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ABSTRACT 

Approximations to various performance measures in queuing systems have received 
considerable attention because these measures have wide applicability. In this paper we 
propose two methods to approximate the queuing characteristics of a GI/M/1 system. The 
first method is non-parametric in nature, using only the first three moments of the arrival 
distribution. The second method treads the known path of approximating the arrival 
distribution – by a mixture of two exponential distributions – by matching the first three 
moments. Numerical examples and optimal analysis of performance measures of GI/M/1 
queues are provided to illustrate the efficacy of the methods, and are compared with 
benchmark approximations. 

OPSOMMING 

Benaderings tot verskeie prestasiemaatstawwe in toustaanstelsels ontvang beduidende 
aandag weens die wye toepasbaarheid daarvan. In hierdie artikel word twee metodes 
voorgestel om die toustaaneienskappe van die GI/M/1–stelsel te benader. Die eerste 
metode is nie-parametries van aard en gebruik slegs die eerste drie momente van die 
aankomsverdeling. Die tweede metode volg die bekende roete om die aankomsverdeling te 
benader deur die eerste drie momente te pas, deur middel van ’n kombinasie van twee 
eksponensiёle verdelings. Die doelteffendheid van die metodes word aan die hand van 
numeriese voorbeelde en optimale ontleding van die prestasiemaatstawwe van GI/M/1–
stelsels bewys, en word vergelyk met benaderings. 
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1. INTRODUCTION 

The growth of queuing theoretic applications has been phenomenal, ranging from 
communication and multimedia systems to inventory and reliability theory. This has led to a 
sustained interest in methods to evaluate performance measures in queuing theory. In the 
case of non-Markovian queues, the computations of these measures involve the arrival 
and/or service distributions explicitly. However, in practical applications like management, 
optical, and communication networks, the specific forms of these distributions might not be 
known. At best, one might only be in possession of the moments of the underlying 
distribution. There are a number of cases where the moments of a distribution are easily 
obtained, but theoretical distributions are not available in closed forms [9]. Alternatively, 
from the sample data observed, efficient estimators for the various moments of the 
underlying distributions can be calculated. Thus, computation of performance measures 
based on the first two or three moments of the arrival and/or service distributions is very 
useful. Whitt [16], in a classic exposition, discussed approximations using extremal 
distributions giving the upper and lower bounds for the performance measures in a GI/M/1 
system. Smith [13] proposed a two-moment approximation for the probability distribution 
of M/G/1/K systems, and extended it to the analysis of M/G/1/K queuing networks. Sohn & 
Lee [14] conducted a Monte Carlo simulation in order to study the relation between various 
performance measures in a G/G/1 queue. Recent work on such systems with working 
vacations for the server have immense applications in ATM machines and internet systems, 
such as optical nets, electric nets, and communication nets [8, 4, 2]. In these applications, 
the arrival epochs could be observed or, at worst, simulated. Our motivation in this paper 
has thus been to obtain approximations to the performance measures of a GI/M/1 system 
using only the first three moments of the arrival distribution, without explicit recourse to 
the arrival distribution 
 
We will discuss our problem with specific reference to a GI/M/1 queuing system, even 
though our methods also work in a similar way for other non-Markovian queues. Consider a 
GI/M/1 queue whose traffic intensity is ρ= E (service time)/E (arrival time), L is the 
expected equilibrium queue length, and σ is the steady state probability that a customer 
will have to wait to begin his service. It is well known that 
 
𝐿 = 𝜌 (1 − 𝜎)⁄          (1) 
 
where σ is the unique root in the open interval (0, 1) of the equation 
 
𝛷�𝜇(1 − 𝜎)� = 𝜎           (2) 
 
with µ=1/E(service time) and Ф(s), the Laplace-Stieltjes Transform of the inter-arrival 
distribution function, say F, given by: 
 
𝛷(𝑠) =  ∫ 𝑒−𝑠𝑡𝑑𝐹(𝑡)∞

0         (3) 
 
We note that the evaluation of the performance measures σ and L require prior knowledge 
of the inter-arrival distribution function F, and not just the moments of F. As mentioned in 
the beginning of this section, many queuing applications are likely to produce only the 
moments of F and not the distribution itself. Thus the problem is to find σ and L on the 
basis of the first few moments of F only. Whitt [16] showed that there is a considerable 
reduction in the range of possible values of σ and L when the third moment is also used, 
compared with using just two moments of F. We propose simple and accurate methods to 
evaluate σ and L based on the first three moments of the distribution function F in the 
absence of any knowledge of the form of F. In section 2, we propose a non-parametric 
method based only on the first three moments of F – without recourse to approximate F – by 
another distribution function. Numerical illustrations are provided to compare the values of 
σ and L, using the present method, with their exact values. The method provides exact 
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results for certain important arrival distributions like Erlang of order 2, Coxian (K2), a 
mixture of two exponentials, and exponential distribution. We also provide two 
optimisation illustrations to obtain economic performance measures in the application of 
GI/M/1 queuing systems. 
 
Approximations of probability distributions by phase type distributions (by matching 
moments up to a certain order) have attracted the attention of researchers because of 
necessity, and because of their wide applicability. Pioneering work on phase type 
distributions and their various applications was done by Neuts [11]. Among the various 
members of the family of phase type distributions that have been studied, mixtures of two 
exponential distributions (known as H2 distributions) play a key role in many approximations 
used in queuing theory. These distributions are log convex in nature, and can approximate 
highly-skewed distributions quite accurately. In section 3, we suggest a simple nonlinear 
programming method in which the first two moments are matched exactly, while the third 
moment is matched as closely as possible. This method works in the entire region of 
possible values (of m1, m2, m3), and provides exact three-moment match wherever possible. 
The approximated H2 distribution with the given three moments of the inter-arrival 
distribution is then used to calculate σ and L. Numerical illustrations are provided to 
validate the approximation and computation of the performance measures. 

2. A NON-PARAMETRIC METHOD 

We observe from equation (2) that the computation of the performance measures σ and L in 
the GI/M/1 system requires the use of Ф(s), the Laplace Transform of the density function f 
corresponding to the distribution function F. However, without prior knowledge of F, and 
armed only with the first three moments of F, an approximation to Ф(s) is obtained from 
the proposition that follows. 
 
Proposition 
 
Suppose that the first three raw moments m1(≠0), m2, and m3 (3m2

2≠2m1m3) of the 
distribution function F exist and are known. Then the following approximation to the 
Laplace Transform of the distribution function F holds. 
 

𝛷(𝑠) ≈ 𝐴(𝑠−𝑠0)+ 𝐵𝑠
𝑠(𝑠−𝑠0)+ 𝐴(𝑠−𝑠0)+ 𝐵𝑠

        (4) 

 

where 𝑠0 =  6𝑚1(𝑚2− 2𝑚1
2)

3𝑚2
2− 2𝑚1𝑚3

, 𝐴 =  1
𝑚1

 , and 𝐵 =  −𝑠0(𝑚2−2𝑚1
2)

2𝑚1
2     (5) 

 
Proof 
 
In the classical renewal theory, the renewal density m(t) of a renewal process with interval 
density f(t) satisfies the integral equation: 
 
𝑚(𝑡) =  𝑓(𝑡) + ∫ 𝑚(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢𝑡

0        (6) 
 
Applying Laplace Transform to both sides of (6), we obtain the Laplace Transform of m(t) 
as: 
 
𝑚∗(𝑠) =  𝛷(𝑠) ⁄ (1 − 𝛷(𝑠))        (7) 
 
where Ф (s) is the Laplace Transform of the density function f. 
 
Now Ф (0) =1 and 𝑑

𝑑𝑠
�1 − 𝛷(𝑠)�|𝑠=0 = 𝛷́(0) = 𝑚1 is non zero. This means that the 

denominator 1-Ф (s) of (7) has a simple zero at s=0. Thus we may approximate m*(s) by a 
rational function of the form 
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𝑚∗(𝑠) ≈ 𝐴 𝑠⁄ +  𝐵 (𝑠 − 𝑠0)⁄          (8) 
 
where A, B, and s0 are constants determined as follows. Assuming the existence of moments 
of the density function f(t), we can express Ф (s)  as 
 

𝛷(𝑠) =  ∑ (−1)𝑛𝑠𝑛

𝑛!
𝑚𝑛

∞
𝑛=0         (9) 

 
where m0=1 and mn is the nth order moment about the origin of f. Using (9) in (7) and (8), 
and comparing the coefficient of s0, s1 and s2 on both sides, we obtain (using some algebra) 
the values of A, B, and  s0 as given in (5). This completes the proof. 
 
Note1: For the approximation to hold, it is necessary that s0≤0. Simple calculations show 
that this condition implies that Ф2>2 and Ф3≥(3/2)Ф2

2 or Ф2<2 and Ф3≤(3/2)Ф2
2 (see Figure 

1), where C2 is the squared coefficient of variation of inter-arrival time, Ф2= C2+1, and 
Ф3=m3/m1

3. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Feasible regions for the approximation 

Note2: It is worth mentioning that the error in the approximation (4) is of o(1) as s →0. 
 
Note3: The condition that s0 is non-positive, which is necessary for the approximation to 
hold, is satisfied by many standard arrival distributions: uniform, gamma, mixed 
exponential, lognormal, Coxian (K2), mixture of Erlangian, and Weibull. Also s0 is non-
positive for truncated normal and inverse Gaussian probability density functions under 
certain conditions. 
 
Using (4) in equations (2) and (1) with the values of m1, m2, and m3, the performance 
measures σ and L were obtained immediately. To illustrate the efficiency of the proposed 
method, we present (in Table 1) the values of σ and L computed using (4) for certain 
choices of the set {m1, m2, m3}. In order to compare the approximations with exact values, 
we have considered the values of the moments of commonly used arrival distributions – 
namely, gamma (Table 1) and PH4 distributions (Table 2). The values of σ and L are 
calculated for various values of traffic intensity ρ. Eckberg [5] specified upper and lower 
bound distributions that yield the maximum and minimum mean queue length in a steady 
state among all inter-arrival time distributions with two and three moments specified. Using 
these distributions, Whitt [16] calculated the maximum relative error for σ and L using the 
formula 
 
𝑀𝑅𝐸(𝑖𝑛 𝐿) =  (𝐿𝑢 − 𝐿𝑙) 𝐿𝑙⁄                    (10) 
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where Ll and Lu are the minimum and maximum values of L using the lower and upper 
bound distributions. Table 1 also presents the upper and lower bounds for σ and L given two 
and three moments, and the corresponding maximum relative errors specified in (10). It can 
be seen that our method captures the values of σ and L with low relative errors. 
 

Table1: Approximations for σ and L with gamma inter-arrival distribution 

 
ρ=0.3 ρ=0.7 ρ=0.9 

Case-I 
Exact 

σ 0.27991 Σ 0.68748 σ 0.89541 
L 0.41661 L 2.23986 L 8.60503 

Non-parametric 
method 

σ 0.31799 Σ 0.71160 σ 0.90422 
L 0.43988 L 2.42714 L 9.39653 

  Relative error 5.58% 8.36% 9.20% 

C2= 0.9091 Upper 
(2 moments) 

σ 0.49760 σ 0.72080 σ 0.89890 
L 0.59713 L 2.50716 L 8.90208 

m1= 0.55 Lower 
(2 moments) 

σ 0.04880 σ 0.46700 σ 0.80690 
m2= 0.5775 L 0.31279 L 1.31332 L 4.60798 
m3= 0.8951 MRE(in L) 90.91% 90.90% 93.19% 

  Upper 
(3 moments) 

σ 0.49760 σ 0.72080 σ 0.89890 
Region-II L 0.59713 L 2.50716 L 8.90208 

  Lower 
(3 moments) 

σ 0.16180 σ 0.68076 σ 0.89520 
  L 0.35791 L 2.19271 L 8.58779 
  MRE(in L) 66.84% 14.34% 3.66% 

Case-II 
Exact 

σ 0.60233 σ 0.85242 σ 0.95297 
L 0.75439 L 4.74319 L 19.13469 

Non-parametric 
method 

σ 0.55157 σ 0.85082 σ 0.95292 
L 0.66900 L 4.69232 L 19.11640 

 C2= 3.3333  Relative error 11.31% 1.05% 0.03% 
m1= 0.45 Upper 

(2 moments) 
σ 0.77867 σ 0.87700 σ 0.95540 

m2= 0.8775 L 1.35542 L 5.69106 L 20.17937 
m3= 3.0273 Lower 

(2 moments) 
σ 0.04088 σ 0.46700 σ 0.80690 

  L 0.31279 L 1.31332 L 4.66080 
Region-I MRE(in L) 333.34% 333.33% 332.96% 

  Upper 
(3 moments) 

σ 0.77867 σ 0.87700 σ 0.95540 

 L 1.35544 L 5.69106 L 20.17937 
  Lower 

(3 moments) 
σ 0.24600 σ 0.84200 σ 0.95270 

  L 0.39788 L 4.43038 L 19.02748 
  MRE(in L) 240.67% 28.46% 6.05% 

3. INTER-ARRIVAL DISTRIBUTION APPROXIMATION BY MATCHING MOMENTS 

Approximating general distributions by phase type distributions is important in queuing 
theory because their structure leads to Markovian state description and consequently 
analytical tractability. Although several phase type distributions have been used in the 
literature, two distributions that are prime candidates for such approximations (because of 
their simplicity and suitability) are mixtures of two exponentials (H2) and Coxian (K2) 
distributions. On this point, we use the former for analysis, as these distributions provide a 
fairly accurate match when the C2 is large – which is true for arrival distribution in a 
queuing system. Furthermore, in some of the examples discussed by Whitt [17], the 
maximum relative error (MRE) when two moments are fitted was found to be 200 percent, 
while working with mixtures of exponentials reduced the MRE to 50 percent. Specifying the 
third moment reduced the MRE to 5 percent. Thus, a three-moment match using H2 
distributions for inter-arrival distributions seems to provide useful results. 
 
Using an empirical study, Bere [3] showed that when the service time distribution is 
approximated using the first two of its moments, the third moment has a considerable 
effect on the probability distribution of the number of customers in an M/G/1 queue if 
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C2>1. He also showed that the probability distribution of the number of customers and the 
average number of customers in λ(n)/G/1/N system are highly sensitive to the third 
moment of the service time distribution if C2>1. Altiok [1], in justifying the inclusion of the 
third moment in matching, refers to Bere’s empirical work. Whitt [15] empirically showed 
that the effect of the third moment on the average number in the system in a GI/G/1 
queue becomes considerable as C2 increases. If the service time distribution has C2<1, the 
impact of the third moment is not significant [3, 15]. Since the present work deals with 
matching an H2 distribution with three moments, we confine our attention to the range 
C2>1 only. 
 
It is well known [15] that three numbers m1, m2, and m3 can be the first three raw moments 
of a distribution function F, provided that m1≥0, m2/m1

2≥1, and m3/m1
3≥ m2

2/m1
4. 

Furthermore, if the first three moments exist for a distribution F, then an H2 distribution 
exists with these three moments if, and only if, the first three moments of F satisfy the 
conditions m1≥0, Ф2=m2/m1

2 = C2 +1 ≥ 2, and Ф3 =m3/m1
3 ≥ (3/2) Ф2

2 [1]. However, Karlin & 
Studden [7] have shown that m1, m2, and m3 are the moments of some probability 
distributions on the positive real line if, and only if, m1≥ 0, Ф2≥ 1, and Ф3≥ Ф2

2. Thus, in the 
region where exact three-moment matching is not possible, researchers have used adhoc 
methods to find the approximate H2 distribution. These regions are clearly shown in Figure 
2.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Region of three-moment matching (Region-I: Exact three-moment match 
possible; Region-II: Exact three-moment match not possible; Region-III: Infeasible region 

for three moments of a distribution function) 

 

The parameters p, μ1, and μ2 of H2 (see (11) below) when (m1, m2, m3) falls in Region-I, and 
where the three moments can be matched exactly, are well documented. However, when 
these moments fall in Region-II, such that the three moments cannot be matched exactly, 
methods suggested in the literature are recipes in nature. Lopez-Herrero [10], in the 
absence of information on service distribution, used the maximum entropy principle 
approach to estimate the true distribution of the number of customers served during the 
busy period in an M/G/1 retrial system. Whitt [15] suggests that “if m3 turns out to be too 
small when attempting an H2-fit, one procedure is to replace m3 by something slightly 
larger than (3/2) m2

2/m1”. Altiok [1] suggests the use of m3 = 3m2
2/2m1 + εm1

3 but does not 
indicate how to calculate the perturbation parameter ε. In the following algorithm, we 
propose a goal programming procedure of matching the first two moments exactly, and 
matching the third moment as closely as possible in Region-II. This procedure subsumes 
Region-I as a particular case. We note that Region-III is an infeasible region for the 
existence of (m1, m2, m3). 
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Algorithm 
 
Given the first three moments of a distribution function F (say, m1, m2, and m3, which are 
assumed to be finite), the parameters p (0<p<1), μ1, and μ2 of the H2 distribution given by 
(11) – whose first three moments either match m1, m2, and m3 exactly, or match the first 
two moments exactly, and match the third moment as closely as possible in the sense of 
squared differences – are given by the following algorithm: 
   
Step 1: Find optimal p using the Golden section method [12, 6] to solve the following one 
dimension optimisation problem: 
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Step 2: Using the value of p found in step 1, compute: 
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The steps of the algorithm are justified using the following arguments. Consider the 
following probability density function of a mixture of two exponentials (H2 distribution): 
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In the following, we do not consider the trivial cases of p=0, 1 as they lead us to 
exponential density. 
 
The first three moments of the density function above are: 
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From (12) we have 
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Substituting (15) in (13), and after simple algebra 
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we have two cases. First we consider  
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We know that  
 

( ) 01
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Also, μ1>0 implies that 
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Substituting (17) in (15) results in  
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The third parameter p is obtained by matching the third moment as closely as possible. 
Thus, we minimise 
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subject to: 
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In the second case, we set  
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Using algebra similar to the first case results in 
  

( ) ( )







−

−
−= 1

12
1 2

12 C
p

pmµ                   (22) 

 
and the third parameter p is determined by solving 
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It is easily seen that both cases lead to the same result, but with the roles of p and 1-p 
interchanged. 
 
In Table 2 we continue with PH4 inter-arrival distribution. To illustrate this, we fit H2 
distribution for this distribution by matching the moments specified by the algorithm. The 
performance measures σ and L obtained by using the fitted H2 distribution in steps 1 and 2 
are given in Table 2. Attention is drawn to the MRE for these measures when three 
moments are matched [16] and to the actual relative error in using the approximated H2 
distributions. Also note that these two methods improve in accuracy for increasing ρ as 
expected. 
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Table 2: Approximations for σ and L with PH4 inter-arrival distribution 

𝑓(𝑡) =  ∑ 𝑝𝑖𝜆𝑖 𝑒−𝜆𝑖𝑡4
𝑖=1  , 0 < 𝑝𝑖 < 1  ρ=0.3 ρ=0.7 ρ=0.9 

Case-I 
Exact 

σ 0.33210 σ 0.73870 σ 0.91790 
L 0.44917 L 2.67891 L 10.96224 

Non-parametric 
method 

σ 0.33143 σ 0.73583 σ 0.91792 
L 0.44872 L 2.67717 L 10.96491 

  Relative error 0.10% 0.06% 0.02% 

C2= 1.517 H2 
σ 0.33143 σ 0.73853 σ 0.91792 
L 0.44872 L 2.67717 L 10.96491 

m1= 19.997 Relative error 0.10% 0.06% 0.02% 
m2= 1006.48 Upper 

(2 moments) 
σ 0.61894 σ 0.78823 σ 0.92330 

m3= 101021.195 L 0.78728 L 3.30547 L 11.73403 
  Lower 

(2 moments) 
σ 0.04088 σ 0.46700 σ 0.80690 

Region-I L 0.31279 L 1.31332 L 4.66080 
  MRE(in L) 151.70% 151.69% 151.76% 
  Upper 

(3 moments) 
σ 0.61894 σ 0.78823 σ 0.92330 

  L 0.78728 L 3.30547 L 11.73400 
  Lower 

(3 moments) 
σ 0.12374 σ 0.71530 σ 0.91730 

  L 0.34236 L 2.45873 L 10.88270 
  MRE(in L) 129.96% 34.44% 7.82% 

Case-II 
Exact 

σ 0.59490 σ 0.89250 σ 0.96900 
L 0.74056 L 6.51163 L 29.03226 

Non-parametric 
method 

σ 0.53737 σ 0.89113 σ 0.96901 
L 0.64847 L 6.42699 L 29.04163 

  Relative error 12.44% 1.30% 0.03% 

C2= 5.821 H2 
σ 0.53740 σ 0.89110 σ 0.96900 
L 0.64851 L 6.42792 L 29.03226 

m1= 20.004 Relative error 12.43% 1.29% 0.00% 
m2= 2729.4164 Upper 

(2 moments) 

σ 0.85938 σ 0.92186 σ 0.97170 
m3= 

836216.8692 L 2.13341 L 8.95828 L 31.80212 

  Lower 
(2 moments) 

σ 0.04088 σ 0.46700 σ 0.80690 
Region-I L 0.31279 L 1.31332 L 4.66080 

  MRE(in L) 582.06% 582.11% 582.33% 
  Upper 

(3 moments) 
σ 0.85938 σ 0.19286 σ 0.97170 

  L 2.13341 L 8.95828 L 31.80212 
  Lower 

(3 moments) 
σ 0.18173 σ 0.87540 σ 0.96880 

  L 0.36663 L 5.61798 L 28.84615 
  MRE(in L) 481.90% 59.46% 10.25% 

4. TWO OPTIMISATION ILLUSTRATIONS 

4.1 Illustration 1 

In practice, queuing managers are generally interested in optimising the model parameters 
under their control by minimising the operating cost or maximising the business profit. In 
the first illustration, we will be interested in obtaining the optimal service rate in a cost 
minimisation problem for a GI/M/1 queuing system. The objective cost function consists of 
two components: the cost due to customers waiting in line (known as the delay cost), and 
the service cost rate. Thus the cost function to be minimised is given by: 
 
𝐶(𝜇) =  𝑐1(𝜆𝑊) + 𝑐2𝜇                   (24) 
 
where λ and µ are the arrival and service rates respectively, W is the expected waiting time 
of a customer in the system, c1 is the expected cost per unit time of a customer’s wait, and 
c2 is the service cost rate. Using Little’s formula, (24) reduces to 
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𝐶(𝜇) =  𝑐1𝐿 +  𝑐2𝜇                    (25) 
 
The optimal µ* of the objective function above was computed using our moments matching 
method (introduced in section 3) by assuming the first three moments of the arrival 
distribution only, and the cost rates. However, in order to compare our results with the 
exact values, the moments were chosen to correspond to Coxian (K2) and Inverse Gaussian 
distributions commonly used in queuing theory. The results are presented in Tables 3 and 4. 
When the Coxian arrival distribution was used, our method provided the exact values of µ*. 
In the case of Inverse Gaussian distribution, the relative errors were significantly small. 
  

Table 3. The optimal service rate µ* with Coxian inter-arrival distribution. (The optimal µ* 
computed, using our method and using the Coxian distribution, match exactly) 

 

𝑓(𝑡) =  �
𝜌𝜆1 − 𝜆2
𝜆1 − 𝜆2

�𝜆1 exp(−𝜆1𝑡) + �1 −
𝜌𝜆1 − 𝜆2
𝜆1 − 𝜆2

�𝜆2𝑒𝑥𝑝(−𝜆2𝑡) 

ρ=0.8, λ1=2, λ2=0.2 
(m1=1.5, m2=11.5, m3=167.25 

 and estimated p=0.77778, µ1= 0.500006, 
and µ2=5.000023) 

C(μ*) 

A
pp
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xi
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ts

 
m
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g)

 

μ*=2.22 μ*=1.66
7 μ*=1.333 μ*=1.111 μ*=0.95

2 
μ*=0.83

3 μ*=0.741   

22.9 17.87 15.33 14.35 14.86 17.91 29.74 c1=1, 
c2=10 

11.79 9.54 8.667 8.793 10.1 13.74 26.04 c1=1, c2=5 

5.127 4.54 4.667 5.459 7.242 11.24 23.81 c1=1, c2=2 

 
Table 4. The optimal service rate µ* with Inverse Gaussian inter-arrival distribution 

 
 
 

K=1, M=2  
(m1=2, m2=12, m3=152 and estimated p=0.8430, µ1= 

1.3897, and µ2=5.27770) 

C(μ*) 

Ex
ac

t 
 

va
lu

es
 

μ*=1.667 μ*=1.25 μ*=1.00 μ*=0.833 μ*=0.714 μ*=0.625 μ*=0.556   

17.126 13.255 11.193 10.215 10.213 11.76 18.505 c1=1, 
c2=10 

8.793 7.005 6.193 6.048 6.642 8.635 15.727 c1=1, 
c2=5 

3.793 3.255 3.193 3.548 4.499 6.76 14.061 c1=1, 
c2=2 
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pp
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xi
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n 

(m
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ts

 m
at

ch
in

g)
         

17.139 13.265 11.198 10.213 10.206 11.750 18.505 
c1=1, 
c2=10 

8.806 7.015 6.198 6.046 6.635 8.625 15.727 
c1=1, 
c2=5 

3.806 3.265 3.198 3.546 4.492 6.750 14.061 
c1=1, 
c2=2 

Relative error =  0.14% 0.03% 0.07%       

4.2 Illustration 2 

In the second illustration, we consider an optimisation problem in a GI/M/1 queue with 
working vacation for the server. These problems have wide application in Internet systems 
such as optical, electrical, and communication nets [8]. We consider a single server queuing 
system that has the general arrival process. The working vacation and vacation interruption 
are connected, and the server enters into vacation when there are no customers, and it can 
take service at the lower rate during the vacation period. If there are customers in the 
system at the instant of a service completion during the vacation period, the server will 
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return to the normal working level regardless of whether the vacation ends. Otherwise, it 
continues the vacation. The performance measure L, the mean queue length, and P(J=0) 
and P(J=1) – which are the state probabilities of a server in the steady state - have been 
derived by Li et al. [8]. We refer the reader to their paper for the relevant expressions. Li 
et al. [8] considered the problem of optimising the service rate η during the server’s 
vacation period for a given cost structure. Let cw represent the unit time cost of every 
waiting customer, and c1 and c2 the service costs per unit time during the normal working 
level and vacation period respectively. The expected net cost function to be optimised can 
be seen to be 
 
min: Z = cw L + c1 µ P(J=1) + c2 η P(J=0)                 (26) 
 
where µ is the service rate during the service period. The optimal service rate η* was 
computed using our non-parametric method of section 2 for certain values of the model 
parameters and cost parameters. We have used the Coxian arrival distribution and its 
moments (as used in Illustration 1) to obtain the optimal service rate η*. However, the 
Inverse Gaussian distribution could not be used, as the objective function (26) loses its 
convexity and becomes monotonic. We have used Erlangian of order 2 (used by Li et al. [8]) 
in its place. In Figures 3 and 4, we present the values of η versus the associated cost. The 
optimal η* and the corresponding cost obtained using our method are very close to the 
exact values. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  (cw=4, c1=15, c2=10, Θ=1, ρ=0.65, and Coxian distribution parameters are 
p=0.8, λ1=2, λ2=0.2) Optimal service rate η* during servers vacation period with Coxian 

inter-arrival distribution 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 4:  (cw=4, c1=15, c2=10, Θ=1, ρ=0.65, and Erlangian distribution parameters are 
K=2, M=2.5) Optimal service rate η* during servers vacation period with Erlangian of 

order 2 inter-arrival distribution 
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5. CONCLUSION 

This study introduces two methods for evaluating performance measures in a GI/M/1 
queuing system in the absence of information on the arrival distribution, and when only the 
first three moments are known. The first method is non-parametric as it does not use the 
distribution function, whereas the second method uses an H2 distribution obtained by 
moment matching procedure. This procedure involves the computationally economical 
Golden section method. Note that a Coxian (K2) distribution is also a good phase type 
distribution to consider. It is worth pursuing the regions (Ф2, Ф3) in which each of these 
approximations scores higher than the others in terms of relative errors. The usefulness of 
the methods in optimisation procedures has been illustrated with examples. 
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