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Abstract: By definition, an earthquake is a naturally occurring event. This natural event may be a
disaster that causes significant damage, loss of life, and other economic effects. The possibility of
predicting a natural event such as an earthquake will minimize the negative effects mentioned above.
In this study, data collection, processing, and data evaluation regarding earthquakes were carried
out. Earthquake forecasting was performed using the RNN (recurrent neural network) method.
This study was carried out using seismic data with a magnitude of 3.0 and above of the Düzce
Province between 1990 and 2022. In order to increase the learning potential of the method, the b and
d values of earthquakes were calculated. The detection of earthquakes within a specific time interval
in the Marmara region of Turkey, the classification of earthquake-related seismic data using artificial
neural networks, and the generation of predictions for the future highlight the importance of this
study. Our results demonstrated that the prediction performance could be significantly improved
by incorporating the b and d coefficients of earthquakes, as well as the data regarding the distance
between the Moon and the Earth, along with the use of recurrent neural networks (RNNs).

Keywords: earthquake; recurrent neural network; prediction; artificial neural network

1. Introduction

Natural phenomena are in constant evolution. The earthquake monitoring agencies
monitor these changes and the data obtained are recorded. One of the natural events is
an earthquake [1]. Over the centuries, many large and small earthquakes have occurred
in every corner of the world. These data are recorded in earthquake monitoring centers
investigating seismic station’s signals [2]. The recorded data are analyzed and scaled by
seismologists [3]. However, when an earthquake occurs, the magnitude can be calculated
precisely. Aftershocks can affect the calculation of magnitude, as they could cover part of
the signal that maybe used to calculate the magnitude [4].

There is still the need for a straightforward method for earthquake prediction and
pre-scaling. This is because it is tough to predict an earthquake due to the uncertainty of the
event and its sudden occurrence [5]. Many methods, probability calculations, algorithms,
and analysis techniques have been used to predict earthquakes. Artificial intelligence
methods and machine learning are most commonly used in earthquake prediction [6].
However, in engineering, as in many other fields, artificial intelligence is used effectively
on big data [7]. The examination of research in recent years shows that artificial intelligence
is used to predict human or natural events and solve problems in different fields [8]. The
distribution of the data to be used during the estimation according to time and classification
are essential. Time distribution is a technique primarily used in data classification. We can
call it a “time series”, a data collection organized in a chronological order [9]. It provides
an opportunity to evaluate and analyze the data generated using a series [10].

In this study, seismic data from the Düzce Province in Turkey, covering the years
1990–2022, were utilized. Düzce Province was selected due to it being located on the North
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Anatolian Fault Zone, which is a primary seismic region, and because of the limited number
of studies conducted in this area. The accuracy rates were improved by calculating the b
and d coefficients of the seismic data. The data were subjected to prediction and testing
processes using the RNN method. The results were compared with the actual data.

2. Related Studies

Many methods, analyses, and results have been used for prediction. Some of these
results approached the goal and while others did not. After the literature analysis, the
studies that most closely approached the goal were selected and are listed in Table 1.

Table 1. Literature review table.

Article Authors Date

Earthquake Forecasting Using Neural
Networks: Results and Future Work. Alves, E. I. [11] 2006

Neural Network Models for Earthquake
Magnitude Prediction Using Multiple

Seismicity Indicators.
Panakkat, A. and Adeli, H. [12] 2007

A Probabilistic Neural Network for
Earthquake Magnitude Prediction. Adeli, H. and Panakkat, A. [13] 2009

Artificial Neural Networks for Earthquake
Prediction Using Time Series Magnitude

Data or Seismic Electric Signals.

Moustra, M., Avraamides, M. and
Christodoulou, C. [14] 2011

Yapay Sinir Ağı Yöntemiyle Deprem
Tahmini: Türkiye Batı Anadolu Fay Hattı

Uygulaması.
Çam, H. and Duman, O. [15] 2016

Kastamonu ve Yakın Çevresi İçin Deprem
Olasılığı Tahminleri Özmen, B. [16] 2011

Natural Time Analysis of Global Seismicity.
Christopoulos, S. R. G., Varotsos, P. K.,
Perez-Oregon, J., Papadopoulou, K. A.,

Skordas, E. S. and Sarlis, N. V. [17]
2022

Forecasting Earthquakes: The RELM Test. Sachs, M., Turcotte, D. L., Holliday, J. R.
and Rundle, J. [18] 2012

Estimation of the Size of Earthquake
Preparation Zones.

Dobrovolsky, I. P., Zubkov, S. I. and
Miachkin, V. I. [19] 1979

SafeNet: SwArm for Earthquake
Perturbations Identification Using Deep

Learning Networks.

Xiong, P., Marchetti, D., De Santis, A.,
Zhang, X. and Shen, X. [20] 2021

Possible Earthquake Forecasting In a
Narrow Space-Time-Magnitude Window.

Florios, K., Contopoulos, I., Tatsis, G.,
Christofilakis, V., Chronopoulos, S.,

Repapis, C. and Tritakis, V. [21]
2021

In a 2006 study, Alves was one of the first to propose the use of artificial neural
networks for earthquake prediction [11]. The author, E.I. Alves, was inspired by the
successful application of similar approaches to financial forecasting tasks, which are similar
to seismic activity in their chaotic nature. He tested this method on seismic data from the
Azores region, Portugal. E. I. Alves scientifically stated that he predicted the earthquakes
in July 1998 (MMI = 8) and January 2004 (MMI = 5) correctly. However, it was not assessed
using any statistical measurement. Therefore, the performance of this approach is yet to be
evaluated objectively.

In the studies by Panakkat and H. Adeli in 2007 and in 2009, the problem of earthquake
prediction was organized in terms of output classes with the largest seismic magnitude
ranges in a predefined time series [12]. They used this dataset to estimate the magnitude
of the largest earthquake in a predefined region for the next month. They prepared eight
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mathematically calculated “seismicity indicators” that can be used to evaluate the seismic
potential of a region [13]. The authors proposed the architecture of a probabilistic neural
network (PNN) for prediction using the formulas they created. The model has been tested
on data for the Southern California seismic region (33.8–35.4◦ N and 114.75–119.25◦ W)
and has been proven to provide good prediction accuracy for earthquakes of magnitude
4.5–6.0. However, the PNN did not perform satisfactorily for earthquakes greater than
magnitude 6.0.

M. Moustra et al. evaluated the accuracy of the neural network for earthquake predic-
tion using different inputs [14].

1. The first case study focuses on estimating the next day’s biggest seismic event using
only time series earthquake magnitude data;

2. The latter study focuses on the use of seismic electrical signals (SES) to predict the
magnitude of the next seismic event.

For the first case, a feedforward backpropagation neural network is used. An input
file contains the maximum size value for each day. The accuracy rate resulting from the
model was stated as 58.02%. In the second case, ANN was used to generate the lost data
using magnitude time series. The accuracy of the size estimation was stated to be just over
60% in the initial dataset.

Handan Çam and Osman Duman, in their 2016 study, “Earthquake Prediction with
Artificial Neural Network Method: Turkey West Anatolian Fault Line Application”, used a
generalized method to predict in advance, with certainty, the location and time of earth-
quakes that have not yet been discovered [15]. In this study, a feedforward backpropagation
artificial neural network based on the b value of the Gutenberg–Richter relationship was
developed for performing the predictions. The artificial neural network was trained using
earthquake data from four regions with intense seismic activity in western Turkey. After
the training phase, earthquake data from later dates for the same regions were used for
testing, and the network’s success was demonstrated.

In his 2011 study, titled “Earthquake Probability Estimates for Kostamonu and Its Sur-
roundings”, Özmen, B. examined the city of Kastamonu, which is located in the first-degree
earthquake zone [16]. The seismicity of Kastamonu was investigated using earthquake data
with a magnitude of M ≥ 4.0 that occurred between 1900 and 2011, which fell within the re-
gion drawn 150 km from the city center. Most earthquakes occurred on the North Anatolian
Fault Zone, the Dodurga fault, the Eldivan-Elmadağ tectonic wedge, the Merzifon fault,
and the Taşova-Çorum fault zone in the south of Kastamonu. This study used earthquake
data with M ≥ 4.0, which occurred in circular areas drawn to surround the Kastamonu city
center for 50, 100, and 150 km and accepted as seismotectonic zones. It aims to find the a
and b parameters in the Gutenberg–Richter magnitude–frequency relation for each region.
Using these parameters and the Poisson model, it is possible to predict the probability of
earthquakes of different magnitudes and their return periods. The earthquake probabilities
of each region are calculated for earthquakes in 10, 20, 30, 40, 50, 75, and 100 years and with
magnitudes of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5.

Christopoulos et al. [17] investigated the “Natural time” of seismicity and identified an
order parameter for the seismic events. Upon examining the earthquakes in the recent years,
significant progress has been observed in the natural time analysis of seismicity. These
advancements encompass the identification of distinct minima of the κ1 order parameter
in seismicity on both regional and global scales, the emergence of a correlation between
the time correlations of earthquake magnitude time series and these minima, and the intro-
duction of EQ nowcasting by Turcotte, Rundle, and their colleagues [18]. The researchers
have implemented these recent advancements in the analysis of global seismicity using
the Global Centroid Moment Tensor (GCMT) catalog. The findings demonstrate that the
combined effect of these three milestones can furnish valuable preliminary information
regarding the timing and epicenter location of powerful earthquakes with magnitudes
of M ≥ 8.5 in the GCMT. The results exhibit notable statistical significance (with p values
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on the order of 10−5 while the epicentral regions comprise only 4% of the investigated
area) [18].

In their study, Xiong et al. investigated numerous ionospheric disturbances that occur
as a result of significant earthquake activity observed with the SwArm satellite. This study
utilized the SafeNet deep learning framework. The system was trained using earthquake
data from the period of 2014 to 2020, specifically focusing on earthquakes with magnitudes
of 4.8 or greater. The findings revealed that nighttime data, collected within a circular
region centered at the epicenter utilizing a radius and input window size of 70 consecutive
data points as defined by Dobrovolsky [19], exhibited the highest performance in effectively
identifying pre-earthquake perturbations [20].

In 2021, Florios et al. studied earthquake prediction in a limited period, wherein an
extended time series of Schumann Resonance records were analyzed using two multi-
parametric statistical methods. The methods used to test their potential are linear logistic
regression (LogReg) and nonlinear random forest (R.F.) [21]. The analysis examined events
with a 48 h magnitude window, at least 250 km from the observatory, and with a magnitude
greater than four on the Richter scale. The LogReg method defines the magnitude of the
signal within 10 min of the recording intervals as the main seismic reporting parameter.
The R.F method has been shown to produce promising results, which will be improved by
continuously enriching the operational data with new data.

Many classifications, data sets, locations, and approaches have been used in earth-
quake predictions. In this study, the Düzce Province, geographically located in the Marmara
region of Turkey, with GPS coordinates of 40◦49′59′′ N and 31◦10′0′′ E was selected. The
Düzce Province was selected as the study area because it is a province with intense earth-
quake activity.

The purpose of this study is to determine earthquakes’ magnitudes and their occur-
rence probability in the future using earthquake magnitude data, including the Moon’s
distance from the Earth, the b value and d value of the earthquakes, the depth and time
information of the region between the years 1990 and 2022, by applying the RNN method.

3. Materials and Method

This section contains information about the research model, research variables, data
collection instruments, experimental process, data preparation and analysis, estimation
instrument, and data interpretation.

3.1. Calculation of Earthquake’s Magnitude

To calculate an earthquake’s magnitude, primary (P) and secondary (S) waves are
evaluated using formulas and the magnitude of the earthquake is scientifically derived [22].
In P or compressional waves, the vibration of the rock occurs in the direction of propagation.
The P waves are the fastest propagating waves in the ground and consequently the first to
be detected via seismometers [23].

The velocity of P waves in such a medium is obtained using Equation (1) [23].

Vp =
√ (λ + 2µ)

ρ
(1)

where µ is the shear modulus (modulus of rigidity, sometimes denoted as G and also called
the second Lamé parameter), ρ is the density of the material through which the wave
propagates, and λ is the first Lamé parameter.

In S or shear waves, the rock vibrates perpendicularly to the direction of wave propa-
gation. In ground, the S waves usually propagate about 60% as fast as P waves, and the S
wave always follows the P wave in Equation (2) [24].

Vs = √µ

ρ
(2)
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In the first phase, the time from the beginning of the P waves to the beginning of the S
waves is calculated, the nomogram is marked, and the corresponding km value is read. It
is the distance of the station from the epicenter.

In the second step, the amplitude of the strongest S wave is measured and plotted on
the nomogram. The first two signs are combined linearly. An earthquake’s magnitude is
where the line connecting these two signs crosses the scale.

This method calculated the earthquakes of magnitudes 3 and above (M ≥ 3) that
occurred in the Düzce Province between 1990 and 2022. The 1-year dataset for 1990 is
shown in (Table 2).

Table 2. Earthquakes in the Düzce Province in 1990 (M ≥ 3).

Date Month Day Local Time Latitude Longitude Depth Magnitude

1990 February 09 18:20:00.00 41.0000 31.9000 10 3.7
1990 February 14 12:17:01.40 40.7400 29.1000 7 3.0
1990 April 11 08:02:08.00 40.7000 29.9000 7 3.0
1990 May 06 22:09:13.60 40.7200 29.7000 13 3.1
1990 May 07 10:36:02.70 40.5800 30.2000 5 3.5
1990 June 07 23:28:30.00 40.7400 29.2000 10 3.3
1990 June 08 01:47:56.00 40.5400 30.1400 3 3.9
1990 June 18 19:27:08.00 40.5100 30.5000 5 3.3
1990 July 21 17:56:49.00 40.7000 30.3000 22 3.1
1990 August 22 13:02:34.00 41.0000 29.9000 3 3.1
1990 September 01 17:27:37.00 40.7000 30.0000 8 3.0
1990 September 29 00:02:17.00 40.7000 29.8000 12 3.0
1990 October 03 01:51:29.00 40.6900 30.0000 5 3.0
1990 October 05 10:16:45.00 40.7000 30.0000 7 3.0
1990 October 08 05:50:14.00 40.7000 30.2000 4 3.1
1990 October 19 05:28:11.00 40.6800 30.0000 7 3.0
1990 November 04 08:07:49.70 40.7800 30.0300 9 3.1
1990 November 11 22:06:00.10 40.6000 31.7400 14 3.2

The 33-year histogram distribution highlighting the number corresponding to the size
of the earthquake dataset is shown in Figure 1.
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3.2. Distance of the Moon from Earth

The distance of the Moon from the Earth is obtained using a formula that calculates
the varying distance along the axes of the Moon’s orbit around the Earth [25]. The formula
is as follows (3).

Distance =
√

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2] (3)

In this formula, (x1, y1, and z1) represent the coordinates of the center of the Earth,
and (x2, y2, and z2) represent the coordinates of the center of the Moon, respectively. The
coordinates are typically presented in a three-dimensional Cartesian coordinate system. It
is important to note that the distance between the Earth and the Moon is not constant due
to their elliptical orbits and various factors such as gravitational interactions with other
celestial bodies. The average distance is approximately 384,400 km or 238,900 miles. The
formula used to obtain this distance takes into account the fact that the Moon’s orbit around
the Earth is elliptical and is related to the varying distance of the Moon along the axes of its
orbit around the Earth [26].

The average distance of the Moon from the Earth, based on the dates and locations of
earthquakes in the Düzce Province between 1990 and 2022, can be found on the website
timeanddate.com [27].

3.3. B Value and D Value Calculation

The b value of an earthquake indicates the average intensity of earthquakes occurring
in an earthquake area during a measurement period. The d value, on the other hand,
indicates the total intensity of earthquakes occurring in an earthquake area [28].

The difference between the b and d values is that while the former represents the
number of earthquakes occurring in an earthquake zone, the latter represents the total
intensity of those earthquakes. If the number of earthquakes in an earthquake zone is high,
the b value may be high and the d value may be low. In this case, earthquakes of low
intensity are frequent in that earthquake zone. If the total intensity of earthquakes occurring
in an earthquake zone is high, the d value may be high, while the b value may be low [29].
In this case, rare but high-intensity earthquakes may occur in that earthquake zone.

The b value of an earthquake is a parameter used to measure the ratio between the
number of higher and lower magnitude events. The b value is calculated using the formula
in Equation (4) [30].

b = log10 (N + C) (4)

where N is the number of earthquakes occurring in an earthquake zone and C is a constant
value. A high b value means that frequent earthquakes of high intensity occur in the
earthquake zone. A low b value means that earthquakes of low intensity occur in the
earthquake zone.

To calculate the b value, the number of earthquakes (N) occurring in the earthquake
zone was determined first. Then, the constant value (C) was added, and the b value was
calculated using the aforementioned formula. All the calculated b values were included in
this study as a dataset.

To calculate the d value, the formula in Equation (5) [31] was used.

d = log10 (D + C) (5)

where D is the total intensity of earthquakes occurring in an earthquake zone and C is a
constant value. A high d value means that earthquakes occurring in the earthquake zone
are generally of high intensity. A low d value means that earthquakes occurring in the
earthquake zone are generally of low intensity.

To calculate the “d” value using the formula, d = log10 (D + C), one needs to obtain
specific values for D (distance) and C (constant). The formula that we have used here
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highlights a logarithmic relationship between the distance value (D) and the constant
value (C).

In earthquake seismology, the Richter scale or other such scales are commonly used
to measure earthquakes’ magnitude. These scales take into account factors such as the
amplitude of seismic waves recorded with seismographs.

To calculate the d values, the total intensity (D) of the earthquakes occurring in a zone
is first calculated. Then, the constant value (C) is added and the d value is calculated using
the aforementioned formula. The calculated d values were added to this study as a dataset.

3.4. RNN (Recurrent Neural Network)

RNN is an artificial intelligence (A.I.) method. It is an artificial neural network that con-
siders input data’s order and timing and is very good at estimating the relationship between
data. Due to this property, RNN is widely used in machine learning applications [32].

The RNN working algorithm includes the following steps.

(a) The input data are entered into the input layer;
(b) The input data are processed in the hidden layers and the weights are learned;
(c) The hidden layers process the data and generate the output data;
(d) The output data are sent to the output layer;
(e) The output data are generated.

RNNs use the formulas shown in (Table 3) when processing data [33].

Table 3. RNN formulas.

Formulas Explanation

ht = f(ht−1, Xt)
ht: current value of h

ht−1: the previous h value
xt: current input vector

ht = tanh(Whhht−1 + WhxXt)

W: weight
h: hidden layer

Whh: weight of the previous hidden layer
Whx: weight of the current hidden layer

tanh: activation function

yt = Whyht
Why: weighing value of the output layer

yt: output

The primary purpose of this study is to predict future earthquakes with the RNN
model, using past earthquakes and other data as inputs to build an earthquake prediction
model. The data used in the study include the magnitude, location, time, depth, b and d
values of the earthquakes, and the distance of the Moon from the Earth. By processing
these sequential data, the RNN model will predict the time, location, and probability of
possible earthquakes in the future.

A 33-year dataset was used to train the RNN model and test its predictions.

RNN and Other Methods

There are many machine learning methods that work on a similar logic to RNN. In ad-
dition to RNN, the most commonly preferred methods are XGBoost, Prophet, and ARIMA.

XGBoost (Extreme Gradient Boosting) is a powerful boosting algorithm widely used
in the field of machine learning. Boosting is an ensemble learning technique that aims to
combine weak learners (e.g., decision trees) to create a strong learner. XGBoost is specifically
designed to achieve successful results in classification and regression problems using this
ensemble method [34].

Prophet is an open-source time series analysis library developed by Facebook. It can
be used in both R and Python programming languages. Prophet is designed to perform
predictions in complex time series data with features such as seasonality, holiday effects,
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and other time-related patterns. It is popular due to its ease of use and effective results, com-
monly used in various domains such as business analytics, demand forecasting, financial
analysis, and social media data analysis [35].

ARIMA (AutoRegressive Integrated Moving Average) is a statistical model used to
analyze and perform predictions in time series data. The ARIMA model captures structural
features in time series data (auto-regression, moving average, and integration) [36].

In general, ARIMA is a fundamental statistical model effective for stationary time
series data, while Prophet is suitable for time series data with complex features, such as
seasonality. XGBoost is preferred for classification and regression tasks with non-structural
data, and RNN is used for handling time-dependent data and capturing relationships over
time. The choice of method depends on the data structure, analysis goals, and characteristics
of the dataset. In this study, the RNN method was applied to the dataset used.

4. Experimental Datasets

Based on previous studies, we carried out adjustments and additions to our dataset.
The seismic data (earthquake magnitude, latitude, longitude, and depth) were provided
by the Kandilli Observatory. The seismic data contain records of earthquakes with magni-
tudes of 3 and above that occurred between 1990 and 2022 in the Düzce Province in the
Marmara region.

In the estimation phase, the seismic data are used to train and test the model. RNN
was used as the model. To increase the robustness of the model, the distance of the Moon
from the Earth, which is assumed to be effective in the formation of an earthquake, is
added. The b value and d value are calculated for each earthquake that occurred within
the 33 years which had a magnitude greater than 3.0 and are used as another dataset and
included in the model.

To test the accuracy of the model, first, the earthquakes that occurred in November
and December 2022 were compared to the data predicted using the model. Second, the
August 1999 earthquakes with higher intensity were compared with the data estimated
using the model.

5. Results and Discussion

This section contains the results of the estimation of earthquake probability and
magnitude between 1990 and 2022 for the Düzce Province. The first study was conducted
for the earthquakes occurring in November and December 2022. Seven hundred fifty-six
earthquakes with magnitudes between 1.0 and 6.1 occurred in this indicated period. Of the
earthquakes that occurred, 16 were with magnitudes of 3.0 and above and are shown in
Figure 2.
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Figure 2. Earthquake distribution in Düzce in November and December.

The earthquake’s magnitude, depth, location, time, the distance of the Moon from the
Earth, b value, and d value were used in the training and testing phase of the RNN model.
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The estimation phase was studied using earthquakes with magnitude three and above that
occurred in the Düzce Province in November and December. The estimated magnitudes
and probability values were compared with the actual data.

The estimated earthquakes’ magnitudes are shown in Figure 3.
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Figure 3. Estimated distribution of earthquakes’ magnitudes.

An examination of the results shows a highest probability of 75.3% and a lowest
probability of 58.9% for an earthquake between the actual data and the estimated data.
These probabilities likely refer to the likelihood or confidence level associated with the
similarity between the actual earthquake data and the estimated data. Compared to the
estimated earthquakes’ magnitudes, the actual earthquakes’ magnitudes were estimated
with a maximum error rate of 0.5% and a minimum error rate of 0.4%. The actual sizes and
the probable and prospective sizes are shown in Table 4 and Figure 4.

Table 4. Predicted and current earthquake data.

Date Magnitude
(M ≥ 3)

Depth
(km)

Probability
(%)

Prediction
(M)

23 November 2022 6.1 8.3 73.0 5.6
23 November 2022 4.4 5 75.3 4.0
23 November 2022 3.8 5.3 73.2 3.1
24 November 2022 3.2 3.8 60.7 2.7
25 November 2022 3.5 5 65.4 3.1
25 November 2022 3.4 5 60.2 2.9
25 November 2022 3 6.5 63.4 2.6
27 November 2022 4.5 17.5 73.2 4.0
2 December 2022 3.6 9.9 74.1 3.1
2 December 2022 3.6 5.1 72.2 3.1
2 December 2022 3.3 8.3 73.4 2.8
3 December 2022 4.2 10.6 69.2 3.7
3 December 2022 3.6 14.1 71.3 3.1
4 December 2022 3.5 6.3 58.9 3.0
8 December 2022 3 5.4 63.4 2.5

12 December 2022 3 4.5 66.9 2.6

The second study was conducted for August 1999, when 19 earthquakes occurred in
Düzce and caused great destruction. In order to evaluate the period before and after the
earthquakes, the months of July, August, and September were studied. An earthquake
magnitude estimation study was conducted in August. A total of 295 earthquakes with
magnitudes of 3.0 and above occurred within the specified 3-month period. Of the earth-
quakes experienced, 141 earthquakes occurred in August. The diurnal distribution of the
earthquakes in August is shown in Figure 5.
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Figure 5. Earthquake distribution in Düzce in August 1999.

The estimation phase study was carried out using the RNN method for earthquakes
with magnitude three and above in August 1999 in Düzce. The estimated magnitude and
probability values were compared with the actual data.

The estimated earthquakes’ magnitudes are shown in Figure 6 and estimated earth-
quakes’ magnitudes vs. real magnitudes are shown in Figure 7.
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Figure 6. Estimated magnitude data.

An examination of the obtained results shows that between the real data and the
estimated data the highest probability of an earthquake is 74.3% and the lowest is 68.3%. In
the month of August, a minimum of 6 and a maximum of 14 earthquakes occurred per day.
The average earthquakes’ magnitudes per day is presented in (Table 5).
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Table 5. Actual and estimated magnitude data for 17 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

17 August 1999 18 7.4

4.7 74.3 6.8

17 August 1999 15 5.5
17 August 1999 5 4.3
17 August 1999 16 5.0
17 August 1999 16 4.5
17 August 1999 17 4.4
17 August 1999 10 4.1
17 August 1999 11 4.0
17 August 1999 6 4.0
17 August 1999 13 4.0
17 August 1999 16 4.3
17 August 1999 16 4.4

Compared to the estimated earthquakes’ magnitudes that occurred on a given day, the
actual earthquakes’ magnitudes were estimated with a maximum error rate of 0.6% and a
minimum error rate of 0.1%.

The actual magnitude data, probability, and predicted magnitudes are shown in
Tables 5–19.

Table 6. Actual and estimated magnitude data for 18 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

18 August 1999 14 4.3

4.2 74.0 4.6

18 August 1999 5 4.3
18 August 1999 5 4.0
18 August 1999 9 4.0
18 August 1999 8 4.0
18 August 1999 11 4.4
18 August 1999 9 4.2
18 August 1999 1 4.0
18 August 1999 24 4.1
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Table 7. Actual and estimated magnitude data for 19 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

19 August 1999 10 3.0

3.9 72.2 3.4

19 August 1999 3 3.1
19 August 1999 6 4.8
19 August 1999 12 4.5
19 August 1999 14 4.0
19 August 1999 11 5.0
19 August 1999 12 4.3
19 August 1999 1 4.3
19 August 1999 9 3.5
19 August 1999 28 3.2

Table 8. Actual and estimated magnitude data for 20 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

20 August 1999 11 4.3

3.9 70.4 3.4

20 August 1999 5 3.3
20 August 1999 14 3.5
20 August 1999 8 4.6
20 August 1999 17 4.6
20 August 1999 12 3.8
20 August 1999 7 4.4
20 August 1999 5 3.5
20 August 1999 9 3.2
20 August 1999 16 4.4
20 August 1999 21 3.0
20 August 1999 8 3.8
20 August 1999 9 4.3
20 August 1999 1 4.1

Table 9. Actual and estimated magnitude data for 21 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

21 August 1999 8 3.4

3.7 71.5 3.2

21 August 1999 8 4.1
21 August 1999 7 3.3
21 August 1999 1 4.1
21 August 1999 1 3.4
21 August 1999 23 4.0
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Table 10. Actual and estimated magnitude data for 22 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

22 August 1999 10 4.3

4.1 73.0 3.6

22 August 1999 9 3.4
22 August 1999 9 4.0
22 August 1999 5 3.7
22 August 1999 1 4.0
22 August 1999 5 5.0

Table 11. Actual and estimated magnitude data for 23 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

23 August 1999 1 3.1

3.3 69.4 3.4

23 August 1999 6 3.2
23 August 1999 4 3.3
23 August 1999 11 3.0
23 August 1999 23 3.5
23 August 1999 5 3.8
23 August 1999 7 3.0
23 August 1999 4 3.2

Table 12. Actual and estimated magnitude data for 24 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

24 August 1999 5 3.7

3.3 69.6 2.9

24 August 1999 9 3.0
24 August 1999 8 3.1
24 August 1999 6 3.2
24 August 1999 7 3.0
24 August 1999 16 3.7
24 August 1999 1 3.2
24 August 1999 1 3.1

Table 13. Actual and estimated magnitude data for 25 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

25 August 1999 1 3.1

3.4 70.1 2.8

25 August 1999 1 3.5
25 August 1999 14 3.5
25 August 1999 12 3.8
25 August 1999 7 3.3
25 August 1999 14 3.2
25 August 1999 13 3.7
25 August 1999 5 3.1
25 August 1999 5 3.3
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Table 14. Actual and estimated magnitude data for 26 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

26 August 1999 9 3.1

3.5 68.9 3.0

26 August 1999 2 3.1
26 August 1999 1 3.6
26 August 1999 7 3.0
26 August 1999 5 3.2
26 August 1999 6 3.7
26 August 1999 3 4.1
26 August 1999 5 3.6
26 August 1999 5 3.6
26 August 1999 5 3.5

Table 15. Actual and estimated magnitude data for 27 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

27 August 1999 9 3.3

3.3 71.1 3.0

27 August 1999 15 3.0
27 August 1999 16 3.1
27 August 1999 7 3.5
27 August 1999 10 3.8
27 August 1999 10 3.2
27 August 1999 5 3.1
27 August 1999 10 3.1

Table 16. Actual and estimated magnitude data for 28 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

28 August 1999 7 3.1

3.4 68.3 3.2

28 August 1999 5 3.6
28 August 1999 5 3.3
28 August 1999 22 3.3
28 August 1999 9 3.6
28 August 1999 5 3.7
28 August 1999 9 3.5
28 August 1999 9 3.2
28 August 1999 9 3.0

Table 17. Actual and estimated magnitude data for 29 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

29 August 1999 5 3.3

3.7 70.3 3.4

29 August 1999 5 3.2
29 August 1999 7 4.8
29 August 1999 16 4.0
29 August 1999 5 3.5
29 August 1999 12 3.3
29 August 1999 4 3.6
29 August 1999 7 3.6
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Table 18. Actual and estimated magnitude data for 30 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

30 August 1999 9 3.3

3.3 69.8 2.9

30 August 1999 4 4.0
30 August 1999 5 3.2
30 August 1999 8 3.2
30 August 1999 1 3.0
30 August 1999 5 3.1
30 August 1999 5 3.0
30 August 1999 8 3.5
30 August 1999 10 3.1
30 August 1999 5 3.2
30 August 1999 13 3.1
30 August 1999 4 3.3

Table 19. Actual and estimated magnitude data for 31 August 1999.

Date Depth
(km)

Magnitude
(M ≥ 3)

Average
Magnitude

(M ≥ 3)

Probability
(%)

Prediction
(M)

31 August 1999 17 5.2

3.5 70.3 3.0

31 August 1999 10 4.6
31 August 1999 4 3.0
31 August 1999 20 3.2
31 August 1999 1 3.0
31 August 1999 5 3.1
31 August 1999 7 3.1
31 August 1999 19 4.1
31 August 1999 10 3.3
31 August 1999 7 3.1
31 August 1999 14 3.2

For earthquakes occurring between 17 August 1999 and 31 August 1999, the evaluation
of mean absolute percentage error (MAPE) was conducted for real magnitude data and
predicted magnitude data. MAPE represents the average of absolute percentage errors
between the real values and the corresponding predictions [37]. Its calculation formula is
as follows (6) [37].

MAPE = (1/n) × Σ|(Real Value − Prediction)/Real Value| × 100 (6)

• n represents the total number of data points.
• Real Value denotes the actual value compared to the predicted value.
• Prediction represents the predicted value.
• Σ indicates the summation symbol.

The mean absolute percentage error is 13.5%. The obtained MAPE chart for 17 August–
31 August 1999 is presented in Figure 8.
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6. Conclusions and Future Work

In this study, earthquake prediction and prediction rates were investigated using the
RNN method for the Düzce Province, which is geographically located in the Marmara
region of Turkey with GPS coordinates of 40◦49′59′′ N and 31◦10′0′′ E between the years
1990 and 2022. The dataset used included earthquake magnitude, depth, distance of the
Moon from the Earth, b value, and d value. Although different methods are used in the
studies, it can be seen that it is challenging to estimate 100% of the seismic data due to the
irregular data structure.

This study found that the magnitude values estimated via the dataset created accord-
ing to the research results and the applied method are close to the actual earthquakes’
magnitudes.

It is expected that this study will be helpful for future earthquake prediction studies.
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