c ∈ k. The map

∂(cfd, s) : xi �→
{

0 if i �= s,
cfd if i = s

(2.10.2)

extends to a locally nilpotent derivation of A. By slight abuse of notation, we let

XTs = {xd1
1 · · · x̂s · · ·xdn

n | (d1, . . . , d̂s, . . . , dn) ∈ Ts}.

If F is a linear combination of monomials in XTs , we can define g(F, s) and ∂(F, s)
similarly. Automorphisms of the form g(F, s) are called elementary automorphisms. It 
is easy to check that g(F, s)g(F ′, s) = g(F + F ′, s) as long as both F and F ′ are linear 
combinations of monomials in XTs . As a consequence, g(F, s)−1 = g(−F, s).

Theorem 2.11. Let A = kpij
[xn] be a skew polynomial ring satisfying (H2). Let w =

rk(A/C(A)).

(1) For any positive integer v, the v-discriminant dv(A/C(A)) exists. Furthermore, 
dw(A/C(A)) is nonzero.

(2) For any 1 ≤ s ≤ n, Ts = ∅ if and only if xs | dw(A/C(A)).
(3) Ti = ∅ for all i = 1, . . . , n if and only if dw(A/(C(A)) is dominating.

Proof. (1) By Lemma 2.7(5), there is a generating set X of A over C(A) consisting 
of monomials. For any v-element subsets Z, Z ′ ⊂ X, dv(Z, Z ′ : tr) is homogeneous by 
Lemma 2.6, and is a monomial in A by Lemma 2.7(2). Applying Lemma 2.7(3) to the set 
of monomials of the form dv(Z, Z ′ : tr) for all such Z and Z ′, we see that dv(A/C(A))
exists.

For the second assertion it suffices to show that there are Z, Z ′ such that

dw(Z,Z ′ : tr) �= 0,

as dw(A/C(A)) is the gcd of such elements. Let Z = {z1 = 1, z2, . . . , zw} be a quasi-basis 
of A. For each i, define z′i ∈ A to be a nonzero monomial such that ziz′i ∈ C(A), and let 
Z ′ = {z′i}wi=1. Then ziz′j /∈ C(A) for all i �= j, whence by Lemma 2.7(8),

tr(ziz′j) =
{
wziz

′
i i = j,

0 i �= j.
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Hence dw(Z, Z ′ : tr) = ww
∏w

i=1(ziz′i) which is a nonzero monomial as w �= 0
(Lemma 2.7(7)).

(2) By using Lemma 2.9(2), if Ts is empty, then xd1
1 · · ·x−1

s · · ·xdn
n is not in C(B) for 

any di ∈ N for all i �= s (with B as defined in Lemma 2.7).
Let b = {b1, . . . , bw} be a quasi-basis with respect to a generating set X (Lemma 2.7(6)); 

we may assume that X contains xs. Let Z = {z1, . . . , zw} be a subset of X. We claim 
that xs divides dw(Z, Z ′ : tr) for all Z ′. If dw(Z, Z ′ : tr) = 0, then the claim follows. 
If det(Z : b) = 0, then dw(Z, Z ′ : tr) = 0, so we assume that det(Z : b) �= 0. Since 
deg dw(Z, Z ′ : tr) = deg(

∏w
i=1 ziz

′
i) (Lemma 2.6), it’s enough to show that xs divides zi

for some i. Since b is a quasi-basis, up to a permutation, for each i, zi = bici for some 
0 �= ci ∈ C(B). Hence Z is a quasi-basis of A. Therefore, there is an i such that xs = zic

for some c ∈ C(B), or zi = xsc
−1. Since the xs-degree of c can not be 1, the xs-degree 

of xsc
−1 is not zero. This means that xs-degree of zi is nonzero, or xs | zi.

If Ts is non-empty, pick an element in Ts of the form

d′ = (d′1 + m�, d′2, . . . , d̂
′
s, . . . , d

′
n)

with m � 0. Hence there is a monomial fd′ in XTs with degree larger than the degree of 
d := dw(A/C(A)). Let g = g(fd′ , s) be the automorphism constructed in (2.10.1). Then 
deg g(xs) > deg d. It follows from Lemmas 2.6 and 2.7 that d is homogeneous, whence it 
is a nonzero monomial, say cxa1

1 · · ·xan
n . Then we have

deg d = deg g(d) = deg ((g(x1))a1 · · · (g(xn))an) =
∑
i

ai deg g(xi).

If as > 0, then

deg g(xs) ≤ as deg g(xs) ≤
∑
i

ai deg g(xi) = deg d,

which contradicts the fact deg g(xs) > deg d. Therefore as = 0 and xs does not divide d.
(3) Since dw(A/C(A)) is a monomial, it is of the form xa1

1 · · ·xan
n , up to a scalar. The 

assertion follows from part (2). �
Corollary 2.12. Let A = kq[xn] be a q-skew polynomial ring and q a primitive �th root of 
unity for some � ≥ 2. Let w be the rank of A over its center. Then

dw(A/C(A)) =
{
c
∏n

i=1 x
�n(�−1)
i if n is even

c if n is odd,

for some 0 �= c ∈ k. As a consequence, Aut(A) is affine if and only if n is even.
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Proof. First we assume that n is even. By Example 2.4(2), the center of A is k[x�
1, . . . , x

�
n]. 

Then the discriminant is given by Proposition 2.8. By Theorem 1.13, Aut(A) is affine. 
An easy computation gives the formula (0.3.1).

If n is odd, then (� −1, 1, � −1, . . . , d̂s, . . . , 1, � −1) ∈ Ts when s is odd and (1, � −1, . . . ,
d̂s, . . . , � −1, 1) ∈ Ts when s is even. By Theorem 2.11(2), dw(A/C(A)) is a constant. By 
construction (2.10.1), Aut(A) is not affine. �
3. Affine and tame automorphisms of skew polynomial rings

In this section we reprove and extend some results of Alev and Chamarie about the 
automorphism groups of skew polynomial rings [2]. Here is one of the main results in this 
section. Let LNDer(B) denote the set of all locally nilpotent derivations of an algebra 
B. As in the previous section, let A be kpij

[xn].

Theorem 3.1. Let A = kpij
[xn] be a skew polynomial ring satisfying (H2). The following 

are equivalent.

(1) Aut(A) is affine.
(2) C(kpij

[x±1
n ]) ⊂ k〈x±α1

1 , . . . , x±αn
n 〉 for some α1, . . . , αn ≥ 2.

(3) C(kpij
[xn]) ⊂ k〈xα1

1 , . . . , xαn
n 〉 for some α1, . . . , αn ≥ 2.

(4) Ts = ∅ for all s = 1, . . . , n.
(5) dw(A/C(A)) is dominating where w = rk(A/C(A)).
(6) dw(A/C(A)) is locally dominating where w = rk(A/C(A)).

If Z ⊂ k, then the above are also equivalent to

(7) LNDer(A) = {0}.

The proof of Theorem 3.1 is given in the middle of the section. One immediate question 
is, for what kinds of noetherian connected graded Koszul PI algebras is some version of 
Theorem 3.1 still valid?

Let B be a connected N-graded algebra generated in degree 1. Let Autgr(B) be the 
subgroup of graded automorphisms of B. An automorphism g of B is called unipotent if 
g(v) = v + (higher degree terms) for all v ∈ B1. Let Autuni(B) denote the subgroup of 
Aut(B) consisting of unipotent automorphisms.

In what follows, we do not assume (H2) unless explicitly stated.

Lemma 3.2. The following are equivalent for A.

(1) A satisfies (H1), namely, xi is not central for all i.
(2) For each i, there is a j such that pij �= 1.
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(3) For every commutative domain C ⊇ k and for every k-algebra automorphism g of 
A ⊗ C, the constant term of g(xi) is zero.

(4) Aut(A) = Autgr(A) � Autuni(A).
(5) For every commutative domain C ⊇ k and for every k-algebra derivation ∂ of A ⊗C, 

the constant term of ∂(xi) is zero.
(6) For every commutative domain C ⊇ k and for every k-algebra locally nilpotent 

derivation ∂ of A ⊗ C, the constant term of ∂(xi) is zero.

Proof. It is clear that (1) ⇔ (2) and that (5) ⇒ (6).
(3) ⇒ (1) If xi is central, then g : xj → xj + δij defines an algebra automorphism for 

which the constant term of g(xi) is not zero.
(2) ⇒ (3) Suppose g ∈ Aut(A ⊗ C) such that g(xi) = ci + yi, where ci ∈ C is the 

constant term of g(xi). Suppose ci �= 0 for some i. Pick j such that pij �= 1. Applying g
to the equation xjxi = pijxixj we have

(cj + yj)(ci + yi) = pij(ci + yi)(cj + yj).

By comparing constant terms, we have cjci = pijcicj . Since pij �= 1 and ci �= 0, we have 
cj = 0 (as C is a domain), and

yj(ci + yi) = pij(ci + yi)yj .

Let (yj)t be the nonzero homogeneous component of the lowest degree part of yj. Then, 
by comparing the lowest degree components of the above equation, we have ci(yj)t =
pijci(yj)t. Thus, (yj)t = 0 as A ⊗ C is a domain, contradiction.

(3) ⇔ (4) Let g be an automorphism of A. Since g(xi) has zero constant term, gr g ∈
Autgr(A) and g(gr g)−1 ∈ Autuni(A). Hence (4) is equivalent to (3) when C = k. Then 
we use the fact that (3) ⇔ (1), which is independent of C.

(6) ⇒ (1) If xs is central for some s, then ∂ : xi → δis, c → 0 for all c ∈ C defines a 
locally nilpotent derivation such that the constant term of ∂(xs) is not zero.

(2) ⇒ (5) Suppose ∂(xi) = ci+fi, where ci ∈ C is the constant term of ∂(xi). Suppose 
cs �= 0. Applying ∂ to the equation xixs = psixsxi for i �= s we have

(ci + fi)xs + xi(cs + fs) = psi((cs + fs)xi + xs(ci + fi)).

The degree 1 part of the above equation is

cixs + csxi = pis(csxi + cixs).

Since pis �= 1 for some i, we have csxi + cixs = 0, which contradicts cs �= 0. Therefore 
the assertion holds. �

By Lemma 3.2(4), to describe Aut(A), we need understand both Autgr(A) and 
Autuni(A). The next theorem takes care of Autuni(A) for many cases; this can be viewed 
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as an extension of results in [2], as we give some necessary and sufficient conditions so 
that Aut(A) = Autgr(A).

Let (Ts)≥2 be the subset of Ts consisting of elements (d1, . . . , d̂s, . . . , dn) with ∑
j dj ≥ 2. Recall that XW = {xd1

1 · · ·xdn
n | (d1, . . . , dn) ∈ W}.

Let C be a commutative domain containing k and let g ∈ Autuni(A ⊗ C). For each 
fixed s, write

g(xs) = xs(1 + h′) + gs,

where gs is in the subalgebra generated by C and x1, . . . , ̂xs, . . . , xn. If gs �= 0, it is 
further decomposed as

gs = hts + higher degree terms,

where ts is the lowest possible degree of a nonzero homogeneous component of gs. Define 
a bigrading on g by deg g = (a, b), where

a = min{ts | gs �= 0 and 1 ≤ s ≤ n}

and b = min{s | ts = a}. If gs = 0 for all s, then we write deg g = (−∞, −∞). Otherwise, 
deg g ∈ {2, 3, 4, . . . } × {1, 2, . . . , n}. For pairs of integers (a1, b1) and (a2, b2), we define 
(a1, b1) < (a2, b2) if either a1 < a2 or a1 = a2 and b1 < b2.

Lemma 3.3. Let g, g1, g2 ∈ Autuni(A).

(1) If deg g = (−∞, −∞), then g is the identity.
(2) deg g1g2 ≥ min{deg g1, deg g2} and equality holds if deg g1 �= deg g2.
(3) If g is not the identity, there is (d1, . . . , d̂s, . . . , dn) ∈ (Ts)≥2 and F , a linear com-

bination of fd ∈ X(Ts)≥2 of the same total degree, such that deg g(F, s) = deg g and 
deg g(F, s)g > deg g. (Here, g(F, s) is as defined in (2.10.1).)

Proof. (1) Since deg g = (−∞, −∞), by definition, gs = 0 for all s, or g(xs) = xs(1 +h′), 
where the constant term of h′ is zero. Since xs is not a product of two non-units, g(xs) �=
xs(1 + h′) unless h′ = 0. Thus g(xs) = xs for all s and g is the identity.

(2) Left to the reader.
(3) By part (1), deg g �= (−∞, −∞). Let deg g = (a, s). Since g is unipotent,

g(xi) = xi(1 + h′) + hti + higher degree terms,

where hti is the nonzero component of lowest degree that does not involve xi. By defini-
tion, ts = a and if hti �= 0, then ti ≥ a for all i. Note that hts is a linear combination of 
certain monomials xd1

1 · · · x̂s · · ·xdn
n . We claim that each (d1, . . . , d̂s, . . . , dn) is in (Ts)≥2. 



780 S. Ceken et al. / Advances in Mathematics 286 (2016) 754–801
Applying g to the equation xixs = psixsxi for each i and removing all terms with xs, 
we obtain that

xihts + higher degree terms = psihtsxi + higher degree terms.

For any nonzero monomial component cxd1
1 · · · x̂s · · ·xdn

n of hts , the above equation yields

n∏
j=1,j �=s

p
dj

ji = psi,

which is the equation defining Ts. Note that ts =
∑

j dj ≥ 2, so (d1, . . . , d̂s, . . . , dn) is in 
(Ts)≥2. The claim is proved.

Let F = −hts , which is a linear combination of elements of fd ∈ X(Ts)≥2 of total 
degree ts, and then let g′ = g(F, s)g. One can show that, for any i �= s, h′

ti = hti and 
h′
ts = hts − F = 0. By definition, deg g′ > deg g = deg g(F, s). �

Theorem 3.4. Let A = kpij
[xn] be a skew polynomial ring satisfying (H1). The following 

are equivalent.

(1) Every automorphism of A is affine. Equivalently, Autuni(A) is trivial.
(2) For any commutative domain C containing k, every k-algebra automorphism of A ⊗C

is C-affine.
(3) (Ts)≥2 = ∅ for all s.

If, in addition, Z ⊂ k, then (1)–(3) are also equivalent to the next two.

(4) Every locally nilpotent derivation of A of nonzero degree is zero.
(5) For any commutative domain C containing k, every locally nilpotent derivation of 

A ⊗C of nonzero degree (with respect to the xi-grading) is zero when restricted to A.

Proof. (2) ⇒ (1) Trivial.
(1) ⇒ (3) Suppose that (Ts)≥2 is non-empty for some s. Then the system (2.9.1) has 

a solution

(d1, d2, . . . , ds−1, ds+1, . . . , dn),

where di ≥ 0 and 
∑

i di ≥ 2. Let f = xd1
1 · · ·xds−1

s−1 x
ds+1
s+1 · · ·xdn

n ; this has degree at least 2. 
Then, by (2.10.1), the map

g : xi →
{
xi if i �= s,
xs + f if i = s

extends to a non-affine algebra automorphism of A.
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(3) ⇒ (2) Let m be the graded ideal A≥1 ⊗ C. Suppose that g is a non-C-affine 
automorphism of A ⊗C. Since each xi is not central, each g(xi) has zero constant term 
(Lemma 3.2). Consequently, g(xi) ∈ m. Thus g preserves the ideal m. Using the m-adic 
filtration, gr g is a C-affine automorphism of grA ⊗ C, which is isomorphic to A ⊗ C. 
Hence h := g(gr g)−1 is an algebra automorphism of A ⊗ C such that h|C = IdC , and 
h(xi) = xi + higher degree terms for all i. That is, h is a unipotent automorphism of 
the C-algebra A ⊗ C. Since g is not C-affine, neither is h. The assertion follows from 
Lemma 3.3(3) (when working with the base commutative ring C).

(5) ⇒ (4) Trivial.
(4) ⇒ (3) Suppose that, for some s, (Ts)≥2 is non-empty, containing some element 

(d1, . . . , d̂s, . . . , dn). Let f = xd1
1 · · ·xds−1

s−1 x
ds+1
s+1 · · ·xdn

x . Since this has degree at least 2, 
the map (2.10.2)

∂ : xi �→
{

0 if i �= s,
f if i = s

extends to a locally nilpotent derivation of degree at least 2.
(2) ⇒ (5) Here we need the hypothesis that Z ⊂ k. After localizing, we may assume 

that k is a field of characteristic zero.
Let ∂ be a nonzero locally nilpotent derivation of A ⊗C. Let gc := exp(c∂) for c ∈ k. 

We know that the constant term of gc(xi) is zero for all i and c. Then the constant 
term of ∂n(xi) is zero for all n. If the degree of ∂ is not zero, then gc is not C-affine, a 
contradiction. �

An immediate consequence of Lemma 2.9 and Theorem 3.4 is: if C(kpij
[x±1

n ]) ⊂
k〈x±α1

1 , . . . , x±αn
n 〉 for some α1, . . . , αn ≥ 2, then Autuni(A) is trivial.

The following is easy to check.

Lemma 3.5. Assume (H2). Then Ts = ∅ if and only if Ts is finite if and only if (Ts)≥2 = ∅.

The next theorem is a version of Theorem 3.4 when (H1) is replaced by (H2). Note that 
this is part of Theorem 3.1. Its proof is similar to the proof Theorem 3.4 and therefore 
is omitted. Let Autuni-C(A ⊗C) be the set of k-algebra automorphisms g of A ⊗C such 
that g|C = IdC and g(xi) = xi + higher degree terms for all i.

Theorem 3.6. Let A = kpij
[xn] be a skew polynomial ring satisfying (H2). The following 

are equivalent.

(1) Autuni(A) = {1}
(2) For any commutative domain C containing k, Autuni-C(A ⊗ C) = {1}.
(3) Ts = ∅ for all s.
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If Z ⊂ k, then the above is also equivalent to

(4) LNDer(A) = {0}.
(5) For any commutative domain C containing k, every locally nilpotent derivation ∂ of 

A ⊗ C with ∂|C = 0 is zero.

By Theorem 3.4 or Theorem 3.6, if A is the algebra in Example 2.4(4), then it is easy 
to check that each Ts = ∅, so Aut(A) is affine. (Alternatively, one can apply Lemma 2.9.) 
Here is another example.

Example 3.7. Let n = 4 and i2 = −1. Let

p12 = i, p13 = i, p14 = i, p23 = −i, p24 = i, p34 = 1.

Then A := kpij
[x1, x2, x3, x4] is a PI algebra with its center generated by x4

i , x2
1x

2
2x

2
3, 

x2
1x

2
2x

2
4 and x2

3x
2
4. Therefore C(A) is not isomorphic to the polynomial ring; in fact, the 

center is not Gorenstein. One can check directly that C(kpij
[x±1

n ]) ⊂ k〈x±2
1 , . . . , x±2

4 〉. 
Therefore Aut(A) is affine by Lemma 2.9 and Theorem 3.4.

Along these lines, here is another part of Theorem 3.1.

Theorem 3.8. Let A = kpij
[xn] be a skew polynomial ring satisfying (H2). The following 

are equivalent.

(1) Aut(A) is affine.
(2) C(kpij

[x±1
n ]) ⊂ k〈x±α1

1 , . . . , x±αn
n 〉 for some α1, . . . , αn ≥ 2.

(3) C(kpij
[xn]) ⊂ k〈xα1

1 , . . . , xαn
n 〉 for some α1, . . . , αn ≥ 2.

(4) Ts = ∅ for all s = 1, . . . , n.

Proof. (1) ⇒ (4) If Ts �= ∅, then (Ts)≥2 �= ∅. Hence, picking some element in (Ts)≥2, the 
construction (2.10.1) defines a non-affine automorphism of A.

(4) ⇒ (2) Let bs be the smallest positive integer such that xbs
s is in the center of A

(and in the center of kpij
[x±1

n ]). Since all pij are roots of unity, bs exists for each s.
For each s, let as be the smallest positive integer such that xa1

1 · · ·xas
s · · ·xan

n ∈
C(kpij

[x±1
n ]) for some ai. Then every monomial in the center is of the form xc1

1 · · ·
xcs
s · · ·xcn

n , where as | cs. Suppose the assertion in (2) fails. Then as = 1 for some s. By 
multiplying by x−bi

i if necessary, we may assume that there are ai > 1 for all i �= s such 
that x−a1 · · ·xs · · ·x−an

n ∈ C(kpij
[x±1

n ]). Equivalently, xa1 · · ·x−1
s · · ·xan

n ∈ C(kpij
[x±1

n ]). 
Thus Ts �= ∅ by Lemma 2.9(2).

(2) ⇒ (3) Clear.
(3) ⇒ (4) Follows by Lemma 2.9(2).
(4) ⇒ (1) From the earlier parts, we know that (4) ⇒ (3); therefore no xi is central 

in A: A satisfies (H1). The proof now follows by Lemma 3.5 and Theorem 3.4. �
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Now we can prove Theorem 3.1.

Proof of Theorem 3.1. The equivalences of (1)–(4) are given in Theorem 3.8.
(4) ⇒ (5) This is Theorem 2.11(3).
(5) ⇒ (6) Trivial.
(6) ⇒ (1) This is Theorem 1.13(1).
(7) ⇔ (4) is given in Theorem 3.6. �
The next proposition takes care of Autgr(A) in many cases.

Proposition 3.9. Suppose that pij �= 1 for all i < j. Let

S = {σ ∈ Sn | pij = pσ(i)σ(j) for all i, j}.

(1) Then

Autgr(A) = S � (k×)n.

(2) Suppose the conditions in Theorem 3.4(1)–(3) hold. Then

Aut(A) = Autgr(A) = S � (k×)n.

If, further, Z ⊂ k, then every locally nilpotent derivation of A is zero.

Proof. (1) It is clear that S � (k×)n ⊂ Autgr(A). We claim that S � (k×)n ⊃ Autgr(A). 
Since pij �= 1, every graded automorphism g of A is of the form g : xi → cixσ(i) for some 
ci ∈ k× and σ ∈ Sn [13, Lemma 2.5(e)]. Then σ ∈ S. The claim is proved.

(2) Autuni(A) is trivial by assumption, so Aut(A) = Autgr(A) by Lemma 3.2.
The assertion about locally nilpotent derivations follows from a similar argument in 

the proof of (2) ⇒ (5) in Theorem 3.4. �
In the following special case, Aut(A) being affine is equivalent to C(A) being isomor-

phic to a polynomial ring.

Theorem 3.10. Let A = kpij
[xn] be a skew polynomial ring satisfying (H1) and (H2). 

Suppose that the subgroup of k× generated by parameters {pij | i < j} is equal to 〈q〉
where � is prime and q is a primitive �th root of unity. Then the following are equivalent.

(1) Aut(A) is affine.
(2) For any commutative domain C which is k-flat, every k-algebra automorphism of 

A ⊗ C is C-affine.
(3) (k×)n ⊂ Aut(A) ⊂ Sn � (k×)n, where (k×)n is viewed as AutZn−gr(A).
(4) C(A) is isomorphic to a polynomial ring.
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(5) A is a free module over C(A).
(6) The determinant det(φij)n×n is invertible in Z/(�), where φij are determined by 

pij = qφij for all i and j – see (H2’).
(7) dw(A/C(A)) is dominating where w = rk(A/C(A)).

If Z ⊂ k, then the above are also equivalent to

(8) Aut(A[t]) = Auttr(A[t]).
(9) Every locally nilpotent derivation of A is zero.

Proof. The equivalence of (1), (7) and (9) is given in Theorem 3.1.
(1) ⇒ (3) If Aut(A) is affine, then Aut(A) = Autgr(A). The assertion follows from 

Proposition 3.9(1).
(3) ⇒ (1) Part (3) says that there are no non-trivial unipotent automorphisms. Hence 

every automorphism is affine by Lemma 3.2(4).
(1) ⇒ (4) If C(A) is not a polynomial ring, by Lemma 2.5, there is a solution 

(d1, . . . , dn) ∈ Nn to the system of equations

n∏
j=1

p
dj

ij = 1, for all i

with ds = 1. So for each i,

pis = p−1
si =

n∏
j=1,j �=s

p
−dj

ij =
n∏

j=1,j �=s

p
−dj+a�
ij for any a ∈ N.

Hence, for some a > 0, (−d1 +a�, · · · , −ds−1 +a�, −ds+1 +a�, · · · , −dn +a�) ∈ Nn−1 is a 
solution to (2.9.1) with 

∑
j �=s(−dj + a�) ≥ 2. Thus Aut(A) is not affine, a contradiction. 

Therefore C(A) is a polynomial ring.
(4) ⇔ (5) Lemma 2.3.
(4) ⇒ (6) follows from Lemma 2.5 and linear algebra.
(6) ⇒ (4) Example 2.4(1).
(5) ⇒ (7) Proposition 2.8.
(7) ⇒ (2) [6, Lemma 3.2(1)].
(2) ⇒ (1) is obvious.
(7) ⇒ (8) Theorem 1.13.
(8) ⇒ (9) [6, Lemma 3.3]. �
Note that part (1) does not imply part (4) if � is 4 (which is not prime) – see Exam-

ple 3.7.



S. Ceken et al. / Advances in Mathematics 286 (2016) 754–801 785
Here are some cases in which the hypotheses of Proposition 3.9 hold.
(1) Assume pij = q for all i < j and q is not a root of unity. For any fixed s between 

1 and n, the condition (2.9.1) says, in this case, that for any i < s,∑
j<i

dj −
∑

j>i,j �=s

dj = −1 (3.10.1)

and, for any i > s, ∑
j<i,j �=s

dj −
∑
j>i

dj = 1 (3.10.2)

for non-negative integers (d1, . . . , d̂s, . . . , dn). If n = 2, it is easy to check that there is 
no solution. If n = 3, there is one solution when s = 2, which is (d1, d3) = (1, 1). As in 
[2, Theorem 1.4.6(i)], we have

Aut(kq[x1, x2, x3])

= {g : x1 �→ a1x1, x2 �→ a2x2 + bx1x3, x3 �→ a3x3, where ai ∈ k×, b ∈ k}.

Assume now n ≥ 4. When s = 1, taking i = 2, (3.10.2) becomes − 
∑

j>2 dj = 1, which 
has no solution. Similarly, (3.10.1) has no solution for s = n. When 1 < s < n, take 
i = 1 and i = n; then (3.10.1) and (3.10.2) (and the condition that 

∑
j dj ≥ 2) imply 

that d1 = dn = 1 and dj = 0 for all 1 < j < n, j �= s. Since n ≥ 4, there is another i
with i �= 1, s, n. Then either (3.10.1) or (3.10.2) gives a contradiction. In summary, we 
recover [2, Theorem 1.4.6(ii)], which states that Aut(kq[x1, . . . , xn]) = (k×)n if and only 
if n = 2 or n ≥ 4.

(2) If pij = q for all i < j and q is a root of unity, then Example 1.8 shows that 
Aut(A) is not affine when n is odd. But one can check by using Proposition 3.9 that if 
n is even, then Aut(A) is affine. We will give another proof of this fact later.

Theorem 3.11. Let s0 be an integer between 1 and n. Suppose that Ts is finite for all 
s �= s0. Then every unipotent automorphism g is a product of elementary automorphisms:

g = g(F1, sn1)g(F2, sn2) · · · g(Fw, snw
).

Moreover, we may choose that the degrees deg g(Fi, sni
) are strictly increasing, or alter-

natively, strictly decreasing. In either case, the decomposition is unique.

Proof. We will construct the factorization and show that the degrees deg g(Fi, sni
) are 

strictly increasing. Replacing g by g−1, we obtain the case when the degrees are strictly 
decreasing.

We use downward induction on deg g. By the hypothesis that every Ts except pos-
sibly Ts0 is finite, we first assume that deg g = (a, s) and a >

∑
j dj for any (d1, . . . ,

d̂s, . . . , dn) ∈
⋃

s �=s Ts. For any i �= s0, if
0
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g(xi) = xi(1 + h′) + hti + (higher degree terms),

then the proof of Lemma 3.3(3) shows that hti = 0 and g(xi) = xi(1 + h′). Since xi is 
not a product of two non-units, g(xi) = xi for all i �= s0.

Now let g(xs0) = xs0 + (higher degree terms) and write g(xs0) =
∑

fix
i
s0 and 

g−1(xs0) =
∑

j hjx
j
s0 with fi, hj ∈ kpij

[x1, . . . , ̂xs0 , . . . , xn]. Suppose m, q are maximal 
so that fmhq �= 0. Then

xs0 = gg−1(xs0) = hqf
q
mxmq

s0 + (lower degree terms).

Thus m = q = 1 and h1 ∈ k×. Similarly, f1 ∈ k×. Since g and g−1 are unipotent, 
f1 = h1 = 1. This means that g(xs0) = xs0 +

∑
f cff , where f ranges over a set of 

monomials in kpij
[x1, . . . , ̂xs0 , . . . , xn]. Now the argument in the proof of Lemma 3.3(3) 

shows that f ∈ Ts0 for all f . In this case, it is easy to see that g can be decomposed into 
the form as given,

g = g(F1, s0)g(F2, s0) · · · g(Fw, s0),

and these g(Fi, s0) commute. Uniqueness follows from the fact that each Fi is precisely 
a homogeneous component of f .

Next assume that g is not the identity. By Lemma 3.3(3), deg g(F, s)g > deg g for 
some F and s. By the inductive hypothesis, g(F, s)g = g(F2, s2) · · · g(Fw, sw). Then 
g = g(−F, s)g(F2, s2) · · · g(Fw, sw). Let F1 = −F and s1 = s. The uniqueness of (F1, s1)
can be read off from the proof of Lemma 3.3(3) and the fact that deg g(Fi, si) are 
increasing. The inductive hypothesis also says that the (Fi, si) are unique for i > 1. The 
assertion now follows. �
Proof of Theorem 4. Let g be in Aut(A). Since A satisfies (H1), g(xi) has no constant 
term by Lemma 3.2. Then the associated graded map gr g is a graded (hence affine) 
automorphism of A. Now g(gr g)−1 is a unipotent automorphism. The assertion follows 
from the equation g = [g(gr g)−1](gr g) and Theorem 3.11. �

To conclude this section we give some examples.

Example 3.12.

(1) Let q be a primitive �th root of unity and � = abc, where a, b, c ≥ 2 are pairwise 
coprime. If p12 = qa, p13 = qb and p23 = qc and A = kpij

[x1, x2, x3], then one can 
check that Ts = ∅ for s = 1, 2, 3 and Aut(A) = (k×)3. Similar statements can be 
made if there are more than three generators.

(2) If A = kpij
[x1, x2, x3] is not PI, then it is easy to check that each Ts is finite for 

s = 1, 2, 3. As a consequence of Theorem 3.11, Aut(A) is tame. Here is an explicit 
example. Assume that q is not a root of unity. Let p12 = qm, p13 = q and p23 = qn
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for some integers m, n ≥ 1. Then T1 = ∅, T2 = {(n, d̂2, m)} and T3 = ∅. Hence every 
automorphism of kpij

[x1, x2, x3] is of the form

x1 �→ a1x1,

x2 �→ a2x2 + bxn
1x

m
3 ,

x3 �→ a3x3,

where ai ∈ k× and b ∈ k (Theorem 3.11). This should be compared with [2, Theo-
rem 1.4.6(i)].

Example 3.13.

(1) (See [6, Example 3.8].) If p12 = 1, p13 = q, p23 = q, where q is not a root of unity, 
then the system of equations (2.9.1) for s = 1 and for s = 2 has only one solution 
(d2, d3) = (1, 0), and the system of equations for s = 3 has no solution. Therefore 
these systems of equations have no solution with 

∑
j dj ≥ 2. By Theorem 3.4, every 

automorphism of A = kpij
[x1, x2, x3] is affine.

(2) By the analysis of the case n = 2, every automorphism of B = kp[x4, x5] (when 
p �= 1 and pw = 1) is affine.

(3) The tensor product C = A ⊗B is a skew polynomial ring kpij
[x1, . . . , x5]. But C has 

a non-affine automorphism determined by

g(x1) = x1 + x2x
w
4 x

w
5 ,

g(xi) = xi, for all i > 1.

So even if A and B only have affine automorphisms, A ⊗ B may have non-affine auto-
morphisms. Compare this with [6, Theorem 5.5].

4. Miscellaneous operations and constructions

In this section we discuss some general methods that deal with automorphisms and 
discriminants, for use in proving Theorem 2. Two examples: in Subsection 4.1 we develop 
tools to study automorphisms of tensor products of algebras. In Subsection 4.4 we look 
at filtered algebras: if B is filtered and C is a central subalgebra of B; then with some 
extra hypotheses, gr dw(B/C) = dw(grB/ grC) (Proposition 4.10).

4.1. Tensor products and the categories A−s and Af−s

Recall from [6, Definition 2.4] that the category Af consists of all k-flat algebras A
satisfying the following conditions:
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(1) A is an algebra with standard filtration such that the associated graded ring grA is 
a connected graded domain,

(2) A is a finitely generated free module over its center C(A), and
(3) the discriminant d(A/C(A)) is dominating.

The morphisms in this category are isomorphisms of algebras.
We extend this definition to a more general situation.

Definition 4.1. Let s be a non-negative integer.

(1) Let A−s be the category consists of all k-flat algebras A satisfying the following 
conditions:
(a) A is an algebra with standard filtration such that the associated graded ring 

grA is a connected graded domain,
(b) the w-discriminant dw(A/C(A)) is (−s)-dominating where w is the rank 

rk(A/C(A)).
(2) Let Af−s be the category consists of all k-flat algebras A satisfying the following 

conditions:
(a) A is in A−s, and
(b) A is a finitely generated free module over its center.

The morphisms in these categories are isomorphisms of algebras.

Remark 4.2.

(1) Af = Af0.
(2) Af−s is a full subcategory of A−s for any s.
(3) If A is in A−s, then every automorphism of A is (−s)-affine; see the proof of [6, 

Lemma 2.6].

Let A be a noncommutative domain. Let D := {di}i∈I be a subset of A with gcd y. 
Let Dn denote {di1 · · · din | dis ∈ D} ⊆ A. Let A′ be another domain. We say D is 
A′-saturated if for every positive integer n and every 0 �= f ∈ A′, the subset Dn ⊗ f in 
A ⊗ A′ has gcd yn ⊗ f (also written as ynf). If D is a subset of monomials in kpij

[xn], 
then D is A′-saturated for any domain A′.

Lemma 4.3. Let A and A′ be two domains with generating sets X and X ′ and with 
semi-bases b and b′ over their centers C(A) and C(A′). Suppose that C(A) and C(A′)
are k-flat and that b′ is a quasi-basis. Let m = rk(A/C(A)) and n = rk(A′/C(A′)). Let 
w = mn.

(1) The discriminant dw(A ⊗ A′/C(A ⊗ A′)) is the gcd of elements in D(X/b)n ⊗
D(X ′/b′)m.
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(2) Suppose that A′ is free over C(A′) and that D(X/b) is A′-saturated. Then dw(A ⊗
A′/C(A ⊗A′)) = dm(A/C(A))ndn(A′/C(A′))m.

Proof. (1) Since b and b′ are semi-bases of A and A′ respectively, b ⊗ b′ is a semi-basis of 
A ⊗A′ over its center. Also X⊗X ′ is a generating set of A ⊗A′ over its center. For each 
subset Z := {xis ⊗ x′

js
}ws=1 of X ⊗X ′ with det(Z : b ⊗ b′) �= 0, since b′ = {b′1, . . . , b′n} is 

a quasi-basis, one can rewrite Z as

Z = {xis,t ⊗ cs,tb
′
t | 1 ≤ s ≤ m, 1 ≤ t ≤ n},

where cs,t ∈ C ′
t (where C ′

t is the set of nonzero elements of the form (x′ : b′t), as in 
Definition 1.10). Let Ẑ be the subset

{xis,t ⊗ b′t | 1 ≤ s ≤ m, 1 ≤ t ≤ n}.

Then det(Z : Ẑ) =
∏

s,t cs,t, which is in [(C ′
1) · · · (C ′

n)]m = (X ′/b′)m. By linear algebra,

det(Ẑ : b⊗ b′) = ±
n∏

t=1
det({x1,t, . . . , xm,t} : b) ∈ (X/b)n.

By the proof of [6, Lemma 5.3], dw(b ⊗ b′ : tr) = dm(b : tr)ndn(b′ : tr)m. For any two 
subsets Z1 and Z2 of X ⊗X ′, we have

dw(Z1, Z2 : tr) = ±α1α2β1β2dw(b⊗ b′ : tr),

where α1 and α2 are the product of n elements of the form det({xi1 , . . . , xim} : b) and 
β1 and β2 are the product of m elements of the form 

∏n
s=1 cs. Therefore dw(Z, Ẑ : tr) is 

in D(X/b)n ⊗D(X ′/b′)m. The assertion follows.
(2) If A′ is free over C(A′), we take X ′ = b′ to be a basis of A′. In this case, D(X ′/b′) is 

a singleton {y}, where y = dn(A′/C(A′)). By part (1), the w-discriminant of A ⊗A′ over 
its center is the gcd of D(X/b)n ⊗ ym. The assertion follows from the A′-saturatedness 
of D(X/b). �
Lemma 4.4. Let s and t be non-negative integers. Assume that A and B are k-flat filtered 
algebras such that grA ⊗ grB is a connected graded domain. In part (4) we also assume 
that the center of A is k-flat.

(1) If A ∈ Af−s and B ∈ Af−t, then A ⊗B ∈ Af−(s+t).
(2) If A ∈ A−s, then A[t] ∈ A−(s+1).
(3) If A ∈ Af−s, then A[t] ∈ Af−(s+1).
(4) Suppose A is in A−s and B is in Af−t. If there is a generating set X of A containing 

a semi-basis b such that D(X/b) is B-saturated, then A ⊗B is in A−(s+t).
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Proof. (1) By hypothesis, gr(A ⊗ B) ∼= grA ⊗ grB is a connected graded domain. It is 
clear that A ⊗ B is finitely generated free over its center C(A) ⊗ C(B). It remains to 
show that the discriminant is (−(s + t))-dominating. By [6, Lemma 5.3], d(A ⊗B/C(A ⊗
B)) = d(A/C(A))nd(B/C(B))m, where m = rk(A/C(A)) and n = rk(B/C(B)). When 
d(A/C(A)) is (−s)-dominating and d(B/C(B)) is (−t)-dominating, it follows from the 
definition that d(A/C(A))nd(B/C(B))m is (−(s + t))-dominating.

(2) Let Y =
⊕n

i=1 kxi be the generating space of A as in Definition 1.6. Then Y ′ =
Y ⊕kt is a generating space of A[t]. By Lemma 1.12(2), dw(A[t]/C(A[t])) = dw(A/C(A)). 
If dw(A/C(A)) is (−s)-dominating with respect to Y , then it is (−(s + 1))-dominating 
with respect to Y ′.

(3) This is a special case of (2).
(4) By Lemma 4.3(2), dw(A ⊗ B/C(A ⊗ B)) = dm(A/C(A))ndn(B/C(B))m. Then 

the proof of part (1) works. �
One immediate application of Lemma 4.4(4) is the following: assume A := kpij

[xn]
satisfies (H2). Suppose that C(A) ⊂ k〈xa1

1 , . . . , xan
n 〉, where ai ≥ 2 for all i. By Theo-

rem 3.1, A is in A0. Let B be the algebra k〈x, y〉/(y2x − xy2, yx2 + x2y) given in [6, 
Example 5.1], which is in Af = Af0. By Lemma 4.4(4), A ⊗B is in A0. Then Aut(A ⊗B)
is affine by Theorem 1.13.

We generalize the notion of elementary automorphisms of skew polynomial rings, as 
in the introduction and (2.10.1), as follows. Suppose that Y :=

⊕n
i=1 kxi generates A

and let g ∈ Aut(A). We say that g is elementary if there is an s such that g(xi) = xi for 
all i �= s. In general elementary automorphisms are relatively easy to determine when all 
relations of A are understood.

An automorphism g ∈ Aut(A) is called tame if it is generated by affine and elementary 
automorphisms, and a subgroup G of Aut(A) is tame if every g in G is tame. Let A be 
a connected graded algebra. Recall that g ∈ Aut(A) is called unipotent if g(x) − x is a 
linear combination of homogeneous elements of degree at least 2 for all x ∈ A1.

Proposition 4.5. Suppose that A is a graded domain generated by Y :=
⊕n

i=1 kxi in 
degree 1 and that A is in A−1. Then every unipotent automorphism is elementary. If, 
further, for every automorphism h ∈ Aut(A), h(xi) has no constant term, then Aut(A)
is tame.

Proof. Let g be a unipotent automorphism and write g(xi) = xi + fi, where fi is a 
linear combination of homogeneous elements of degree at least 2. Since the discriminant 
is (−1)-dominating, g is (−1)-affine by Remark 4.2(3). Hence deg g(xi) ≤ 1 for all but 
one i. Thus g(xi) = xi for all but one i. Therefore g is elementary.

If h(xi) has no constant term, then grh is a graded automorphism (hence affine) 
and h(grh)−1 is a unipotent automorphism. The final assertion follows the equation 
h = [h(grh)−1](grh). �
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A special case is when A is the algebra kpij
[xn] that satisfies (H1) and (H2). By 

Lemma 3.2(4), every automorphism of A is generated by graded and unipotent auto-
morphisms. If A is in A−1, then Ts = ∅ except for one s (Theorem 2.11(2)). By the proof 
of Theorem 3.11, every unipotent automorphism is of the form (2.10.1). Applying the 
above to the algebra D in Example 1.3(4), we obtain that every automorphism of D is 
determined by

g(xs) =
{
a1x1 +

∑
i,j bijx

2+4i
2 x2+4j

3 , s = 1,
asxs, s = 2, 3,

where as ∈ k× and bij ∈ k for all s, i and j.

4.2. Mod-p reduction

In this subsection we introduce a general method that deals with automorphisms of 
certain non-PI algebras. Let K be a commutative domain. We write Autaf(A) for the set 
of affine automorphisms of an algebra A.

Lemma 4.6. Let K be finitely generated over Z. Suppose S is a filtered K-algebra such 
that grS is locally finite and connected graded. Suppose that grS is a free K-module, 
namely, each (grS)i is free over K.

(1) If, for every quotient field F ∼= K/m, Aut(S⊗KF ) = Autaf(S⊗KF ), then Aut(S) =
Autaf(S).

(2) If, for every quotient field F ∼= K/m, Aut(S ⊗K F [t]) = Auttr(S ⊗K F [t]), then 
Aut(S[t]) = Auttr(S[t]).

(3) If, for every quotient field F ∼= K/m, every locally nilpotent derivation of S⊗K F is 
zero, then every locally nilpotent derivation of S is zero.

Proof. For every quotient field F ∼= K/m, S⊗K F is filtered and gr(S⊗K F ) is naturally 
isomorphic to (grS) ⊗KF , so we identify these two algebras. Since K is finitely generated 
over Z, F is a finite field.

Since grS is free over K, there is a K-basis of grS, say,

{1} ∪ {xi} ∪ {higher degree terms}, (4.6.1)

where 
⊕

i kxi generates S as an algebra. We use the same symbols for a K-basis of S by 
lifting, and also for an F -basis of S⊗K F (as S⊗K F is free over F ), and for an F -basis 
of (grS) ⊗K F .

(1) Proceed by contradiction and suppose there is a non-affine automorphism g ∈
Aut(S). Then we have

g(xi) = ai +
∑

′

bii′xi′ +
∑

cijyj ,

i j
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where ai, bii′ , cij ∈ K, some ci0j0 �= 0, and yj are basis elements in (4.6.1) with degree 
at least 2. Let K ′ be the localization K[c−1

i0j0
] and let F be a quotient field of K ′. Since 

K ′ is finitely generated over Z, F is a finite field. This implies that the composition 
K → K ′ → F is surjective and F is a quotient field of K. Note that g ⊗K F is an 
automorphism of S ⊗K F . Since ci0j0 �= 0 in F , g ⊗K F is not affine, contradicting 
hypothesis. Therefore the assertion follows.

(2) Proceed by contradiction and suppose there is a non-triangular automorphism 
h ∈ Aut(S[t]). Then there is an i such that

h(xi) =
∑
j≥0

fjt
j ,

where fj ∈ S and fn �= 0 for some n > 0. Writing {zs}s for the basis given in (4.6.1), 
write fn =

∑
s cszs for some cs �= 0. Let K ′ be the localization K[c−1

s ] and let F be a 
quotient field of K ′. Since K ′ is finitely generated over Z, F is a finite field. This implies 
that the composition K → K ′ → F is surjective and F is a quotient field of K. Note that 
h ⊗K F is an automorphism of S ⊗K F [t]. Since cs �= 0 in F , h ⊗K F is not triangular, 
contradicting hypothesis. Therefore the assertion follows.

(3) The proof is similar and omitted. �
4.3. Factor rings

In this subsection we assume that A is filtered algebra with filtration {FiA}i≥0 such 
that the associated graded algebra is a domain. Let Y =

⊕n
i=1 kxi be a submodule of 

F1A such that F1A = Y ⊕ k. Assume that A is finitely generated free over its center R. 
Let I be an ideal of R and let · denote the factor map R → R/I =: R and the factor 
map A → A/I =: A.

Proposition 4.7. Retain the above notations. Suppose that

(1) Y ∼= Y ,
(2) the center of A is R,
(3) the associated graded ring grA is a domain.

Then A is finitely generated free over R = C(A) and d(A/R) = d(A/R). As a conse-
quence, if d(A/R) is (−s)-dominating, so is d(A/R).

Proof. Since A ∼= A ⊗R R, A is finitely generated free over R: we may use the R-free 
basis of A for the R-free basis of A. Then tr(f) = tr(f) for all f ∈ A, and consequently 
d(A/R) = d(A/R). The last assertion follows from the fact grA is a domain. �

In general if d(A/R) is (−s)-dominating, d(A/R) may not be (−s)-dominating. Con-
sider the following example.



S. Ceken et al. / Advances in Mathematics 286 (2016) 754–801 793
Example 4.8. Let A be the algebra k〈x, y〉/(y2x −xy2, yx2−x2y). Then the center R of A
is generated by x2, y2 and z := xy + yx, and the discriminant d(A/C(A)) = (xy − yx)4. 
It is easy to check that (xy − yx)4 is not dominating in A.

Let A be the algebra A/(x6 − y2), which is studied in [6, Example 5.6]. By Proposi-
tion 4.7, d(A/R) = d(A/R) = (xy − yx)4 which can be written as (z − 2x4)2(z + 2x4)2
in R. By the analysis in [6, Example 5.6] which uses a non-standard filtration determined 
by deg x = 1 and deg y = 3, (z − 2x4)2(z + 2x4)2 is dominating.

4.4. Discriminants of filtered algebras

Let Λ be a totally ordered abelian semigroup (e.g., Nn with the left lexicographic 
ordering). We say B is a Λ-filtered algebra if there is a filtration F = {FgB | g ∈ Λ}
such that B =

⋃
g∈Λ FgB. The associated graded algebra is defined to be

grF B =
⊕
g∈Λ

FgB/F<gB,

where F<g =
∑

h<g FhB. For every nonzero f ∈ B, we can define the degree of f to be 
the degree of gr f in grF B.

We do not assume that grB is connected graded, even if Λ = N. Inductively, we 
identify the k-module Bg with the graded k-module 

⊕
h≤g(grB)h (with some choices) 

so that taking the principal term of f , denoted by gr(f), can be realized as a projection 
Bg → (grB)h if f ∈ Bh \B<h. So B is identified with 

⊕
g∈Λ(grB)g as a k-module, and 

we use ξ : grB → B denote the inverse of this identification map. By using ξ, elements 
in grB can be viewed as elements in B. Two elements f and g in B or in grB are said 
to be λ-equivalent if both deg f and deg g are no more than λ and deg(f − g) < λ. In 
this case we write f ≡λ g.

Let C be the center (or more generally, a central subalgebra) of B such that B is 
finitely generated free over C with a basis b = {b1 = 1, b2, · · · , bw}. It is clear that 
R := grC is a central subalgebra of grB. Let gr b denote the set {gr b1, . . . , gr bw}. 
Suppose that

grB is finitely generated free over grC with a basis gr b. (4.8.1)

Note that in general, even if C is the center of B, (4.8.1) could fail. The following lemma 
is easy.

Lemma 4.9. Assume (4.8.1) and let λ, λ′ ∈ Λ. The following hold.

(1) If deg(f) = λ ≥ deg(g) = λ′, then gr(fg) ≡λ+λ′ gr(f) gr(g), gr(af) = a gr f for 
a ∈ k, and gr(f + g) ≡λ gr(f) + gr(g).

(2) If deg f ≤ λ, then tr(gr f) ≡λ gr tr(f).
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Proof. (1) Clear.
(2) It suffices to show the assertion when λ = deg f . By (4.8.1), fbi =

∑
j rijbj for 

some rij ∈ R and deg rijbj ≤ deg fbi =: φ. Then

gr(f) gr(bi) = gr(fbi) ≡φ

∑
j

gr(rijbj) ≡φ

∑
j

gr(rij) gr(bj)

with deg gr(rii) ≤ φ − deg(bi) = λ. Hence tr(gr(f)) ≡λ

∑
i gr(rii). �

Proposition 4.10. Retain the above notation and assume (4.8.1). If dw(grB/R) is 
nonzero, then gr dw(B/C) = dw(grB/R).

Proof. Since gr b is a basis of grB over R, dw(grB/R) is homogeneous of degree N :=
2 
∑w

i=1 deg(gr bi) (Lemma 2.6). Let σ be in Sw. By Lemma 4.9(2), deg tr(bibσ(i)) ≤
deg bi + deg bσ(i), so deg

∏w
i=1 tr(bibσ(i)) ≤ N . Now we compute:

gr dw(B/C) = gr [det(tr(bibj))] = gr [
∑
σ∈Sw

(−1)|σ|
w∏
i=1

tr(bibσ(i))]

≡N

∑
σ∈Sw

(−1)|σ| gr[
w∏
i=1

tr(bibσ(i))]

≡N

∑
σ∈Sw

(−1)|σ|
w∏
i=1

gr[tr(bibσ(i))]

≡N

∑
σ∈Sw

(−1)|σ|
w∏
i=1

tr(gr[bibσ(i)])

≡N

∑
σ∈Sw

(−1)|σ|
w∏
i=1

tr(gr(bi) gr(bσ(i)))

≡N dw(grB/R).

The assertion follows. �
4.5. Locally nilpotent derivations

As in the previous subsection, let Λ be a totally ordered abelian semigroup and let 
B be a finitely generated Λ-filtered algebra. Let ∂ be a derivation of B. Let X be a set 
of generators of B as a k-algebra. Define the degree of ∂, denoted by deg ∂, to be the 
maximal element of deg ∂(x) − deg x for all x ∈ X (to construct deg ∂(x) − deg x, one 
may have to pass to a totally ordered abelian group containing Λ). By the Leibniz rule, 
deg ∂(f) ≤ deg ∂ + deg f for all f ∈ B. Suppose deg ∂ ∈ Λ exists, and define gr ∂ by
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(gr ∂)(gr f) =
{

0 deg ∂(f) < deg ∂ + deg f
gr(∂(f)) deg ∂(f) = deg ∂ + deg f

for all gr f ∈ grF B. It is easy to see that this definition is independent of the choice of 
f ∈ B. The following lemma is not hard and the proof is omitted.

Lemma 4.11. Let Λ be a totally ordered abelian semigroup and B be a finitely generated 
Λ-filtered algebra. If ∂ is a nonzero derivation, then gr ∂ is a nonzero homogeneous 
derivation of degree deg ∂. If ∂ is locally nilpotent, then so is gr∂.

5. q-quantum Weyl algebras

Fix q ∈ k× and let Aq = k〈x, y〉/(yx = qxy + 1). If q = 1, A1 is the usual first Weyl 
algebra. In this section we assume that q �= 1. When q = −1, the automorphism group of 
A−1 was studied in [6]. If q �= ±1, it is well known that Aut(Aq) = k× [3]. The purpose 
of this section is not to give another proof this result, but to compute the discriminant 
of this algebra, in order to describe the automorphism group of other related algebras 
(such as the tensor product of Aq’s).

Suppose q is a primitive nth root of unity for some n ≥ 2. In keeping with the notation 
in previous sections, let B = Aq. We consider B as an N-filtered algebra with deg x = 1
and deg y = 0. The following lemma is easy to check. We identify x and y with grx and 
gr y in grB.

Lemma 5.1. Retain the above notation and let q be a primitive nth root of unity for some 
n ≥ 2.

(1) B is an N-filtered algebra with degx = 1 and deg y = 0 such that grB = kq[x, y]
with deg x = 1 and deg y = 0.

(2) The center of B is C := k[xn, yn]. Let R = grC. Then R, which is the polynomial 
subalgebra k[xn, yn] of kq[x, y], is the center of grB.

(3) There is a subset b = {xiyj | 0 ≤ i, j ≤ n} ⊂ B such that B is a finitely generated 
free module over C with the basis b.

(4) grB is a finitely generated free module over R = grC with the basis gr b.
(5) The condition (4.8.1) in Subsection 4.4 holds.

Proposition 5.2. Suppose q is a primitive nth root of unity with n ≥ 2. Then

d(Aq/C(Aq)) =k× (xnyn)n(n−1) + (cwlt).

As a consequence, d(Aq/C(Aq)) is dominating.

Proof. Retain the notation in Lemma 5.1, let B = Aq, C = C(B) and R = C(grB). By 
Proposition 2.8 (with r = w = n2), dw(grB/R) = (xnyn)n(n−1). By Proposition 4.10, 
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gr dw(B/C) = (xnyn)n(n−1). In particular, dw(B/C) �= 0. Write d := dw(B/C) =
(xnyn)n(n−1)+

∑
i,j ai,jx

iyj with aij ∈ k. Then the equation dw(grB/R) = (xnyn)n(n−1)

implies that

d = (yn
2(n−1))xn2(n−1) +

∑
i<n2(n−1)

xi(
∑
j

aijy
j).

This means that if aij �= 0, then i < n2(n −1). By symmetry (or using a different filtration 
of B), one sees that if aij �= 0, then j < n2(n − 1). Thus the assertion follows. �

Based on computer calculations, we make the following conjecture.

Conjecture 5.3. Suppose q is a primitive nth root of unity. Then

d(Aq/C(Aq)) =k× ((1 − q)nxnyn − 1)n(n−1).

This conjecture holds when n = 2: see [6, Example 1.7(1)].
[Added upon revision: this conjecture has now been proved: see [7].]
For the rest of this section we consider the tensor product of the q-quantum Weyl al-

gebras Aq (the quantum version of the first Weyl algebra). Use the letter B for the tensor 
product Aq1⊗· · ·⊗Aqm . The following corollary follows immediately from Proposition 5.2
and [6, Theorem 5.5].

Corollary 5.4. Let B = Aq1 ⊗ · · · ⊗ Aqm and assume that each 1 �= qi is a root of unity. 
Then B is in Af, namely, d(B/C(B)) is dominating. As a consequence, Aut(B) is affine.

From now on we do not assume that the parameters qi are roots of unity. Here is the 
first part of Theorem 2.

Theorem 5.5. Let B = Aq1 ⊗ · · · ⊗ Aqm be defined as before. Assume that qi �= 1 for all 
i = 1, . . . , m. Then every algebra automorphism of B is affine.

Proof. Let Y be the subspace 
⊕m

i=1(kxi ⊕ kyi). Then Y is a generating space of B and 
B is a filtered algebra with standard filtration defined by FnB = (Y ⊕ k)n (and with 
deg xi = deg yi = 1 for all i). Clearly, grB is a skew polynomial ring. So we have a 
monomial basis for the algebra B.

Proceed by contradiction and assume that there is an automorphism g of B which is 
not affine. Write g(xi), g(yi), g−1(xi), g−1(yi) as linear combinations of the monomial 
basis, and let K be the Z-subalgebra of k generated by the collection of the nonzero 
coefficients {cw}w of g(xi), g(yi), g−1(xi), g−1(yi), along with {c−1

w }w, {q±1
i }i and {(qi−

1)−1}i. (If k is not a field, adjoin inverses as necessary.) Let S be the K-subalgebra of B
generated by {xi}mi=1

⋃
{yi}mi=1. By the definition of K, both g and g−1 are well-defined as 

algebra homomorphisms of S. Since g ◦ g−1 and g−1 ◦ g are the identity when restricted 
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to the K-subalgebra S ⊂ B, g is an automorphism of S with inverse g−1. Since the 
relations of B (and of S) are of the form

yixi = qixiyi + 1, [xi, xj ] = [xi, yj ] = [yi, yj ] = 0 (5.5.1)

for all i �= j, one can check that grS is a skew polynomial algebra with base ring K (or 
S is an iterated Ore extension starting with K). In fact, it is free over K. Hence the 
hypotheses of Lemma 4.6 hold.

Now consider a finite quotient field F = K/m. Then the image of qi, denoted by q̄i, is 
not 1 in F . Since S is an iterated Ore extension, S⊗K F is also an iterated Ore extension 
with the relation (5.5.1) with qi being replaced by q̄i. Therefore S ⊗K F is isomorphic 
to the product of quantum Weyl algebras Aq̄i over the field F , where q̄i �= 1. Since F is 
a finite field, q̄i is a root of unity. By Corollary 5.4 Aut(S ⊗K F ) = Autaf(S ⊗K F ). By 
Lemma 4.6(1), Aut(S) = Autaf(S), which contradicts the fact that g|S is not affine. The 
assertion follows. �

To prove the rest of Theorem 2 (and Theorem 5.7 below), we need the following 
lemma.

Lemma 5.6. Let B = Aq1 ⊗ · · · ⊗ Aqm with qi �= 1 for all i. Let Y be the subspace ⊕m
i=1(kxi ⊕ kyi). Let g be a (necessarily affine) automorphism of B.

(1) g(Y ) = Y .
(2) For each i, either g(xi) = bixi′ and g(yi) = fiyi′ for some i′, or g(xi) = ciyi′ and 

g(yi) = eixi′ for some i′.
(3) If k is a field, then Autaf(B) is an algebraic group that fits into the exact sequence

1 → (k×)m → Autaf(B) → S → 1,

where S is the finite group generated by all automorphisms g of the form g(xi) = xi′

and g(yi) = yi′ for some i′, or g(xi) = yi′ and g(yi) = xi′ for some i′.
(4) If qi �= q−1

j for all i, j, then there is a permutation σ ∈ Sm and bi ∈ k× such that 
g(xi) = bixσ(i) and g(yi) = b−1

i yσ(i) for all i. Further qi = qσ(i) for all i.
(5) If qi �= ±1 and qi �= q±1

j for all i �= j, then Autaf(B) = (k×)m.
(6) If qi = q �= ±1 for all i, then Autaf(B) = Sm � (k×)m.

Proof. (1) Write

g(xi) = ai +
m∑
s=1

bisxs +
m∑
t=1

cityt = ai + Xi,

g(yi) = di +
m∑
s=1

eisxs +
m∑
t=1

fityt = di + Yi,
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where ai, bis, cit, di, eis, fit ∈ k. Applying g to the relation 1 = yixi − qxiyi (where we 
write q = qi), we have

1 = g(yi)g(xi) − qg(xi)g(yi)

= YiXi + aiYi + diXi + aidi − q(XiYi + aiYi + diXi + aidi)

= YiXi − qXiYi + (1 − q)[aiYi + diXi + aidi].

By using the relations of B, the degree 1 part of the above equation is

0 = (1 − q)[aiYi + diXi].

Since q �= 1, aiYi+diXi = 0. If ai or di is nonzero, then Xi and Yi are linearly dependent, 
which contradicts the fact that {1, xi, yi} is linearly independent. Therefore ai = di = 0
for all i. The assertion follows.

(2) We keep the notation from part (1), and we know that ai = di = 0 for all i. Note 
that the xs’s commute and the yt’s commute. Then

1 = g(yi)g(xi) − qig(xi)g(yi) = YiXi − qiXiYi

=
(

m∑
s=1

eisxs +
m∑
t=1

fityt

)(
m∑
s=1

bisxs +
m∑
t=1

cityt

)

− qi

(
m∑
s=1

bisxs +
m∑
t=1

cityt

)(
m∑
s=1

eisxs +
m∑
t=1

fityt

)

= (1 − qi)
[(

m∑
s=1

eisxs

)(
m∑
s=1

bisxs

)
+
(

m∑
t=1

fityt

)(
m∑
t=1

cityt

)]

+
(

m∑
s=1

eisxs

)(
m∑
t=1

cityt

)
+
(

m∑
t=1

fityt

)(
m∑
s=1

bisxs

)

− qi

(
m∑
s=1

bisxs

)(
m∑
t=1

fityt

)
− qi

(
m∑
t=1

cityt

)(
m∑
s=1

eisxs

)
.

By using the monomial basis of B, one sees that(
m∑
s=1

eisxs

)(
m∑
s=1

bisxs

)
=

(
m∑
t=1

fityt

)(
m∑
t=1

cityt

)
= 0.

Since B is a domain, we have either

m∑
eisxs = 0 =

m∑
cityt
s=1 t=1
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or
m∑
s=1

bisxs = 0 =
m∑
t=1

fityt.

In the first case, the equation becomes

1 =
∑
s �=t

bisfit(1 − qi)xsyt +
∑
s

bisfis[(qs − qi)xsys + 1].

This implies that bisfit = 0 for all s �= t. As a consequence, bis is zero except for one s
and fit is zero except for one t. The assertion follows. The argument for the second case 
is similar.

(3) This follows from part (2).
(4) Suppose that g(xi) = ciyi′ and g(yi) = eixi′ for some i′. Applying g to 1 =

yixi − qixiyi we have

1 = ciei(xi′yi′ − qiyi′xi′) = ciei[(1 − qiqi′)xi′yi′ − qi].

which implies that qi = q−1
i′ , a contradiction. By part (2), we have that for each i, 

g(xi) = bixi′ and g(yi) = fiyi′ . Further, by the relation, one has that qi = qi′ and 
fi = b−1

i . The assignment i �→ i′ defines the required permutation σ. Finally it is easy 
to check that qi = qσ(i) for all i.

(5,6) Follows from part (4). �
Theorem 5.7. Let B = Aq1 ⊗ · · · ⊗Aqm . Assume that qi �= 1 for all i. Then

(1) Every automorphism of B is affine. As a consequence, the following hold.
(a) If qi �= ±1 and qi �= q±1

j for all i �= j, then Aut(B) = (k×)m.
(b) If qi = q �= ±1 for all i, then Aut(B) = Sm � (k×)m.

(2) The automorphism group of B[t] is triangular.
(3) If k is a field, then Aut(B) is an algebraic group that fits into the exact sequence

1 → (k×)m → Aut(B) → S → 1

for some finite group S.
(4) If Z ⊂ k, LNDer(B) = {0}.

Proof. The main assertion in part (1) is Theorem 5.5. Parts (a,b) follow from the main 
assertion and Lemma 5.6(5,6).

The proof of part (2) is similar to the proof of Theorem 5.5 and omitted.
(3) This is a consequence of part (1) and Lemma 5.6(3).
(4) By localizing k, we may assume that Q ⊆ k. Then this is a consequence of part 

(2) and [6, Lemma 3.3(2)]. �
Theorem 2 follows from Theorem 5.7.
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