
ar
X

iv
:1

20
5.

22
88

v1
 [

as
tr

o-
ph

.I
M

]
 1

0
M

ay
 2

01
2

A Dynamic Era-Based Time-Symmetric Block

Time-Step Algorithm with Parallel Implementations

Murat KAPLAN

Akdeniz University, Space Sciences and Technologies, TR-07058 Antalya,Turkey

muratkaplan@akdeniz.edu.tr

Hasan SAYGIN

İstanbul Aydın University, Beşyol Mah. Inönü Cad. No:38 Sefaköy-Küçükçekmece,İstanbul, Turkey

hasansaygin@aydin.edu.tr

(Received ; accepted)

Abstract

The time-symmetric block time–step (TSBTS) algorithm is a newly developed

efficient scheme for N–body integrations. It is constructed on an era-based iteration.

In this work, we re-designed the TSBTS integration scheme with dynamically chang-

ing era size. A number of numerical tests were performed to show the importance

of choosing the size of the era, especially for long time integrations. Our second aim

was to show that the TSBTS scheme is as suitable as previously known schemes for

developing parallel N–body codes. In this work, we relied on a parallel scheme us-

ing the copy algorithm for the time-symmetric scheme. We implemented a hybrid

of data and task parallelization for force calculation to handle load balancing prob-

lems that can appear in practice. Using the Plummer model initial conditions for

different numbers of particles, we obtained the expected efficiency and speedup for

a small number of particles. Although parallelization of the direct N–body codes is

negatively affected by the communication/calculation ratios, we obtained good load

balance results. Moreover, we were able to conserve the advantages of the algorithm

(e.g., energy conservation for long–term simulations).

Key words: N–body: parallel algorithms: celestial mechanics: stellar dynamics

1. Introduction

In many practical applications in N–body integrations, the block time–step approach is

preferred. In this approach, many particles share the same step size, where the only allowed

values for the time–step length are powers of two. Block time–steps are advantageous to reduce

the prediction overheads, and are needed both for good parallelization and code efficiency.

1

http://arxiv.org/abs/1205.2288v1

However, the time-symmetricity and symplecticity of previous direct integration schemes are

disturbed by using variable block time–steps.

The algorithm developed by Makino et al (2006) (TSBTS) is the first algorithm for time

symmetrizing block time–steps which carry the benefits of time symmetry to block time–step

algorithms. In this algorithmic approach, the total history of the simulation is divided into a

number of smaller periods, with each of these smaller periods called an “era”. Symmetrization

is achieved by applying a time symmetrization procedure with an era-based iteration.

The TSBTS algorithm was generated for direct integration of N–body systems and as

such is suitable to use for a moderate number of bodies no more than 105. The direct approach

to N–body integration is preferred when we are interested in the close-range dynamics of the

particles, and aiming at obtaining high accuracy. The algorithm gives us the ability to reach

long integration times with high accuracy. However it has some limitations on memory usage

which stem from choosing the size of the era.

The TSBTS algorithm also provides some benefits for parallelization of N–body al-

gorithms. Development of parallel versions of variable time–step codes becomes increasingly

necessary for many areas of research, such as stellar dynamics in astrophysics, plasma simula-

tions in physics, and molecular dynamics in chemistry and biology. The most natural way to do

this is through the use of block time–steps, where each particle has to choose its own power of

two, for the size of its time–step (Aarseth 2003). Block time–steps allow efficient parallelization,

given that large numbers of particles sharing the same block time–step can then be integrated

in parallel.

In Section 2, we summarize the TSBTS algorithm time-symmetric block time–step al-

gorithm. We provide definitions for the era concept, and for time-symmetrization of block

time–steps. In Section 3, we present sample numerical tests for choosing the size of the era.

We show how important is the effect of the era size on the energy errors, and the relationship

between era size and iteration number. In Section 4, we offer a dynamic era size scheme for

both better energy conservation and better memory usage. In Section 5, we present a parallel

algorithm for the TSBTS scheme with a hybrid force calculation procedure. In Section 6, we

discuss load balance and parallel performance tests of the algorithm. Section 7 sums up the

study.

2. Era-Based Iterative Time Symmetrization for Block Time Steps

In the TSBTS algorithm, an iterative scheme is combined with an individual block

time–step scheme to apply the algorithm to the N–body problem effectively. There are two

important points in this algorithm: the era concept and the time-symmetrization procedure.

The era is a time period in which we collect and store information for all positions and velocities

of the particles for every step. At the end of each era, we synchronize all particles with time

symmetric interpolation. This synchronization is repeated many times during the integration

2

period, depending on the size of the era.

Let us remember the TSBTS algorithm briefly:

We used a self-starting form of the leapfrog scheme;

rnew = rold+vold∆t+
1

2
aold∆t2,

vnew = vold+
1

2
(aold+ anew)∆t, (1)

with Taylor expansion for predicted velocities and positions;

rpnew = rold+vold∆t+
1

2
aold∆t2,

vp
new = vold+ aold∆t. (2)

One of the easiest estimates for the time–step criterion is the collisional time–step. When

two particles approach each other, or move away from each other, the ratio between relative

distance and relative velocity gives us an estimation.

On the other hand, if particles move at roughly the same velocity, the collision time scale

estimate produces infinity when the particles’ relative velocities are zero. For such cases, we

use a free fall time scale as an additional criterion, or just take the allowed largest time–steps

for those particles.

Time-steps are determined using both the free-fall time scale and the collision time scale

(3) for particle i by taking the minimum over the two criterion and over the all j as;

δti = ηmin
i 6=j

|rij |

|vij|
,

√

√

√

√

|rij|

|aij|

(3)

where η is a constant accuracy parameter, rij and vij are the relative position and velocity

between particles i and j, and aij is the pairwise acceleration.

Even if Aarseth’s time–step criterion (Aarseth 2003) serves us better in avoiding such

unexpected situations and gives us a better estimation, it needs higher order derivatives and it

is expensive for a second order integration scheme.

Our time-symmetry criterion is defined in Eq.4. This criterion gives us the smallest n

values that suit the condition ∆tn ≤ δtmi ;

n =min
k≥1

{

k
∣

∣

∣

1

2k−1
≤

(δtmi + δtm+1
i)

2

}

(4)

where m is the iteration counter. Here, m and m+1 refer to the beginning and end of

the time step.

In the case of block time–step schemes, a group of particles advances at the same time.

At each step of the integration, a group of particles is integrated with the smallest value of

∆tn. Here, we refer to the group of particles as particle blocks. The first group of particles in

an era is called the first block.

3

In the first pass through an era, we perform standard forward integration with the

standard block step scheme, without any intention to make the scheme time–symmetric. To

compute the forces on the particles with the smallest value of ∆tn, we use second-order Taylor

expansions for the predicted positions, while a first-order expansion suffices for the predicted

velocity. Predicted positions, velocities, and accelerations for each particle for every time–step

are stored during each era.

In the second pass, which is the first iteration, instead of Taylor expansions we use

time-symmetric interpolations with stored data. This time, each time–step is calculated in a

different way for symmetrization as in Algorithm 1. Here, dtm is the block time–step of the

integrated particle group, and ∆tn is the n’th level block time–step, which is obtained from a

time-symmetry criterion (Eq.4). If the current time is an even multiple of the current block

time–step, that time value is referred to as even time, otherwise it is referred to as odd time.

Algorithm 1: Symmetrization Scheme for Block Time Steps

for m= 1 to number of iteration do

if time == odd time then

if dtm 6=∆tn then

dtm = dtm/2

end if

end if

if time == even time then

if dtm <∆tn then

dtm = dtm ∗ 2

end if

if dtm ==∆tn then

dtm =∆tn

end if

if dtm >∆tn then

dtm = dtm/2

end if

end if

end for

Here is the description of the symmetrization scheme for block time–steps (as in

Algorithm 1):

If the current time is odd, first, we try to continue with the same time–step. If, upon

iteration, that time–step qualifies according to the time-symmetry criterion (as in Eq.4),

then we continue to use the same step size that was used in the previous step of the

4

iteration. If not, we use a step size half as large as that of the previous time–step.

If the current time is even, our choices are: doubling the previous time–step size; keeping

it the same; or halving it. We first try the largest value, given by doubling. If Eq.4 shows

us that this larger time–step is not too large, we accept it: otherwise, we consider keeping

the time–step size the same. If Eq.4 shows us that keeping the time–step size the same is

okay, we accept that choice: otherwise, we simply halve the time–step, in which case no

further testing is needed.

The same steps are repeated for higher iterations as in the first iteration. The main

steps of the integration cycle is given by Algorithm 2.

Algorithm 2: Sequential Algorithm for TSBTS

1: Initialization:

- Read initial position and velocity vectors from the source.

- Arrange size in the memory.

- Initialize particles’ forces, time–steps, and next block times.

- Sort particles according to time blocks.

2: Start the iteration for the era.

3: Start the integration for the first block of the era.

4: Predict position and velocity vectors of all particles for the current integration time. If this

is the first step of the iteration, or if the time of the particle is smaller than the current

time, do direct prediction: otherwise perform interpolation from the currently stored data.

5: Calculate forces on the active particles.

6: Correct position and velocity vectors of the particles in the block.

7: Update their new time–steps and next block time.

- After the first iteration, symmetrize new time steps according to Algorithm 1.

8: Sort particles according to time blocks.

9: Repeat from Step 3 while current time is ≤ time at the end of the era.

10: Repeat from Step 2 until the number of the iteration reaches the iteration limit.

11: Repeat from Step 2 for the next era, until the final time is reached.

12: Write the outputs and finish the program.

3. Numerical Tests for the Size of the Era

The size of an era can be chosen as any integer multiple of the maximum allowed time–

step. There is not any important computational difference between dividing the integration

to the small era parts and taking the whole simulation in one big era. However some sym-

metrization routines such as adjusting the time–steps and interpolating the old data increase

the computation time. Additionally, keeping the whole history of the simulation requires a

5

huge amount of memory.

It is important to decide what is the most convenient choice for an era. We need to

store sufficient information from the previous steps to adjust the time–steps with iterations. To

avoid doing additional work and storing a uselessly large history, choosing a large size for the

era is not recommended. On the other hand, the era size must be large enough to store rapid

and sharp time–step changes.

We made several tests with different Plummer model initial conditions, using different

sizes of era. Units were chosen as standard N–body units (Heggie and Hut 2003), as the

gravitational constant G = 1, the total mass M = 1 and the total energy is Etot = −1/4. We

limited the maximum time–step to 1/64. The η parameter was kept larger than usual to see the

error growth in smaller time periods. The η parameter was set as 0.1 for 100-body problems,

and 0.5 for 500-body problems. The Plummer type softening length ǫ was taken as 0.01. Each

system was integrated for every era size (1,0.5,0.25,0.125,0.0625,0.03125,0.015625) for 1000

time units.

Fig.1 shows the energy errors for 5 different 100-body problems with 5 different era sizes.

In these test runs, time-symmetrized block time–steps were used with 3 iterations. We also

performed test runs for other era sizes (1.0,0.5). However, the growth of energy errors for these

era sizes reached beyond the scales of this figure. The figure shows that, 3 iterations are not

enough to avoid linearly growing errors for large (here, 0.25) era sizes.

We conducted the following tests to see this effect clearly. Fig.2 shows the energy errors

for 5 different 100-body problems with 5 different era sizes as in the previous figure. However,

we used 5 iterations here. In this figure, the largest era size (0.25 time unit) does not show

a linearly growing error exactly the contrary to the case of 3 iterations.The improvement on

energy errors comes directly from the iteration process as we expected.

We increased the particle number 5 times, and set the η parameter as 0.5. The η

parameter could have been kept as 0.1, but we forced the algorithm to take larger time–steps,

which in turn produce larger energy errors for relatively small time periods. Fig.3 shows the

energy errors for 5 different 500-body problems with 7 different era sizes. The red curves show

the errors for era sizes of 0.015625,0.03125, and 0.0625 time units; the black curves show the

errors for era sizes of 0.125,0.25,0.5, and 1 time units.

It seems that more iterations are needed to obtain smaller energy errors while working

with larger era sizes. If time-symmetric block time–steps can not be produced with a small

number of iterations, the total energy error grows linearly. As indicated by our tests, iteration

number and era size must be chosen carefully to ensure symmetric block time–steps.

Although the size of the era is not very important as long as the iteration number

is large enough, a high number of iterations is not the preferred choice, as it demands high

computational cost. Also, the era size would have to be kept small to avoid the huge memory

usage. In practice, our tests show that, 5 iterations is not enough to prevent linearly growing

6

Fig. 1: Relative energy errors for 100-body problems. 5 different sets of Plummer model initial

conditions with 5 different era sizes (0.015625, 0.03125, 0.0625,0.125,0.25) are used with 3

iterations for 1000 time units. The top 5 curves (red curves) show linearly growing errors that

correspond to errors for the largest era sizes (0.25). The rest of the curves present the results

for other era sizes. The smallest relative errors in the figure (black curves) show a random-walk

fashion and correspond to results to the smallest era size (0.015625).

errors when we use greater than 0.25 time unit as the era size.

On the other hand, the era size must be greater than the greatest time–step. Otherwise

we can not store past information for the iteration process and the algorithm works as a classical

block time–step scheme.

4. Dynamic Era

Our test results for symmetrized time–steps with a small number of iterations in the

previous section show that keeping the era size large or small has a clear effect on energy

errors. However, the amount of the past position and the velocity information increase with

the size of the era. Then, many more iterations are required to obtain optimized time–steps.

And increased numbers of iterations consume more CPU time.

Let us remember and give some additional details and definitions about the relationship

between block time–steps and era: similar to the first block definition we provided in Section

2, the last group of particles in an era is referred to as the last block. The current time in the

integration for the first and last blocks are referred to as first block time and last block time,

7

Fig. 2: Relative energy errors for 100-body problems. 5 different sets of Plummer model

initial conditions are used for 5 iterations with 5 different era sizes (0.015625, 0.03125,

0.0625,0.125,0.25). In this figure, all of the curves show random-walk fashion instead of linearly

growing errors. Also, the worst relative error is below 0.008 even when it is 0.035 in Fig.1.

respectively.

At the end of each era, integration of every particle stops at the same time, and new block

time–steps are calculated and assigned for new blocks. The last block can take the maximum

allowed time–step at the most. The first block can take any block time–step smaller than the

maximum allowed time–step. Then, particles are sorted according to their block time–steps.

Also, every block has its own integration time related to its block time–step.

If we can find the proper criterion to change it, era size can be controlled dynamically.

The simplest choices can vary between 1 time unit and the allowed largest time–step. Our

suggestion is: calculate the new block time–steps and the first and last block times at the end

of each era, and take the difference between the last and first block times. This difference gives

us a dynamically changing size and we can assign this as the size of the new era.

Naturally, sometimes this difference can be larger than 1 time unit, or smaller than the

maximum allowed time–step. Also, if all of the particles take the same time–step in any era,

the difference goes to zero. We can use the maximum allowed time–step and any power-of-

two times of this era size for the top and bottom limits of the era, respectively. Here, we

used 2−3 multiples of the largest time–step for the lower limit. If all of the particles take the

largest time–step, or larger time–steps than the new era size, there will not be enough past

information for symmetrization. For these reasons, era size must not be much smaller than the

8

Fig. 3: Relative energy errors for 500-body problems. 5 different sets of Plummer model initial

conditions are used with 7 different era sizes (0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1) for

each set. 3 iterations are performed in the integrations. 15 curves (red curves) in the center of

the figure present the results of smaller era sizes (0.015625,0.03125,0.0625); the rest of the 20

curves correspond to larger (0.125,0.25,0.5,1) era sizes.

largest time–step.

If our estimate of the era size is smaller than our largest time–step, the particles with

largest time–steps are excluded from the integration process of the era, and are then left for

the next era. Errors of energy conservation oscillate in time, when they happen. We can use

the allowed largest time–step for the era size in these cases. The main steps of the algorithm

is given by Algorithm 3.

In the tests we did for the dynamic era, we used two choices for era size: equal to the

allowed largest time–step, and dynamically changing size as defined above. We already know

from previous runs for these test problems that we obtained the smallest errors on total energies

when we took the allowed largest time–steps as the era size. We performed 3 iterations. Fig.5

shows the energy errors for 10 different 500-body problems. The green curves show the results

for the dynamically changing era; the red curves show the results for the fixed era. Fig.4 shows

the energy errors for 10 different 100-body problems.

The results for dynamic era size are in the same range with those of fixed era size. Even

if the chosen fixed era size (0.015625) seems like the best choice for previous tests with the same

initial conditions and parameters (i.e., maximum allowed time–steps, softening and accuracy

parameters), in general, dynamic era gives modestly better results than fixed era for 0.015625.

9

Algorithm 3: Sequential Algorithm for TSBTS with Dynamic Era Size

1: Initialization (same as Algorithm 2).

2: Set first and last block times.

3: Calculate dynamic era size (dynamic era size = last block time - first block time

i) if dynamic era size < 2 ∗ 10−3∗ maximum time step

dynamic era size = 2 ∗ 10−3∗ maximum time step

ii) if dynamic era size > maximum time step

dynamic era size = maximum time step

4: Start the iteration for the era.

5: Start the integration for the first block of the era.

6: Predict position and velocity vectors of all particles for the current integration time. If this

is the first step of the iteration, or if the time of the particle is smaller than the current

time, do direct prediction: otherwise perform interpolation from the currently stored data.

7: Calculate forces on the active particles.

8: Correct position and velocity vectors of the particles in the block.

9: Update their new time–steps and next block time.

- After the first iteration, symmetrize new time steps according to Algorithm 1.

10: Sort particles according to time blocks.

11: Repeat from Step 5 while current time is ≤ time at the end of the era.

12: Repeat from Step 4 until the number of the iteration reaches the iteration limit.

13: Repeat from Step 2 for the next era, until the final time is reached.

14: Write the outputs and finish the program.

We ran more than 20 tests, and in 45% of them were the errors for dynamic era size larger than

errors for fixed era size. The rest of the results are clearly better than those for fixed era sizes,

besides the advantage of reduced memory usage for the same number of iterations. Running

times for dynamic era size are 10% less than for fixed era sizes in general.

5. Parallel Algorithm

Basically, there are two well known schemes that are used in direct N–body paralleliza-

tions: copy and ring.

The ring algorithm is generally preferred for reducing memory usage. It can be reason-

able for shared time–step codes, but it is not easy to use with block step schemes. It is also well

known from previous works that this algorithm achieves almost the same speedup as the copy

algorithm (Makino 2002). The number of the particles in the integrated block changes with

every step. In many cases, the size of the integrated block can be smaller than the number of

the processors. It is difficult to obtain balanced load distribution for such cases.

We used the copy algorithm. While it is much easier to extend for block step schemes,

10

Fig. 4: Relative energy errors for 10 different 100-body problems. For each initial condition,

two algorithms are performed, one with fixed and one with changing era size. 3 iterations are

used for two algorithms. Fixed era size was taken as 0.015625. This value was also used as the

allowed largest time–step for the algorithms. The green curves correspond to dynamic era sizes

and 70% of them show smaller errors than fixed sizes.

the copy algorithm also has the load imbalance problem in classical usage. For any case, block

size can be smaller than the number of processors again.

We divided the partitioning strategy into two cases to avoid bad load balancing. In the

first case, we divided the particles when the number of particles in the first block is greater

than number of nodes. This is a kind of data partitioning, with every node containing a full

copy of the system. In the second case, we divide the force calculation of the particles in the

first block as a kind of work partitioning.

Our parallel algorithm works with the following steps, as in Algorithm 4.

6. Load Balance and Performance

We have performed test runs on a Linux cluster in ITU-HPC Lab.1 with 37 dual core

3.40 GHz Intel(R) Xeon(TM) CPU with Myrinet interconnect.

The compute time was measured using MPI Wtime(). The timing for total compute

time was started before the broadcast of the system to the nodes, and ended at the end of

integration. The calculation time of the subset of the particles in the current time block that

1 İstanbul Technical University High Performance Computing Lab.

11

Fig. 5: Relative energy errors for 10 different 500-body problems. Fixed and dynamic era sizes

are performed for each initial condition, as in Fig.4. Fixed era size and allowed largest time–

step were taken as 0.015625 just as in previous tests. The results for dynamic and fixed era

sizes are in the same error ranges (40% of them show smaller errors than fixed sizes), and no

linearly growing error is observed.

are being handled by a given processor was taken as the work load of the processor. In the

iteration process, the largest time was taken as the work load of the processor for the same

time block.

Work load of the i’th processor for every active integrated particle group is defined as

wi; np is the number of processors; the mean work load 〈W 〉 is:

〈W 〉=
1

np

np
∑

i=1

wi, (5)

and load imbalances:

L(w) = 1−
〈W 〉

max(wi)
. (6)

Fig.6 shows the load imbalance for a 1000-body problem. We used 12 processors. In

direct N–body simulations, a 1000 body is not a big number for 12 processors (Makino 2002;

Harfst et al 2007; P. Spinnato 2000). Here, load imbalance is not seen as more than 0.1%

in general. Moreover, load imbalance is smaller than expected. The main reason for this is

in the iteration routines of the TSBTS algorithm, which increases both communication and

calculation times for active particles. Also, when the number of particles in the first block is

smaller than the number of nodes, work partitioning is applied in the algorithm, which also

12

Algorithm 4: Parallel TSBTS Algorithm

1: Broadcast all particles. Each node has a full copy of the system.

2: Initialize the system for all particles in all nodes. Every node computes time–steps for all

particles.

3: Compute and sort time blocks.

4: Integrate particles in the first block whose block times are the minimum for the era:

i) if the number of the first block ≥ number of nodes: every processor

calculates forces and integrates

(number of first time block)/(number of nodes) particles.

ii) if the number of the first block < number of nodes: every processor

calculates (number of particles)/(number of nodes) part of the forces

on the particles of the first block.

5: Update integrated particles.

6: Repeat from Step 3.

increases communication time.

T1 is the running time for one processor; Tn is the running time for n processors. speedup,

and efficiency are given respectively, as:

speedup =
T1

Tn

, (7)

efficiency =
T1

n ∗ Tn

. (8)

Fig.7 and Fig.8 show speedup and efficiency results of symmetrized and non-

symmetrized block time–steps for an 10000-body problem initial conditions with Plummer

softening length of 0.01 and accuracy parameter η = 0.1. Only one iteration with the TSBTS

algorithm corresponds to individual block time–step algorithm without symmetrization. The

speedup result for 3 iterations is clearly better than the result for 1 iteration. These results

show that the communication/calculation ratio decreases with the iteration process, though

iteration needs much more computation time.

For moderately short integration times, as in one time unit cases, the same error bounds

can be obtained with less computation times by classical algorithms. However, the algorithm

already shows its advantages in long time integrations. Fig.9 shows relative energy errors

and CPU times for 20 different 500-body problems with 2 different accuracy parameters (η =

(0.1,0.01)) for 1 CPU. Each system was integrated for 1 and 3 iterations and 1000 time units.

Even if it is not possible to obtain the same degree of energy errors for different test problems,

the results are still highly promising. We obtained significantly better energy errors with the

TSBTS algorithm (3 iterations) than with the classical individual block time–step algorithm

(1 iteration) for the same accuracy parameters (η = 0.1) in all tests. Also, in some tests (more

13

Fig. 6: Load imbalance for 1000-body problem Plummer model initial conditions using 12

processors for 1000 time units. η = 0.1; era size is taken as the allowed largest time–step.

Every single red point corresponds to a load imbalance for the active particle group at the time

when its vectors are updating.

or less in 20% of the tests), we obtained better results with 3 iterations for 10 times larger

accuracy parameters than with 1 iteration runs for η = 0.01.

For example in one of our 500-body problems, we obtained a relative energy error of

5.4∗10−5 with η =0.1 for 3 iterations, while it was 3.1∗10−2 for 1 iteration. To reach the same

error bound with one iteration for 1000 time units, we had to reduce the accuracy parameter

to 10 times smaller (η = 0.01). Then, we obtained relative energy error of 1.92 ∗ 10−5 with 1

iteration. In this example, calculation times for 1 and 3 iterations with η = 0.1 were 6.77 ∗ 103

sec., and 3.28 ∗ 104 sec. respectively, while the time was 6.36 ∗ 104 sec. for η = 0.01 with 1

iteration. Here, 3 iterations increase the calculation time by almost a multiple of 2. However,

calculation time increases by a multiple of 10, while the accuracy parameter is reduced by the

same order.

Fig.10 shows running time requirements of the algorithm for the same 10000-body prob-

lem, both for 1 and 3 iterations, for one N–body time unit. The TSBTS algorithm needs up

to 5 times more run time than 1 iteration case with 1 CPU for this test (for 500-body tests,

this ratio was 4.75 as an average of their run times). This extra time is consumed by iteration

and symmetrization procedures. The time-consuming ratio between the 1 and 3 iteration cases

reduces to almost 3.5 times when we increased the number of processors.

14

Fig. 7: Speedup vs. processor number for 10000-body problem Plummer model initial condi-

tions, both for symmetrized and non-symmetrized individual block time–step algorithms. The

continuous curve at the top corresponds to symmetrized block time–steps with 3 iterations.

The discontinuous curve at the bottom corresponds to the classical block time–step algorithm.

7. Discussion

We have analyzed the era concept in greater detail for time symmetrized block time–

steps. Our test results show that the size of the era must be chosen carefully. This is important,

especially for long-term simulations with highly desirable energy conservations. The era size

is also important to avoid the need for additional data storage and a uselessly high number of

iterations, which require too much running time.

In this work, we suggested a dynamically changing size for the era. This enables us to

follow the adaptively changing size for these time periods. In this scheme, the era size will be

well-adjusted to the physics of the problem. In many cases, we obtained better energy errors

than previous algorithm with fixed era size.

Additionally, we produced a copy algorithm-based parallel scheme combining with our

time symmetrized block time–step scheme. We divided the force calculation into two ap-

proaches, according to the number of the integrating particles, to avoid bad load balancing.

If the number of particles in the integrated block was greater than the number of processors,

we used the classical approach –the copy algorithm– to calculate forces. If we had a lower

number of particles than processors to integrate, we divided the force calculations between the

processors using work partitioning.

15

Fig. 8: Efficiency vs. processor number for 10000-body problem Plummer model initial condi-

tions, both for symmetrized and non-symmetrized individual block time–step algorithms. The

continuous curve at the top corresponds to symmetrized block time–steps with 3 iterations.

The discontinuous curve at the bottom corresponds to the classical block time–step algorithm.

(a) Energy Errors (b) CPU times

Fig. 9: Relative energy errors and CPU times for 20 different 500-body problems for 1000 time

units. One iteration with the TSBTS algorithm corresponds to the individual block time–step

algorithm without symmetrization. Here, we used two values for the accuracy parameter (η =

0.1, 0.01).

16

Fig. 10: Performance comparison of the TSBTS algorithm with 3 iterations and the classical

individual block time–step algorithm for 10000-body problem Plummer model initial conditions.

The top line corresponds to the TSBTS algorithm, and the one below corresponds to the non-

symmetrized individual block time–step algorithm.

Parallelization of direct N–body problem already features some difficulties regarding

communication costs. Communication times dramatically increase with the number of proces-

sors. Previous works show that, using more than 10 processors for a few thousands particles

does not result in a substantial gain (Makino 2002; Harfst et al 2007; P. Spinnato 2000). This

problem is replicated in individual time–step and block time–step cases.

Even if we need to expend some additional communication efforts in our work partition-

ing approach, we obtain good load balancing results with this approach. Also, the iteration

process requires much more effort. Speedup and efficiency results are as we expected for current

implementations. Scaling of the algorithm can be increased by using hyper systolic or other

efficient algorithms (Makino 2002) in future works.

We thank the anonymous referees for their constructive comments which helped us to

improve the contents of this paper. We acknowledge research support from ITU-HPC Lab.

grant 5009-2003-03.

References

Aarseth S J (2003) Gravitational N -Body Simulations. Cambridge University Press.

17

Harfst S, Gualandris A, Merritt D, Spurzem R, Zwart S, Berczik P (2007) Performance analysis of

direct N–body algorithms on special-purpose supercomputers. New Astronomy 12:357–377

Heggie D, Hut P (2003) The Gravitational Million-Body Problem. Cambridge University Press

Makino J (2002) An efficient parallel algorithm for O(N2) direct summation method and its variations

on distributed-memory parallel machines. New Astronomy 7:373–384

Makino J, Hut P, Kaplan M, Saygın H (2006) A time-symmetric block time–step algorithm for N–body

simulations. New Astronomy 12:124–133

Spinnato PS, van Albada GD and Sloot PMA (2000) Performance analysis of parallel N–body codes.

Proceedings of High Performance Computing and Networking, Lecture Notes in Computer Science

v: 1823 p: 249-260

18

