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Abstract In this study, the magnetic and quadrupole
moments of the Zb(10650) state are determined using the
compact diquark–antidiquark interpolating current through
the QCD light-cone sum rule. The values that are obtained as
a result of the analysis are as follows: μZb = 2.35+0.34

−0.33 μN

and DZb = (1.82+0.35
−0.31) × 10−2 fm2. Examining the results

obtained, it can be seen that the magnetic moments are large
enough to be measured experimentally, while the quadrupole
moment is obtained as a small but non-zero value, cor-
responding to a prolate charge distribution. The magnetic
moment is the leading-order response of a bound system
to a weak external magnetic field. It therefore provides an
excellent platform to probe the internal structures of hadrons
governed by the quark-gluon dynamics of QCD.

1 Motivation

Over the past decade, a series of heavy quarkonium-like
states, known as the XYZ states, have been discovered
through ongoing experimental efforts. Charged states such
as Zc(3900), Zc(4430) and Zc(4020) provide strong evi-
dence for the existence of exotic hadrons since the pres-
ence of light quarks explains their non-zero electric charge.
These electrically charged particles have hidden-heavy flavor
(hidden-charm or hidden-bottom), excluding the pure QQ̄,
opening a new era in hadron physics. In 2011, two charged
bottomonium-like states, Zb(10610) and Zb(10650), have
been reported by the Belle Collaboration in the processes
ϒ(5S) → ππϒ(nS), and ϒ(5S) → ππhb(kP) [1] with n
= 1, 2, 3 and k = 1, 2. The masses and widths of these states
were measured as

MZb(10610) = 10607.2 ± 2 MeV,

�Zb(10610) = 18.4 ± 2.4 MeV, (1)
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MZb(10650) = 10652.2 ± 1.5 MeV,

�Zb(10650) = 11.5 ± 2.2 MeV. (2)

The neutral partner of the Z0
b(10610) was also observed in

the ϒ(5S) → ϒ(nS)ππ decay by the Belle Collaboration
[2]. The quantum numbers I G(J P ) = 1+(1+) are favored
by the analysis of the angular distribution. Both Zb(10610)

and Zb(10650) states are members of a family of charged
hidden-bottom states. These states have attracted the atten-
tion of many theoretical groups since they were the first
charged bottomonium-like states observed and because they
are very close to the thresholds of B B̄∗ and B∗ B̄∗. Various
models and approaches have been used to study the spec-
troscopic parameters and decays of both states, including
compact tetraquark states, molecular states, threshold cusps,
re-scattering effects, etc. It is a challenge to understand these
new charmonium/bottomonium-like states as exotic since it
is relatively easy to reproduce the properties of these states
using the models mentioned above. Many comprehensive
reviews of this topic can be found in the literature [3–17].
All possible configurations considered in the various studies
yielded mass and decay width determinations in agreement
with experimental observations, which indicates that other
properties of this state need to be further investigated to shed
light on its underlying structure and reach a definitive con-
clusion. Therefore, to elucidate the internal organization of
these states, it is also important to study the decay channels,
such as weak, strong, and electromagnetic, along with the
spectroscopic parameters of these states.

The magnetic and quadrupole moments are other intrin-
sic parameters of hadrons that may contain important infor-
mation about their quark-gluon organization and underlying
dynamics. Such a study would therefore deepen our knowl-
edge of tetraquarks and help us understand the underlying
dynamics that govern how they form, as well as the geomet-
ric shapes of these tetraquarks. The magnetic and quadrupole
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moments of the hidden-heavy tetraquarks were extracted
in several studies [18–27]. In our study, the magnetic and
quadrupole moments of the Zb(10650) state (for brevity,
hereinafter often referred to as Zb) are determined using the
compact diquark–antidiquark interpolating current through
the QCD light-cone sum rule. In the QCD light-cone sum
rule method [28–30], we describe the correlation function in
two different representations: One is based on the hadronic
degrees of freedom and is called the hadronic representa-
tion, and the other is based on the quark-gluon degrees of
freedom and is called the QCD representation. Double Borel
transformations on p2 and (p + q)2 are then applied to both
representations to suppress the contributions of the higher
states and the continuum. The quark-hadron duality ansatz is
also carried out to further suppress the contributions of the
higher states and the continuum, and to enhance the ground
state contribution. The magnetic and quadrupole moments
are obtained by matching the coefficients of the same Lorentz
structures of both representations of the correlation function.

This article is organized as follows. After the introduc-
tion, we introduce our theoretical framework explicitly in
Sect. 2. The numerical results and conclusions for the mag-
netic and quadrupole moments of the Zb state are presented
in Sect. 3. Finally, the manuscript ends with a summary in
Sect. 4. Explicit expressions for the magnetic moment of the
Zb state and the photon distribution amplitudes are listed in
the appendices A and B, respectively.

2 Electromagnetic multipole moments of the Zb(10650)
state from QCD light-cone sum rules

In the QCD light-cone sum rule, one initiates the calcula-
tions for the magnetic and quadrupole moments using the
following correlation function:

�μν(p, q) = i
∫

d4xeip·x 〈0|T {Jμ(x)J †
ν (0)}|0〉γ , (3)

where q is the momentum of the photon, γ denotes the
external electromagnetic background field. The four-quark
current operator Jμ(ν)(x) with spin-parity quantum numbers
J P = 1+ is written as

Jμ(x) = εε̃√
2

{
[ubT (x)Cσαμγ5b

c(x)][d̄d(x)γ αCb̄eT (x)]

− [ubT (x)Cγ αbc(x)][d̄d(x)γ5σαμCb̄eT (x)]
}
, (4)

where ε = εabc, ε̃ = εade with color indices the a, b,
c, d, and e; C being the charge conjugation operator, and
σμν = i

2 [γμ, γν]. It should be noted that magnetic and
quadrupole moment calculations have been done under the
assumption that the Zb state can also be in the B∗ B̄∗ molec-
ular configuration, however, these results are not reported

in the manuscript because a reliable sum rule could not be
obtained.

In the hadronic representation, a complete set of hadronic
states with the same quantum numbers as the state of interest
and the corresponding interpolating current is plugged into
the correlation function, which gives the hadronic represen-
tation in terms of the electromagnetic multipole moments
as

�Had
μν (p, q) = 〈0 | Jμ(x) | Zb(p, εi )〉

p2 − m2
Zb

〈Zb(p, ε
i ) | Zb(p + q, ε f )〉γ 〈Zb(p + q, ε f ) | J †

ν(0) | 0〉
(p + q)2 − m2

Zb

+ higher states. (5)

The matrix elements 〈0 | Jμ(x) | Zb(p, εi )〉, 〈Zb(p +
q, ε f ) | J †

ν(0) | 0〉 and 〈Zb(p, εi ) | Zb(p + q, ε f )〉γ
have been described regarding hadronic parameters such as
residues, polarization vectors, and form factors, by the fol-
lowing expressions

〈0 | Jμ(x) | Zb(p, ε
i )〉 = λZbε

i
μ , (6)

〈Zb(p + q, ε f ) | J †
ν(0) | 0〉 = λZbε

∗ f
ν , (7)

〈Zb(p, ε
f ) | Zb(p + q, εi )〉γ

= −εγ (εi )α(ε f )β{
G1(Q

2)(2p + q)γ gαβ + G2(Q
2)(gγβ qα − gγα qβ)

− 1

2m2
Zb

G3(Q
2) (2p + q)γ qαqβ

}
, (8)

where εγ represents the photon’s polarization vector, while
εi and ε f represent the polarization vectors of the initial and
final Zb state, respectively.

Using the Eqs. (5)–(8), the hadronic representation of the
correlation function is,

�Had
μν (p, q) = ερ λ2

Zb

[m2
Zb

− (p + q)2][m2
Zb

− p2]
×

{
G1(Q

2)(2p + q)ρ

×
[
gμν − pμ pν

m2
Zb

− (p + q)μ(p + q)ν

m2
Zb

+ (p + q)μ pν

2m4
Zb

(Q2 + 2m2
Zb

)

]

+ G2(Q
2)

[
qμgρν − qνgρμ

− pν

m2
Zb

(
qμ pρ − 1

2
Q2gμρ

)
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+ (p + q)μ

m2
Zb

(
qν(p + q)ρ + 1

2
Q2gνρ

)

− (p + q)μ pν pρ

m4
Zb

Q2
]

− G3(Q2)

m2
Zb

(2p + q)ρ

[
qμqν − pμqν

2m2
Zb

Q2

+ (p + q)μqν

2m2
Zb

Q2 − (p + q)μqν

4m4
Zb

Q4
]}

. (9)

The magnetic and quadrupole moments of hadrons are
related to their magnetic (FM (Q2)) and quadrupole (FD(Q2))
form factors. The form factors FM (Q2) and FD(Q2), which
are more directly accessible experimentally, are given by the
form factors Gi (Q2)

FM (Q2) = G2(Q
2) ,

FD(Q2) = G1(Q
2) − G2(Q

2) + (1 + β)G3(Q
2) , (10)

where β = Q2/4m2
Zb

with Q2 = −q2. At zero momentum
transfer, the magnetic (μZb ) and quadrupole (DZb ) moments
are described by the form factors FM (Q2 = 0) and FD(Q2 =
0) as follows

μZb = e

2mZb

FM (Q2 = 0) ,

DZb = e

m2
Zb

FD(Q2 = 0) . (11)

The QCD representation of the evaluations requires the
use of the interpolating field explicitly in the correlation func-
tion, Eq. (3). This is followed by all the possible contractions
of the quark operators according to Wick’s theorem, which
turns the result into the one that contains the quark propaga-
tors in the form of

�QCD
μν (p, q) = i

εε̃ε′ε̃′

2

∫
d4xeipx 〈0|

×
{

Tr
[
γ α S̃e

′e
b (−x)γ β Sd

′d
d (−x)

]

× Tr
[
σμαγ5S

cc′
b (x)γ5σνβ S̃

bb′
u (x)

]

− Tr
[
γ α S̃e

′e
b (−x)σνβγ5S

d ′d
d (−x)

]

× Tr
[
σμαγ5S

cc′
b (x)γ β S̃bb

′
u (x)

]

− Tr
[
γ5σμα S̃

e′e
b (−x)γ β Sd

′d
d (−x)

]

× Tr
[
γ αScc

′
b (x)γ5σνβ S̃

bb′
u (x)

]

+ Tr
[
γ5σμα S̃

e′e
b (−x)σνβγ5S

d ′d
d (−x)

]

× Tr
[
γ αScc

′
b (x)γ β S̃bb

′
u (x)

]}
|0〉γ , (12)

where Sb(x) and Sq(x) are the propagators for heavy and light
quarks, respectively. The explicit formulas of these propaga-
tors are given in the following form [31,32]

Sq(x) = S f ree
q (x) − 〈q̄q〉

12

(
1 − i

mq x/

4

)

− 〈q̄σ.Gq〉
192

x2
(

1 − i
mq x/

6

)

− igs
32π2x2 Gμν(x)

[
/xσμν + σμν /x

]
, (13)

Sb(x) = S f ree
b (x) − gsmb

16π2

∫ 1

0
dv Gμν(vx)

[
(σμνx/

+ x/σμν)
K1

(
mb

√−x2
)

√−x2
+ 2σμνK0

(
mb

√
−x2

)]
.

(14)

where

S f ree
q (x) = 1

2π2x2

(
i
x/

x2 − mq

2

)
, (15)

S f ree
b (x) = m2

b

4π2

×
[K1

(
mb

√−x2
)

√−x2
+ i

x/ K2

(
mb

√−x2
)

(
√−x2)2

]
. (16)

The correlation functions specified in Eq. (12) contain
both perturbative and non-perturbative contributions from
short and long distances, respectively. To derive formulas
for the perturbative contributions, i.e. when the photon is
radiated at a short-distance, it is sufficient to replace one of
the light or heavy propagators in Eq. (12) by the following

S f ree(x) →
∫

d4z S f ree(x − z) /A(z) S f ree(z) , (17)

where the three surviving propagators in Eq. (12) are consid-
ered to be the free ones. To derive the formulas for the non-
perturbative contributions, i.e. where the photon is radiated
at a long distance, replace one of the light quark propagators
in the correlation function given in Eq. (12) as follows

Sabμν(x) → −1

4

[
q̄a(x)�i q

b(0)
](

�i
)
μν

, (18)

where the remaining propagators in Eq. (12) are taken into
account as full propagators, and�i = 1, γ5, γμ, iγ5γμ, σμν/2.
When a photon interacts nonperturbatively with light-quark
fields, the matrix elements of the nonlocal operators 〈γ (q)

|q̄(x)�i q(0)| 0〉 and 〈γ (q)
∣∣q̄(x)�i Gμνq(0)

∣∣ 0〉 appear
between the vacuum and the photon state, expressed in terms
of photon distribution amplitudes (DAs) (for details see Ref.
[33]). Equations (12)–(18) are used for evaluation the QCD
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representation of the correlation function. The expression of
the correlation function in the x-space is then transferred to
the momentum space by means of the Fourier transform.

The physical quantities that we search for in this sec-
tion, namely the magnetic and quadrupole moments of the
Zb state, are obtained by matching the coefficients of the
same Lorentz structures, (ε.p)(pμqν−pνqμ) and (ε.p)qμqν ,
acquired in both the hadronic and QCD representations.
These matches are written as

μZb = e
m2
Zb
M2

λ2
Zb

�
QCD
1 (M2, s0), (19)

DZb = m2
Zb
e
m2
Zb
M2

λ2
Zb

�
QCD
2 (M2, s0), (20)

where M2 and s0 represent the Borel mass the contin-
uum threshold parameter, respectively. For brevity, since the
�

QCD
1 (M2, s0) and �

QCD
2 (M2, s0) functions have a simi-

lar form, only the explicit expressions of the �
QCD
1 (M2, s0)

function are given in the Appendix A.

3 Numerical analysis and conclusion

In this section, we conduct a numerical analysis of the
QCD light-cone sum rules for the magnetic and quadrupole
moments of the Zb tetraquark state, which were derived in the
previous section. In the numerical analysis following input
parameters are used: mu = md = 0, mb = 4.18+0.03

−0.02 GeV,
mZb = 10652.2 ± 1.5 MeV [34], λZb = (2.12 ± 0.31) ×
10−1 GeV5 [35], 〈ūu〉 = 〈d̄d〉=(−0.24 ± 0.01)3 GeV3 [36],
and 〈g2

s G
2〉 = 0.88 GeV4 [37]. The photon DAs and corre-

sponding parameters can be found in Appendix B.
The sum rules are obtained for the magnetic and quadrupole

moments given in Eqs. (19) and (20), which also depend on
the Borel and continuum threshold parameters M2 and s0.
The choice of working regions for M2 and s0 has to ful-
fill standard restrictions imposed on the pole contribution
(PC) and the convergence of the operator product expansion
(OPE). In order to quantify these constraints, it is appropriate
to use the expressions

PC = �(M2, s0)

�(M2,∞)
≥ 30%, (21)

OPE Convergence = �Dim7(M2, s0)

�(M2, s0)
≤ 5%, (22)

where �Dim7(M2, s0) is the contribution of the highest
dimensional term in the OPE. Because of the aforemen-
tioned constraints, the obtained working regions for M2 and

s0 are provided as follows: 11 GeV2 ≤ M2 ≤ 15 GeV2

and 121 GeV2 ≤ s0 ≤ 125 GeV2. Results obtained for the
PC values and the OPE convergence in the working intervals
obtained for auxiliary parameters: 31.2% ≤ PC ≤ 53.4%
and OPE ≤ 3.69%. From these values, we can see that the
working regions determined for M2 and s0 meet the above
requirements. For the sake of completeness, it is worth exam-
ining how the magnetic and quadrupole moments depend on
M2 for different values of s0. From Fig. 1 it is seen that the
magnetic and quadrupole moments exhibit relatively mild
dependence on the variation of M2 within its working region.

The magnetic and quadrupole moment results, taking into
account the uncertainties in the input parameters and the vari-
ation in the M2 and s0 working regions, are given below:

μZb = 2.35+0.34
−0.33 μN , (23)

DZb = (1.82+0.35
−0.31) × 10−2 fm2. (24)

The order of the numerical results of the magnetic
moments can also give an insight into the experimental
measurement of them. By examining the magnetic moment
result, one can assume that the magnetic moment of Zb is
large enough to be measured in future experiments with the
increased luminosity. In the case of the quadrupole moment,
we get a non-zero but small value for the Zb state, indicating
a non-spherical charge distribution. It is well known that the
sign of the quadrupole moment contains information about
the geometric shape of the hadron under study. For the Zb

state, the quadrupole moment has a positive sign, correspond-
ing to a prolate charge distribution. To the best of our knowl-
edge, this is the first study of the magnetic and quadrupole
moments of the Zb(10650) state, so there are no theoretical
or experimental results to compare. However, to give an idea
of the results obtained, a comparison can be made with the
magnetic moment results obtained by the QCD light-cone
sum rules method for the hidden-charm and hidden-bottom
tetraquark states in the molecular and compact diquark–
antidiquark pictures. In Ref. [18], the magnetic moment of
the Zb(10610) state in the molecular and compact diquark–
antidiquark pictures was extracted by means of the QCD
light-cone sum rules. The result obtained are μZb(10610) =
1.73 ± 0.63 μN and μZb(10610) = 1.59 ± 0.58 μN for
the compact diquark–antidiquark and molecular configura-
tion, respectively. Based on the presented results, it can be
seen that the magnetic moment of the Zb(10650) state is
of the same order as that of the Zb(10610) state. In Refs.
[19–23], the authors systematically investigated the mag-
netic moments of various hidden-charm tetraquark states
using the molecular and compact diquark–antidiquark con-
figurations within the framework of the QCD light-cone sum
rules method. The magnetic moment values obtained for
these states are roughly of the order of (0.5 − 1.0) μN . In
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Fig. 1 Magnetic and quadrupole moments of the Zb state versus M2 for various s0 values

Refs. [24,25], the magnetic moment of the Zc(3900) state
in the molecular and compact diquark–antidiquark pictures
was obtained by the QCD sum rule method in an external
weak electromagnetic field, and they obtained μZc(3900) =
0.19+0.04

−0.01 μN and μZc(3900) = 0.47+0.27
−0.22 μN , for the molec-

ular and compact diquark–antidiquark pictures, respectively.
In Ref. [26], the authors have employed the QCD sum rule
method in an external weak electromagnetic field to calculate
the magnetic moment of the Zcs(3985) state in the molec-
ular picture, and they obtained μZcs (3985) = 0.18+0.16

−0.09 μN .
In Ref. [27], the authors have applied the multiquark color
flux-tube model to extract the magnetic moments of the
Zcs(4000) and Zcs(4220) states in the compact diquark–
antidiquark picture, and they obtained μZcs (4000) = 0.73 μN

and μZcs (4220) = 0.64 μN . As can be seen from these values,
the results obtained for the hidden-charm and hidden-bottom
states are quite different from each other.

It is useful to consider the individual quark sector contri-
butions to the magnetic and quadrupole moments to gain a
deeper understanding of the underlying quark-gluon dynam-
ics. This can be achieved by selecting the appropriate charge
factors eu , ed , and eb. When it has been done magnetic
moment we see that the terms proportional to the eu con-
tribute about 67% to the total results, ed about 33%, and eb is
zero. In the case of the quadrupole moment, we observe that
the proportional terms of eu contribute about 66% to the total
results, ed contributes about 34%, and eb is zero. A closer
look reveals that the missing eb contribution is because the
terms containing this term exactly cancel each other out.

4 Summary and outlook

In the present article, we have explored the magnetic and
quadrupole moments of the Zb(10650) state with the spin-
parity J P = 1+ in the framework of the QCD light-cone sum

rule by modeling this state as a compact diquark–antidiquark
configuration. Examining the results obtained, it can be seen
that the magnetic moments are large enough to be measured
experimentally, while the quadrupole moment is obtained
as a small but non-zero value, corresponding to a prolate
charge distribution. Individual quark sector contributions to
the magnetic and quadrupole moments have also been ana-
lyzed, and it has been found that only light quarks contribute
to these quantities. Our predictions should also be checked
through other phenomenological methods as well. The results
of this study on the magnetic and quadrupole moments of the
Zb(10650) state can be used in future experimental studies
of the exotic states.
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AppendixA:Theexplicit expressionsof the�
QCD
1 (M2, s0)

The explicit forms of the �
QCD
1 (M2, s0) functions appearing

in the above sum rules are

�
QCD
1 (M2, s0)

= 27(ed − eu)

1310720π5

[
I [0, 5, 3, 1] − 3I [0, 5, 3, 2]

+ 3I [0, 5, 3, 3] − I [0, 5, 3, 4] − 3I [0, 5, 4, 1]
+ 6I [0, 5, 4, 2] − 3I [0, 5, 4, 3] + 3I [0, 5, 5, 1]

− 3I [0, 5, 5, 2] − I [0, 5, 6, 1]
]

+ m2
b(ed − eu)

65536π5

[
I [0, 4, 2, 2] − 2I [0, 4, 2, 3] + I [0, 4, 2, 4]

− 2I [0, 4, 3, 2] + 2I [0, 4, 3, 3] + I [0, 4, 4, 2]
]

− mb〈g2
s G

2〉〈q̄q〉
7077888π3

[
ed

(
− 92I4[S]

+ 60I4[T1] + 159I4[T2] − 21I4[T3]
+ 78I4[T4] + 11I4[S̃]

)
− eu

(
117I3[S]

+ 60I3[T1] + 159I3[T2] − 21I3[T3]
+ 78I3[T4] + 160I3[S̃]

)

− 192(ed − eu)I6[hγ ]
]
I [0, 1, 3, 0]

+ f3γ 〈g2
s G

2〉
28311552π3

[
− 128m2

b(ed − eu)(52I [0, 1, 2, 0]

− 3I [0, 1, 3, 0])I6[ψν
γ ] −

(
27eu I1[A] − 27ed I2[A]

+ 128(3ed − eu)I6[ψν
γ ]

)]

+ mb〈q̄q〉
393216π3

[
4

(
− eu

(
5I3[S]

− 23I3[T1] − 23I3[T2] + I3[S̃]
)

+ ed
(

23I4[T1] + 23I4[T2] + 22I4[S̃]
))

× I [0, 3, 4, 0] − 3

(
3eu

(
I3[S] + I3[T1]

+ I3[T2] + I3[S̃]
)

− ed
(

2I4[S] − 3I4[T1] − 3I4[T2] + I4[S̃]
)

+ 96(ed − eu)I6[hγ ]
)
I [0, 3, 5, 0]

]

+ f3γ

6291456π3

[
4
(

512m2
b(ed − eu)I6[ψν

γ ]I [0, 3, 4, 0]

− 3
( − eu I1[V] + 9ed I2[V])I [0, 4, 5, 0]

)

+ 9
(
eu I1[V] − ed I2[V]

− 64(3ed − eu)I6[ψν
γ ]

)
I [0, 4, 6, 0]

]
, (A1)

where the functions I [n,m, l, k], I1[F], I2[F], I3[F], I4[F],
I5[F], and I6[F] are defined as:

I [n,m, l, k] =
∫ s0

4m2
c

ds
∫ 1

0
dt

∫ 1

0
dw e−s/M2

sn

× (s − 4m2
c)

m tl wk,

I1[F] =
∫

Dαi

∫ 1

0
dv F(αq̄ , αq , αg)

× δ′(αq + v̄αg − u0),

I2[F] =
∫

Dαi

∫ 1

0
dv F(αq̄ , αq , αg)

× δ′(αq̄ + vαg − u0),

I3[F] =
∫

Dαi

∫ 1

0
dv F(αq̄ , αq , αg)

× δ(αq + v̄αg − u0),

I4[F] =
∫

Dαi

∫ 1

0
dv F(αq̄ , αq , αg)

× δ(αq̄ + vαg − u0),

I5[F] =
∫ 1

0
du F(u)δ′(u − u0),

I6[F] =
∫ 1

0
du F(u), (A2)

where F represents the corresponding photon DAs.

Appendix B: Photon distribution amplitudes and wave
functions

In this appendix, we present the matrix elements
〈γ (q) |q̄(x)�i q(0)| 0〉 and 〈γ (q)

∣∣q̄(x)�i Gμνq(0)
∣∣ 0〉 in terms

of the photon DAs and wave functions of different twists. The
expansion of the matrix element is an expansion in increasing
twists of the DAs. The twist of a DA is defined as the dimen-
sion minus the spin of the operators contributing to a given
DA. The DAsϕγ (u)have twist two, ψv(u),ψa(u),A(αi ) and
V(αi ) have twist 3, and hγ (u), A(u), S(αi ), S̃(αi ), T1(αi ),
T2(αi ), T3(αi ) and T4(αi ) have twist 4. The matrix ele-
ments 〈γ (q) |q̄(x)�i q(0)| 0〉 and 〈γ (q)

∣∣q̄(x)�i Gμνq(0)
∣∣ 0〉

are parameterized in terms of the photon DAs as follows [33]

〈γ (q)|q̄(x)γμq(0)|0〉
= eq f3γ

(
εμ − qμ

εx

qx

) ∫ 1

0
dueiūqxψv(u),

〈γ (q)|q̄(x)γμγ5q(0)|0〉
= −1

4
eq f3γ εμναβενqαxβ

∫ 1

0
dueiūqxψa(u),

123
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〈γ (q)|q̄(x)σμνq(0)|0〉
= −ieq 〈q̄q〉(εμqν

−ενqμ)

∫ 1

0
dueiūqx

(
χϕγ (u) + x2

16
A(u)

)

− i

2(qx)
eq 〈q̄q〉

[
xν

(
εμ − qμ

εx

qx

)

−xμ

(
εν − qν

εx

qx

)] ∫ 1

0
dueiūqx hγ (u),

〈γ (q)|q̄(x)gsGμν(vx)q(0)|0〉
= −ieq 〈q̄q〉 (

εμqν − ενqμ

)

×
∫

Dαi e
i(αq̄+vαg)qxS(αi ),

〈γ (q)|q̄(x)gs G̃μν(vx)iγ5q(0)|0〉
= −ieq 〈q̄q〉 (

εμqν − ενqμ

)

×
∫

Dαi e
i(αq̄+vαg)qx S̃(αi ),

〈γ (q)|q̄(x)gs G̃μν(vx)γαγ5q(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxA(αi ),

〈γ (q)|q̄(x)gsGμν(vx)iγαq(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxV(αi ),

〈γ (q)|q̄(x)σαβgsGμν(vx)q(0)|0〉
= eq 〈q̄q〉

{[(
εμ − qμ

εx

qx

) (
gαν

1

qx
(qαxν + qνxα)

)
qβ

−
(

εμ − qμ

εx

qx

) (
gβν − 1

qx
(qβ xν + qνxβ)

)
qα

−
(

εν − qν

εx

qx

) (
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+
(

εν − qν

εx

q.x

) (
gβμ − 1

qx
(qβ xμ + qμxβ)

)
qα

]

×
∫

Dαi e
i(αq̄+vαg)qxT1(αi )

+
[(

εα − qα

εx

qx

) (
gμβ − 1

qx
(qμxβ + qβ xμ)

)
qν

−
(

εα − qα

εx

qx

) (
gνβ − 1

qx
(qνxβ + qβ xν)

)
qμ

−
(

εβ − qβ

εx

qx

) (
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+
(

εβ − qβ

εx

qx

) (
gνα − 1

qx
(qνxα + qαxν)

)
qμ

]

×
∫

Dαi e
i(αq̄+vαg)qxT2(αi )

+ 1

qx
(qμxν − qνxμ)(εαqβ − εβqα)

×
∫

Dαi e
i(αq̄+vαg)qxT3(αi )

+ 1

qx
(qαxβ − qβ xα)(εμqν − ενqμ)

×
∫

Dαi e
i(αq̄+vαg)qxT4(αi )

}
, (B1)

where the integral measure Dαi is written as
∫

Dαi =
∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg) .

(B2)

The explicit equations for the photon DAs with different
twists are provided as

ϕγ (u) = 6uū

(
1 + ϕ2(μ)C

3
2

2 (u − ū)

)
,

ψv(u) = 3
(
3(2u − 1)2 − 1

) + 3

64

(
15wV

γ − 5wA
γ

)

× (
3 − 30(2u − 1)2 + 35(2u − 1)4) ,

ψa(u) = (
1 − (2u − 1)2) (

5(2u − 1)2 − 1
)

×5

2

(
1 + 9

16
wV

γ − 3

16
wA

γ

)
,

hγ (u) = −10
(
1 + 2κ+)

C
1
2

2 (u − ū),

A(u) = 40u2ū2 (
3κ − κ+ + 1

) + 8(ζ+
2 − 3ζ2)

× [
uū(2 + 13uū) + 2u3(10 − 15u + 6u2) ln(u) + 2ū3

× (10 − 15ū + 6ū2) ln(ū)
]
,

A(αi ) = 360αqαq̄α
2
g

(
1 + wA

γ

1

2
(7αg − 3)

)
,

V(αi ) = 540wV
γ (αq − αq̄ )αqαq̄α

2
g,

T1(αi ) = −120(3ζ2 + ζ+
2 )(αq̄ − αq )αq̄αqαg,

T2(αi ) = 30α2
g(αq̄ − αq )

(
(κ − κ+) + (ζ1 − ζ+

1 )

× (1 − 2αg) + ζ2(3 − 4αg)
)
,

T3(αi ) = −120(3ζ2 − ζ+
2 )(αq̄ − αq )αq̄αqαg,

T4(αi ) = 30α2
g(αq̄ − αq )

(
(κ + κ+) + (ζ1 + ζ+

1 )

× (1 − 2αg) + ζ2(3 − 4αg)
)
,

S(αi ) = 30α2
g{(κ + κ+)(1 − αg) + (ζ1 + ζ+

1 )

(1 − αg)(1 − 2αg) + ζ2[3(αq̄ − αq )
2

−αg(1 − αg)]}, S̃(αi )

= −30α2
g{(κ − κ+)(1 − αg) + (ζ1 − ζ+

1 )

{(1 − αg)(1 − 2αg) + ζ2[3(αq̄ − αq )
2 − αg(1 − αg)]},

(B3)

where f3γ = −0.0039 GeV2, ζ2 = 0.3, ϕ2(1 GeV ) = 0,
wV

γ = 3.8 ± 1.8, wA
γ = −2.1 ± 1.0, κ = 0.2, κ+ = 0,

ζ1 = 0.4, and χ = −2.85 ± 0.5 GeV−2 [38].
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