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Abstract: Recent breakthroughs are making a significant contribution to big data in biomedicine
which are anticipated to assist in disease diagnosis and patient care management. To obtain
relevant information from this data, effective administration and analysis are required. One
of the major challenges associated with biomedical data analysis is the so-called “curse of
dimensionality”. For this issue, a new version of Binary Sand Cat Swarm Optimization (called
PILC-BSCSO), incorporating a pinhole-imaging-based learning strategy and crossover operator,
is presented for selecting the most informative features. First, the crossover operator is used
to strengthen the search capability of BSCSO. Second, the pinhole-imaging learning strategy
is utilized to effectively increase exploration capacity while avoiding premature convergence.
The Support Vector Machine (SVM) classifier with a linear kernel is used to assess classification
accuracy. The experimental results show that the PILC-BSCSO algorithm beats 11 cutting-
edge techniques in terms of classification accuracy and the number of selected features using
three public medical datasets. Moreover, PILC-BSCSO achieves a classification accuracy of
100% for colon cancer, which is difficult to classify accurately, based on just 10 genes. A real
Liver Hepatocellular Carcinoma (TCGA-HCC) data set was also used to further evaluate the
effectiveness of the PILC-BSCSO approach. PILC-BSCSO identifies a subset of five marker genes,
including prognostic biomarkers HMMR, CHST4, and COL15A1, that have excellent predictive
potential for liver cancer using TCGA data.

Keywords: sand cat swarm optimization; pinhole-imaging-based learning; feature selection; biomedical
data; cancer prediction

1. Introduction

Enormously large, rapidly growing collections of biomedical and clinical data pose
significant challenges to their analysis and interpretation. Health data are large-scale,
multimodal, and high-dimensional. The promise of Big Data in healthcare is based on
the ability to discover patterns and transform massive volumes of data into meaning-
ful information for precision, diagnosis, treatment, and decision-makers. Biomedical
datasets, encompassing genomics, proteomics, clinical attributes, imaging, and more,
often present researchers with a staggering number of variables. While this wealth of
data holds the potential to unveil crucial insights into disease mechanisms and patient
profiles, it simultaneously poses formidable challenges, giving rise to the ‘curse of
dimensionality’.

In biomedical data analysis, the ‘curse of dimensionality’ arises from the combi-
nation of high-dimensional feature spaces, sparsity, computational demands, risk of
overfitting, and the need to capture complex biological phenomena. Addressing this
challenge requires innovative feature selection techniques and dimensionality reduction
methods. This difficulty in navigating high-dimensional biomedical data has led to a
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growing interest among researchers in the biomedical domain, inspiring the develop-
ment of new robust algorithms that are best suited to appropriately evaluate this big
data [1]. The task of extracting meaningful information and identifying key aspects
within these vast datasets has become a focal point of exploration and innovation within
the field of biomedical research.

Feature selection is a powerful data mining approach for shrinking the dimension-
ality of feature space. It is broadly known that feature selection is an NP-hard task, and
therefore determining the optimal or near-optimal feature set is a challenging task [2,3].

Feature selection’s primary role is to identify and retain the most informative
and relevant attributes while discarding redundant or noisy variables. Doing so not
only mitigates the computational burden associated with high dimensionality but also
enhances the interpretability and generalization of analytical models. In the context
of disease diagnosis, feature selection serves as a compass guiding researchers and
clinicians toward the most discriminating biomarkers or attributes associated with
specific diseases. This precision enables the development of diagnostic models that are
not only accurate but also clinically interpretable. Such models, informed by selected
features, provide the foundation for early disease detection and stratification, facilitating
timely interventions and improved patient outcomes. Moreover, feature selection plays
a pivotal role in patient care management. In the era of personalized medicine, where
treatment strategies are tailored to individual patients, the identification of relevant
biomarkers and clinical attributes is paramount. Feature selection aids in constructing
predictive models that inform treatment decisions, predict patient responses, and gauge
disease prognosis. By focusing on the most influential factors, healthcare providers can
optimize treatment plans, minimize adverse effects, and maximize therapeutic efficacy.

There are three popular feature selection methods: filter-based, wrapper-based,
and hybrid approaches. Filter techniques assess the importance of features based on
their correlation with the dependent variable using statistical methods and are signifi-
cantly quicker than wrapper approaches, whereas wrapper methods assess the utility
of a subset of features by training a model on it and can provide the most effective
subset of features. Nature-inspired optimization algorithms (NIOAs) are used as search
techniques in wrapper methods to identify informative features. A hybrid feature
selection method combines filters and wrappers approaches. Hybrid approaches are
still in their fancy and further research is needed to develop a more effective feature
selection methodology [4]. In the literature, various feature selection strategies have
been offered. Some of them are a hybrid of minimum redundancy maximum relevance
(mRMR) and a mutated binary Aquila optimizer (MBAO) [5], a hybrid of mutual infor-
mation maximization (MIM) and moth flame optimization algorithm (MFOA) [6], binary
coral reefs optimization with simulated annealing and tournament selection strategy
(BCROSAT) [1], an improved binary clonal flower pollination algorithm (IBCFPA) [7],
an improved shuffled frog leaping algorithm (ISFLA) [8], a hybrid of mRMR with a
combination of binary black hole algorithm and binary dragonfly optimization algo-
rithm (DBH) [9], a hybrid of symmetrical uncertainty (SU) and reference set harmony
search algorithm (RSHSA) [10], “Technique for Order Preference by Similarity to Ideal
Solution” (TOPSIS) filtering and binary Jaya algorithm [11], a hybrid of information
gain (IG) and modified krill herd algorithm (MKHA) [12], and hybrid of mRMR and bi-
nary Coot with simulated annealing and crossover operator (mRMR BCOOT-CSA) [13].
Difficulty in parameter tuning, lack of interpretability, risk of premature convergence,
and limited adaptability are some limitations of the above approaches. Nevertheless,
recognizing that no single solution can entirely alleviate the dimensionality curse within
the original dataset, these limitations have motivated numerous researchers to propose
new algorithms with the aim of achieving improved performance.
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The sand cat swarm optimization (SCSO) algorithm [14] is a new NIOA, that
has been utilized to solve various optimization problems such as engineering prob-
lems [15,16], power transformer fault diagnosis [17], and feature selection [2,18]. Low
solution precision and early convergence are two main drawbacks of most existing
SCSO variations [15]. This paper puts forward an improved version of binary SCSO
(PILC-BSCSO) by incorporating crossover and opposition-based learning for feature
selection challenges of high-dimensional medical data. This is the main innovation of
this paper and shows promise in finding the best feature subset.

The key contributions of this paper are as follows:

• A novel gene selection approach is proposed based on an enhanced binary sand
cat swarm optimization for high-dimensional biomedical data.

• A pinhole-imaging opposition-based learning (PIOBL) scheme is employed to
boost the exploration and convergence characteristics of the BSCSO.

• The Crossover operator is fused with BSCSO to improve the search performance of
the original BSCSO.

• An initial population strategy based on the Differential Expression (DE) analysis
is conducted to identify differentially expressed genes (DEGs), which makes the
proposed algorithm, called PILC-BSCSO, obtain higher classification accuracy with
a better-initialized population.

• The suggested PILC-BSCSO approach is compared to 11 state-of-the-art methods
on three benchmark microarray datasets and outperforms them all.

• The efficiency of the PILC-BSCSO approach was further assessed using a real Liver
Hepatocellular Carcinoma (TCGA-HCC) data set, and PILC-BSCSO selects a subset
of five marker genes while offering the best accuracy.

2. Materials and Methods
2.1. Sand Cat Swarm Optimization

The SCSO Algorithm is a new nature-inspired optimization algorithm proposed
by Seyyedabbasi [14], which simulates the behavior of sand cats in hunting. These
animals utilize their acute hearing to detect low-frequency disturbances. Therefore,
they may sense prey movement underground. They also have an unusual ability to
dig swiftly if the prey is underground. In SCSO, the population consists of N sand
cat individuals (solutions) with D dimensions, thus the population vector contains an
N × D dimensional matrix. The X(t) demonstrates the position vector of each sand cat
in searching space at iteration t.

The sound cat has a sensitivity range of (2, 0) kHz in perceiving low-frequency
noises. It starts at 2 kHz and decreases linearly till it approaches 0 kHz. The sensitivity
level is known as rg in SCSO, which is calculated as follows:

rg = sM −
(

sM × t
T

)
(1)

where sM is taken to be 2. t is the current iteration number, while T is the maximum
number of iterations. Meanwhile, the R parameter determines the trade-off between the
exploration and exploitation phases and is computed as follows:

R = ((2× rg)× rand(0, 1))− rg (2)

where rand(0, 1) produces a random number between 0 and 1. The r parameter, which
specifies the sensitivity range of each potential solution, is determined as follows:

r = rg× rand(0, 1) (3)
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The sand cat’s next location is decided by the value of R, which runs between −1
and 1. When |R| ≤ 1, the SCSO approach concentrates on exploitation and guiding the
sand cat to hunt the prey (4–5). Otherwise, the algorithm concentrates on exploration
and forces the sand cats to look for food (6–8).

In SCSO the mathematical expression of attacking the prey (exploitation) is as
follows:

Xrand = |rand(0, 1)× Xbest − X(t)| (4)

X(t+1) = Xbest − rand(0, 1) ∗ Xrand ∗ cos (θ) (5)

where Xrand calculates the distance between the best position Xbest and current position
X(t) in the related iteration t. X(t+1) demonstrates the position update for the corre-
sponding search agent, i.e., X. Moreover, the sand cats’ precise sensitivity is supposed
to be circular, hence the direction of each movement is decided by a random angle θ
based on a roulette wheel selection.

In SCSO, the mathematical expression of searching for prey (exploration), is as
follows:

cp = f loor(N ∗ rand(0, 1) + 1) (6)

XCandidate(t) = X(cp, :) (7)

X(t+1) = r × (XCandidate(t)− rand(0, 1)× X(t)) (8)

where XCandidate(t) indicates a random candidate position. The pseudo-code of the
SCSO algorithm is shown in Algorithm 1.

Algorithm 1: Pseudo-code of the SCSO algorithm.

1. Determine the number of population N, and maximum number of iteration T
2. Initialize the sand cat population Xi(i = 1, 2, . . . , N)
3. While t ≤ Tdo
4. Calculate the fitness function of each sand cat based on the objective function
5. Determine Xbest
6. Calculate rg when sM = 2
7. For i = 1 to N do
8. Calculate R and r
9. For j = 1 to D do
10. Randomly selected 0 ≤ θ ≤ 360 using Roulette wheel selection
11. if ((−1 <= R)&&(R <= 1)) then
12. Xrand =

∣∣∣rand(0, 1)× Xbest,j − X(i,j)

∣∣∣
13.

X(i,j) = Xbest,j − rand(0, 1) ∗ Xrand ∗ cos (θ)
//update position using (5)

14. else
15. cp = f loor(N ∗ rand(0, 1) + 1)
16. XCandidate = X(cp, :)
17. X(i,j) = r×

(
XCandidate,j − rand(0, 1)× X(i,j)

)
//update position using (8)

18. End if
19. End for
20. End for
21. t = t + 1
22. End while
23. Return Xbest
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2.2. Binary Sand Cat Swarm Optimization for Feature Selectıon

In the context of feature selection, each feature can be thought of as a binary decision–
either included in the final subset or not. This binary choice can be represented using a
binary vector of size D, where D is the total number of features in the dataset. Each element
of the vector corresponds to a feature, and is set to 1 if the feature is selected and 0 if not.

The SCSO method is applied in a continuous space, whereas the feature selection
problem is applied in a discrete space. Before the SCSO algorithm can be used for the
feature selection issue, the continuous space must be transformed into the discrete space.
The transfer functions are used for this conversion. Seyyedabbasi [18] presented the first
binary version of the SCSO method, which employed a V-shaped transfer function. The
transfer function determines the probability that the binary solution element changes from
0 to 1. Also, Qtaish et al. [2] introduced a memory-based BSCSO (BMSCSO) method
that incorporates a memory-based approach into the BSCSO position-updating process,
employing an S-shaped transfer function to pick the most relevant subset of features.

2.3. Pinhole Imaging Opposition-Based Learning

Various techniques, including mutation [5], Lévy flight [19], and opposition-based
learning (OBL) [20], have been used in the literature to increase NIOA’s exploration capabili-
ties. OBL broadens the search range by computing the inverse of the existing viable solution
and locating candidate solutions in more ideal places. OBL is a subset of pinhole-imaging
opposition-based learning (PIOBL) [21]. Pinhole imaging is a general physical phenomenon
in which a light source flows through a tiny hole in a plate, forming an inverted actual
picture on the opposite side of the plate. Figure 1 depicts the basic PIOBL concept.
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The coordinate x-axis’ upper and lower bounds are labeled a and b in the picture. A
tiny aperture screen is installed at the base point O. Once the light source via the small
aperture receives a reversed image p∗ of height h∗ at the imaging screen, the projection of
p∗ on the x-axis is X ∗best (the newly created reverse solution), whereas the projection of p
whose height is h, on the x-axis is Xbest (the current global optimal solution). The geometric
connection of the line subdivisions in the figure allows us to deduce:

(a+b)
2 − Xbest

X∗best − (a + b)/2
=

h
h∗

(9)

Substituting h/h∗ = K into the foregoing equation produces the expression for X∗best:

X∗best =
(a + b)

2
+

(a + b)
2K

− Xbest
K

(10)
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When the method is solving a high-dimensional complex function, X∗best can be com-
puted using the following equation:

X∗best,j =

(
aj + bj

)
2

+

(
aj + bj

)
2K

−
Xbest,j

K
(11)

where X∗best,j is the inverse solution of Xbest,j, and Xbest,j demonstrates the optimal solution
in the jth dimension. aj and bj are the minimum and maximum values in the jth dimension
and the scale factor K = 0.05.

2.4. Single Point Crossover

Crossover is a genetic operator that mixes two parents’ genetic information to produce
new offspring. After selecting a random cut point on parents to create offspring, all data in
the parents’ string after that point is swapped between the two parents.

2.5. The Proposed Algorithm

A modified binary SCSO (called PILC-BSCSO) with pinhole-imaging-based learning
and crossover operator is proposed as a novel wrapper feature selection to find the optimal
gene subset with the highest accuracy.

The crossover operator is a fundamental mechanism in BSCSO, facilitating the ex-
change of genetic information to create diverse offspring. This diversity enhances the
algorithm’s search capabilities, allowing it to effectively explore a wider range of feature
combinations and identify feature subsets with improved predictive power for biomedical
data analysis.

The pinhole-imaging-based learning strategy provides a localized focus as well as
adaptability and balance in the BSCSO process. It strategically narrows the focus when
needed for in-depth exploration and widens it to exploit promising regions. This intelligent
strategy not only enhances the algorithm’s ability to navigate the vast solution space but
also safeguards against premature convergence, ultimately contributing to its effectiveness
in feature selection for high-dimensional biomedical data analysis.

The detailed implementation of the proposed algorithm is elaborated upon in the
following steps:

Step 1. First, a Limma differential expression analysis of microarray data is conducted
as a preprocessing step to identify DEGs, and the genes with an adjusted p-value lower
than 0.05 are selected. Then, the shrink dataset (GEGs) is used as the input for the proposed
PILC-BSCSO algorithm where the Cohen’s kappa score of the support vector machine
(SVM) [22–24] with the linear kernel is utilized as the fitness function.

Step 2. Population initialization is performed, and each sand cat individual is encoded
as a binary vector with an initial value of 1.

Step 3. Binary SCSO is used to further select the optimal subset of genes from a
provided pool of DEGs. Each individual within the sand cat population undergoes fitness
value computation, enabling the identification of the individual with the most optimal
fitness—a role granted to the best individual. After this process, the updating of the
solution is performed using (5) and (8). The transfer function affects the efficiency of binary
optimization techniques. There are several transfer functions accessible in the literature;
nevertheless, selecting one is not an easy process [25]. We are using a hyperbolic tangent
sigmoid (tansig) transfer function to convert the continuous SCSO algorithm to a binary
version with the following equations:

T f
(

X(i,j)

)
=

2

1 + e−2∗X(i,j)
− 1 (12)
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X(i,j) =

{
1, T f

(
X(i,j)

)
> rand(0, 1)

0, otherwise
(13)

Step 4. Low solution accuracy and early convergence are two main drawbacks in
the majority of current SCSO versions. Therefore, PIOBL and crossover mechanisms
are utilized to effectively boost the exploration ability of SCSO. The process of updating
individuals after step 3 is continued using either the crossover operators or the PIOBL
strategy according to random probability. The individual updating procedure is repeated
until the stop criteria are met. The comprehensive sequence of steps involved in the PILC-
BSCSO algorithm is depicted in Figure 2, while the precise algorithmic details are provided
in Algorithm 2.
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Algorithm 2: Pseudo-code of the proposed PILC-BSCSO algorithm for feature selection.

1. Load Microarray dataset
2. Extracting DEG lists using Limma and obtaining shrinking dataset with D features
3. //Perform PILC-BSCSO algorithm
4. Determine the number of population N, and maximum number of iterations T
5. Initialize the sand cat population Xi(i = 1, 2, . . . , N) with the binary value 1
6. While t ≤ T do
7. Calculate the fitness function of each sand cat using SVM with a 10-fold CV
8. Determine Xbest
9. Calculate rg when sM = 1
10. For i = 1 to N do
11. Calculate R and r
12. For j = 1 to D do
13. Randomly selected 0 ≤ θ ≤ 360 using Roulette wheel selection
14. if ((0 < R)&&(R < 1)) then
15. Update the search agent position using Equation (5)
16. else
17. Update the search agent position using Equation (8)
18. End if
19 T f = 2

1+e−2X(i,j) − 1
20 if t f > rand(0, 1) then X(i,j) = 1 else X(i,j) = 0
21. End for//j
22. if rand(0, 1) < 0.5 then
23. //Perform crossover operator
24. [q1, q2] = Crossover (Xbest, X(i,:))
25. Calculate the fitness values of p1, p2 using SVM
26. if fitness value of q1 is better than fitness values of q2 and Xbest then
27. Xbest = q1
28. else if the fitness value of q2 is better than the fitness value of Xbest then
29. Xbest = q2
30. End if
31. else
32. //Perform PIOBL operator
33. Calculate q1 = 1

2 + 1
2K −

X(i, :)
K when k = 0.05

34. X∗best = q1 AND Xbest
35. Calculate the fitness values of X∗best using SVM
36. if the fitness value of X∗best is better than the fitness values of Xbest then
37. Xbest = X∗best
38. X(i,:) = X∗best

End if
End if

39. End for//i
40. t = t + 1
41. End while
42. Return Xbest

3. Results
3.1. Experimental Setup

The proposed method is a two-step procedure. In the first step, Z-score normalization
and DEG analysis are performed as a preprocessing step to scale and identify genes whose
expression levels differ significantly between the two experimental conditions. In the
second step, the proposed approach is applied to gain an optimal subset of genes. The
effectiveness of our proposed gene selection approach was examined on three binary-class
microarray cancer datasets and one real The Cancer Genome Atlas Liver Hepatocellular
Carcinoma (TCGA-LIHC) dataset. Table 1 describes the characteristics of the datasets. In
this study, we employed an SVM classifier with a linear kernel as a fitness function to



Bioengineering 2023, 10, 1123 9 of 17

explore the prediction ability of gene subsets. Tuning parameter ‘C’ was held constant at a
value of 1 (default value).

Table 1. Characteristics of Gene Expression Datasets.

Dataset
Name

No. of
Samples

No. of
Features

No. of
Classes

Distribution of Class
Label

Colon cancer 62 2000 2 40, 22
CNS 60 7129 2 39, 21
Breast 97 24,481 2 51, 46
TCGA-LIHC 421 56,602 2 371, 50

To avoid bias, we subjected each subset of potential candidate genes to rigorous
validation and analysis, employing a repeated 10-fold cross-validation approach with three
repetitions. To show stability, the proposed methodology was executed independently
multiple times on distinct datasets, with subsequent reporting of the averaged outcomes.
For the implementation of algorithms, the R programming language was used. Specifically,
the ‘limma’ package was harnessed for the analysis of DEGs, while the construction of the
SVM classifier was carried out using the ‘e1071’ package. The “rmcfs” package was used for
Monte Carlo Feature Selection (MCFS) [26], while the “praznik” package was employed for
feature ranking using Minimum Redundancy Maximum Relevance (mRMR) [27]. Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA) optimization techniques were
implemented using the Weka platform. R code of PILC-BSCSO is available at https://
github.com/nazpashaei/PILC-BSCSO, accessed on 27 August 2023.

Computational experiments were conducted on an AMD Ryzen 7 5700U processor
operating at 1.80 GHz, ×64 architecture, and bolstered by 16 GB of RAM. For four op-
timization algorithms, we configured the algorithm parameters, setting the number of
populations at 100 and the maximum number of iterations at 50.

3.2. Experimental Results on Three Benchmark Microarray Datasets

The results of this study reveal significant insights into the performance and effective-
ness of the proposed approach. The investigation of Differentially Expressed Genes (DEGs)
led to the identification of distinct gene sets across different datasets. Specifically, there are
358 DEGs with an adjusted p-value of 0.05 in the colon, 328 with a p-value of 0.05 in the CNS,
and 154 with a p-value of 0.05 and |LogFC| > 0.68 in the Breast datasets, respectively. To
evaluate the potential of these gene sets for classification tasks, the LOOCV (Leave-One-Out
Cross-Validation) classification accuracy was assessed using an SVM classifier. mRMR and
MCFS feature ranking algorithms with various cut-offs were utilized to compare with DEG
performance. The mRMR is an entropy-based feature selection method that calculates the
mutual information (MI) between a group of features and a class variable. Features with
high MI values with respect to the class variable and low MI values with respect to other
selected features are considered more informative and less redundant. The MCFS method
evaluates the feature importance by creating numerous decision trees. Each decision tree
is trained on a subset of the data with a random feature subset. The importance of each
feature is determined by how much it contributes to the quality of the decision trees.

The outcomes, detailed in Table 2, provided an initial assessment of the DEGs’ pre-
dictive power compared to MRMR and MCFS. Table 2 reveals that MCFS with cutoffs of
100, 200, and 300 consistently demonstrates better classification accuracy on three datasets.
Notably, the 300-cutoff threshold outperforms DEGs in terms of classification accuracy.

https://github.com/nazpashaei/PILC-BSCSO
https://github.com/nazpashaei/PILC-BSCSO
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Table 2. The LOOCV classification accuracy of identified DEGs, mRMR, and MCFS with an SVM
classifier.

Dataset Name All Features DEGs mRMR
(50)

mRMR
(100)

mRMR
(200)

mRMR
(300)

MCFS
(50)

MCFS
(100)

MCFS
(200)

MCFS
(300)

Colon cancer 83.87 85.48 80.64 83.87 83.87 80.64 79.03 88.70 85.483 88.70
CNS 68.33 90 60 6333 7833 68.33 81.66 0.85 91.66 93.33
Breast 67.01 75.25 76.28 78.35 78.35 79.38 72.16 76.28 87.62 89.69

Visual representations further enhanced our understanding of the data. The volcano
plot (Figure 3) depicted the distribution of Log2(fold-change) against the significance (p-
value) of the identified DEGs, with cut-off values indicated by vertical and horizontal
dotted lines. The comparison of the proposed PILC-BSCSO method with the basic BSCSO
technique, PSO, and GA (Table 3) showcases their respective performance in 10 separate
runs. Strikingly, PILC-BSCSO consistently outperformed all three swarm optimization
algorithms (BSCSO, GA, and PSO) in terms of classification accuracy across all datasets. A
nuanced observation was made for the colon and breast datasets, where BSCSO exhibited
a slight advantage over PILC-BSCSO in terms of the average number of selected genes.
Table 3 also shows the statistical test results, where a p-value < 0.05 indicates that the
PILC-BCSO methodology produces statistically different results than other techniques.

The convergence behavior of PILC-BSCSO and the basic BSCSO methods was exam-
ined, and the results are depicted in Figure 4. This visualization showcases the trajectories
of their convergence across four distinct datasets, all derived from the same random seed.
Significantly, PILC-BSCSO exhibited more favorable convergence trends in terms of fitness
value (Cohen’s kappa) compared to conventional BSCSO, which tended to converge to
local optima. It is worth noting that PILC-BSCSO may take longer (two and a half times) to
converge than the traditional BSCSO approach.

Figure 5 offered a visual representation of the gene expression profiles for the best sub-
set of discriminative genes identified by the proposed method for each dataset, represented
through a heatmap.

To comprehensively assess the proposed method’s efficacy, comparisons were made
against 11 state-of-the-art approaches. The average results, summarized in Table 4 and
Figure 6, demonstrated that PILC-BSCSO consistently achieved superb classification accu-
racy while selecting a reasonable number of genes, outperforming 11 competing techniques
across all three datasets. These findings collectively underscore the effectiveness of the
proposed PILC-BSCSO approach in identifying significant gene subsets and its potential
for robust classification tasks across diverse datasets. PILC-BSCSO’s superior performance
can be attributed to several factors: enhanced exploration and exploitation, population
initialization, and fitness function evaluation. PILC-BSCSO leverages the Pinhole-Imaging
Opposition-Based Learning (PIOBL) scheme and the crossover operator to enhance both
the exploration and exploitation phases. This allows it to effectively explore a wide solu-
tion space while also exploiting promising regions more efficiently, leading to improved
solutions. The algorithm also uses an initial population strategy based on differential
expression analysis. This strategy provides a better-initialized population, guiding the
optimization process toward more promising solutions from the start. It also employs
repeated 10-fold cross-validation with three repetitions contributing to more stable and reli-
able results, especially when dealing with unbalanced datasets. Additionally, utilizing the
kappa measure of SVM further enhances the appropriateness of the evaluation metric for
accurately assessing model performance in the context of class imbalance. This approach
ensures a robust evaluation framework that is well-suited for the challenges posed by the
dataset at hand.
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3.3. Experimental Results on Liver Hepatocellular Carcinoma TCGA

To demonstrate the effectiveness of the proposed method, it was applied to data on
HCC sourced from TCGA. HCC, a devastating malignancy ranked as the third leading
cause of global cancer-related deaths, often evades early detection, resulting in diagnosis
at advanced stages. Therefore, the development of innovative treatment targets is of
paramount importance to enhance patient survival outcomes.

The RNA-Seq data encompassed 371 samples from HCC patients and 50 control sam-
ples, all derived from the TCGA-liver hepatocellular carcinoma (LIHC) dataset, comprising
a total of 421 samples and 56,602 genes. Following data acquisition, various preprocessing
steps were executed, including the removal of genes with low counts, conversion of counts
to DGEList format, quality control, and normalization to mitigate batch effects. Subse-
quently, 1656 genes with |LogFC| > 2 were identified as DEGs out of the initial 14,899
genes, based on an adjusted p-value threshold of 0.05 (as depicted in Figure 3). The dataset
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was partitioned into training (75%) and testing (25%) sets, with the latter serving as an
independent dataset to validate the PILC-BSCSO results.
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Figure 4. The convergence behavior of BSCSO and PILC-BSCSO for three microarray datasets.

Table 3. Comparison between BSCSO and PILC-BSCSO in terms of classification accuracy and
number of selected genes.

Dataset Metrics
Accuracy #Genes

BSCSO GA PSO PILC-BSCSO BSCSO GA PSO PILC-BSCSO

Colon

AVG 97.63 91.311 94.35 99.22 8.33 133.6 70.4 15
best 100 93.54 98.38 100 6 113 50 10

worst 93.81 85 83.87 96.9 9 145 89 23
STDEV 2.35 3.349 4.47 1.348 1.966 12.91 15.51 5.244

t-test (p-value) 0.0195 0.0066 0.0519 0.0159 1.2259 × 10−5 0.0022

CNS

AVG 99.34 98.332 99.16 100 33.25 100.5 73.4 16.25
best 100 100 100 100 14 45 54 13

worst 98.49 95 98.333 100 59 144 90 22
STDEV 0.755 2.041 0.914 0 18.76 42.914 13.29 4.0311

t-test (p-value) 0.07198 0.0622 0.0755 0.0479 0.00808 0.00118

Breast

AVG 91.819 91.06 96.2 96.38 11.4 62 58 26.4
best 97.926 95.87 100 100 5 56 52 15

worst 88.7533 84.53 93.81 93.98 16 66 65 40
STDEV 3.808 4.36 2.61 2.5 4.722 4.32 5.09 12.30

t-test (p-value) 0.00097 0.008246 0.6330 0.00730 0.00036 0.00047

Note: ‘#’ represents number of selected genes.
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Table 4. Comparing the performance of the suggested methodology to approaches from the literature.

Methods

High Dimensional Biomedical Datasets

Colon Cancer CNS Breast

|#G| ACC |#G| ACC |#G| ACC

PILC-BSCSO 15 99.22 16.25 100 26.4 96.38
BMSCSO [2] 997.80 93.33 - - - -
mRMR-MBAO [5] 16.11 95.74 21.37 88.57 23.58 89.12
SU-RSHSA [10] 7.59 93.17 13.15 89.36 18.31 80.40
mRMR-DBH [9] 12 97.02 39.75 97.19 14 90.21
IBCFPA [7] 25.90 92.16 25.2 84.82 - -
MIM-MFO [6] 24.25 99.19 17 85.00 22.50 84.11
BCROSAT [1] 20.5 92.31 21.40 82.00 - -
ISFLA [8] 37.1 89.56 41.1 77.46 - -
TOPSIS-Jaya [11] 18.90 97.76 8.7 96.22 - -
IG-MBKH [12] 17.10 96.47 14.70 90.34 - -
mRMR-BCOOT-CSA [13] 8.75 94.75 7 93.22 15 95.54

Note: ‘#’ represents number of selected genes.
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Figure 4 illustrates the convergence behavior of the TCGA-LIHC training dataset com-
prising 1546 DEGs and 317 samples for both BSCSO and PILC-BSCSO. The experimental
results on the test data (104 samples) reveal that PILC-BSCSO outperforms BSCSO in terms
of classification accuracy, achieving an average of 98.87% ± 1.2, compared to BSCSO’s
97.6% ± 3. PILC-BSCSO demonstrates superior efficiency in feature selection, with an
average selection of 8 ± 2.6 genes, in contrast to BSCSO’s average of 73 ± 20.2 genes, for
the achievement of higher classification accuracy.

Figure 5 portrays the expression patterns of the best subset of identified genes, includ-
ing ANGPTL6 [28], HMMR [29], CHST4 [30], COL15A1 [31], and PZP [32], utilizing the
proposed approach. These genes exhibit remarkable classification accuracy and an Area
Under the Curve (AUC) of 100% in the test data.

Furthermore, Kaplan–Meier survival analyses were conducted to evaluate the prog-
nostic potential of these genes. Among the five genes in the subset, HMMR, CHST4, and
COL15A1 emerged as potential independent biomarkers (Figure 7), signifying a robust and
statistically significant association with patient survival in HCC.
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Figure 7. Kaplan–Meier analysis of the survival rates of the high- and low-expression groups of
HMMR, CHST4, and COL15A1.

Figure 8 depicts the tissue-wise expression patterns of the identified best subset
of genes associated with LIHC. From this figure, it can be observed that the identified
subset of five genes (ANGPTL6, HMMR, CHST4, COL15A1, and PZP) has discriminative
gene expression patterns. These genes can potentially serve as diagnostic or prognostic
biomarkers, aiding in the early detection or risk assessment of LIHC.
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4. Discussion

Due to the rapid technological improvement in medical research, a vast volume of
biomedical data is regularly created from various biomedical equipment and investigations
these days. The effective analysis of this biomedical data, such as identifying the key
biological and diagnostic features, is a difficult challenge. Here, a new feature selection
method based on the BSCSO algorithm was proposed. Pinhole-imaging-based learning
strategy and crossover operator are combined with BSCSO to design the PILC-BSCSO
algorithm which is capable of efficiently addressing feature selection problems for high-
dimensional biomedical data. Experimental results on three benchmark datasets reveal that
the suggested PILC-BSCSO-SVM method can achieve a superior classification accuracy
with a lower number of features simultaneously when compared to the 11 most recent
state-of-the-art methods. In the context of HCC analysis, the PILC-BSCSO algorithm
demonstrated outstanding performance. It successfully pinpointed a subset of target genes,
including HMMR, CHST4, and COL15A1, that function as both prognostic and diagnostic
biomarkers. The proposed approach holds promise for enhancing HCC diagnosis and
patient outcome prediction.

While the PILC-BSCSO algorithm shows promise, it is important to acknowledge
potential limitations, including the need for further validation in larger and more diverse
datasets such as single-cell data to ensure its generalizability. Although PILC-BSCSO
demonstrates impressive feature selection and classification accuracy, the algorithm’s
output may lack interpretability, particularly when dealing with a very large number
of genes. Identifying the biological relevance of the selected genes or understanding
the underlying biological mechanisms contributing to high classification accuracy may
require additional post-processing and domain expertise. Enhancing the algorithm’s
interpretability and providing insights into the biological significance of the selected genes
could be an area for further improvement. The robustness of PILC-BSCSO in selecting
biologically informative genes can indeed be a potential concern, as it is for many feature
selection algorithms.

In future work, other transfer functions, such as X-shaped and U-shaped, might be
used to determine how they affect the suggested approach. Additionally, we believe that the
incorporation of Protein–Protein interaction networks will improve the algorithm’s capacity
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for biomarker identification. Furthermore, the suggested PILC-BSCSO may be evaluated to
address various optimization issues, including clustering, task scheduling in fog computing,
image segmentation, sentiment analysis, and more. PILC-BSCSO can be adapted to tackle
clustering tasks by modifying its objective function and fitness evaluation criteria. Instead of
feature selection, the algorithm could be tailored to group similar data points together while
maximizing the dissimilarity between clusters. The algorithm’s optimization capabilities
can help identify meaningful cluster centroids or representative data points, contributing
to improved clustering accuracy and robustness. By defining a suitable objective function,
PILC-BSCSO may be applied to task scheduling in fog computing. The method can
efficiently schedule jobs to fog nodes, minimizing execution time and resource usage
while optimizing overall system performance. In image processing, PILC-BSCSO can
be adapted for image segmentation tasks. The objective function can be designed to
identify optimal segmentation boundaries within an image. The algorithm’s optimization
capabilities can help automate the process of partitioning an image into distinct regions
or objects based on various image attributes, such as intensity, color, or texture. PILC-
BSCSO can contribute to sentiment analysis by optimizing feature selection for sentiment
classification tasks. The algorithm can identify the most informative features from text
or data sources, enhancing the performance of sentiment analysis models. In each of
these applications, the key lies in customizing the objective function, fitness evaluation
criteria, and problem-specific parameters to align with the optimization goals. PILC-
BSCSO’s adaptability and optimization capabilities make it a versatile tool for addressing a
wide range of optimization challenges beyond gene selection, enhancing performance and
efficiency in diverse domains.

In summary, PILC-BSCSO holds the potential to significantly impact the field of
biomedicine by providing an advanced gene selection approach that enhances disease
diagnosis and prognosis, and its versatility extends to broader applications in various
domains, including healthcare, bioinformatics, and beyond.
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