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Almost Global Stability of Nonlinear Switched
Systems With Time-Dependent Switching

Özkan Karabacak , Ayşegül Kıvılcım , and Rafael Wisniewski

Abstract—For a dynamical system, it is known that the
existence of a Lyapunov density implies almost global sta-
bility of an equilibrium. It is then natural to ask whether
the existence of multiple Lyapunov densities for a nonlin-
ear switched system implies almost global stability, in the
same way as the existence of multiple Lyapunov functions
implies global stability for nonlinear switched systems. In
this paper, the answer to this question is shown to be affir-
mative as long as switchings satisfy a dwell time constraint
with an arbitrarily small dwell time. Specifically, as the main
result, we show that a nonlinear switched system with a
minimum dwell time is almost globally stable if there exist
multiple Lyapunov densities that satisfy some compatibility
conditions depending on the value of the minimum dwell
time. This result can also be used to obtain a minimum
dwell time estimate to ensure almost global stability of a
nonlinear switched systems. In particular, the existence of
a common Lyapunov density implies almost global stability
for any arbitrary small minimum dwell time. The results ob-
tained for continuous-time switched systems are based on
some sufficient conditions for the almost global stability of
discrete-time nonautonomous systems. These conditions
are obtained using the duality between Frobenius–Perron
operator and Koopman operator.

Index Terms—Almost global stability, common Lyapunov
density, minimum dwell time, multiple Lyapunov densities,
nonlinear switched systems.

I. INTRODUCTION

THERE exist many examples of dynamical systems (for
example, see [1] and [2]) that are not globally stable but

almost globally stable. For such systems, there is a nonempty set
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ozk@es.aau.dk).

A. Kıvılcım is with the Department of Electronic Systems, Automa-
tion and Control, Aalborg University, 9220 Aalborg, Denmark. She is
also with the Istanbul Aydin University, Department of Software En-
gineering, 34295, Sefakoy-Kucukcekmece, Istanbul, Turkey (e-mail:,
ayk@es.aau.dk).

R. Wisniewski is with the Department of Electronic Systems, Automa-
tion and Control, Aalborg University, 9220 Aalborg, Denmark (e-mail:,
raf@es.aau.dk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2927934

of initial states that do not converge to the origin, but this set is
negligible, as it has zero Lebesgue measure. Almost global sta-
bility, namely, convergence of almost all solutions to an invariant
set, has been first considered by Milnor [3] as a candidate of a
useful notion of an attractor. Almost global stability has proved
to be useful in the systems and control theory after the work of
Rantzer [1]. Rantzer showed that almost global stability of an
equilibrium can be verified by the existence of a density func-
tion, which is now called Lyapunov density by many researchers.
Since then, Lyapunov densities have been used for the analysis
of dynamical systems [4]–[12], for the design of control systems
[13]–[16], [17]–[19] and for safety verification [20].

Two factors can be mentioned that motivates the research on
almost global stability via Lyapunov densities: First, for non-
linear control systems of form ẋ = F (x) + G(x)u with input
u, almost global stability can be characterized as an optimiza-
tion problem that is linear in the design variables, namely the
Lyapunov density ρ(x) and the product ρ̃(x) := ρ(x)u(x) of
the Lyapunov density and the input; whereas, classical state-
feedback controller design via Lyapunov functions may lead
to nonconvex optimization problems [1]. Second, for the cases
where state space is not Euclidean, global stabilization of equi-
libria may not be possible and, therefore, almost global stabi-
lization might be one of the best global properties to expect [21].

On the other hand, an important problem in this field that
retards the use of Lyapunov densities in control applications
should also be mentioned: As opposed to Lyapunov functions,
Lyapunov densities do not directly provide forward-invariant
sets; hence, they do not prevent undesired overshoots in solu-
tions and, therefore, may need to be accompanied by other tools
(such as barrier functions) that rule out such transients [20].

Various extensions of Rantzer’s result on almost global sta-
bility via Lyapunov densities have appeared in the literature. To
mention a few, Lyapunov densities have been considered for dis-
continuous vector fields (switched systems with state-dependent
switching) [22], for smoothly time-varying systems [23], [24]
and for discrete-time nonlinear stochastic systems [25]. How-
ever, to the best of our knowledge, almost global stability of
nonlinear switched systems with time-dependent switching has
not been considered in the literature yet, and is the subject of
study of this paper.

Switched systems with time-dependent switching may arise
as abstractions of switched systems with state-dependent
switching [26, Subsection 1.1.2]. They also model switched
control systems where switching is due to an external system
[27]. Additionally, switched systems where switching rate is
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bounded, for example, due to the speed limit of communication
in networked control systems, can be modeled as switched sys-
tems with time-dependent switching [26]. They can also be used
to characterize the link between information rate and stability,
to design a switching control [27], to control water storage in a
drinking water supply network [28], and to guarantee the finite-
time stability of a position servomechanism system [29] (for
more applications, see the references in [26], [27], and [30]).

As the main results on the global stability of nonlinear
switched systems are formulated in terms of multiple Lyapunov
functions [30], it is natural to investigate the consequences of
the existence of multiple Lyapunov densities for a nonlinear
switched system. Consequently, we pose the following ques-
tion: Does the existence of multiple Lyapunov densities implies
almost global stability of a switched system?

In the sequel, we provide an affirmative answer to this ques-
tion for systems with (arbitrary small) dwell time switching.
Specifically, we provide a sufficient condition for almost global
stability based on multiple Lyapunov densities and a minimum
dwell time (see Theorem 1). This result provides an estima-
tion of the minimum dwell time that guarantees almost global
stability. In particular, if a common Lyapunov density exists,
the switched system is almost globally stable for all values of
τmin > 0 (see Corollary 1).

To prove the above-mentioned results for a continuous-time
switched system, we fix a switching signal leading to a time-
varying system, discretize the time-varying system (with a fixed
but arbitrarily small sampling time) giving rise to a discrete-
time nonautonomous system, and finally lean upon the almost
global stability of the latter. To this end, we obtain sufficient
conditions for almost global stability of discrete-time nonau-
tonomous systems (see Lemma 2), which may be of interest in
its own right. For simplicity, we consider almost global stability
of a common equilibrium, however all results in this paper also
hold when the common equilibrium is replaced by a common
compact invariant set.

The proof of our main result is based on linear transfer opera-
tors, Frobenius–Perron operator, and Koopman operator, which
are used to capture the global dynamics of a system (see [31]–
[33]). This approach was first used for almost global stability by
Vaidya and Mehta in [6], where they give a sufficient condition
for the almost global stability of an invariant set for discrete-
time, autonomous systems with compact state space using a
local attraction assumption. This result is extended in [11] to
systems with noncompact state space without using any local
stability assumption and in [12] to the problem of finite-time
stability. Our results on almost global stability of discrete-time
nonautonomous systems are in the spirit of [6], [11], and [12].
Finally, we point out that similar techniques that relate proper-
ties of discrete-time systems to continuous-time systems have
appeared in the literature, for instance, in [34], for the stability
of sampled-data nonlinear systems.

The outline of this paper is as follows. Almost global sta-
bility of continuous-time nonlinear switched systems is dis-
cussed in Section II, which also contains the main result of
this paper. The proof of the main result is given in Section III.
Section IV contains some remarks on the monotonicity of mul-

tiple Lyapunov densities and on how the presented theory gen-
eralizes some already known linear techniques [35].

Notation: R(Z), R>0(Z>0) and R≥0(Z≥0) denote the set of
all, positive and nonnegative real numbers (integers), respec-
tively. For Rn , the vector space of real n-tuples, ‖ · ‖ denotes
the Euclidean norm and m denotes the Lebesgue measure on
Rn .

∫ · dμ(x) indicates Lebesgue integral with respect to mea-
sure μ, whereas for simplicity Lebesgue integral with respect
to Lebesgue measure m is denoted as

∫ · dx. 0 ∈ Rn denotes
the zero vector. Bε = {x ∈ R | ‖x‖ < ε} is the open ε−ball
around 0 and Bc

ε is the complement of Bε . We say that a
function f : Rn → R is integrable away from 0 meaning that
it is Lebesgue integrable on Bc

ε for all ε > 0. For functions
f, g : Rn → R, f is said to be of the same order as g meaning

that f(x) = O(g(x)), i.e.,
∣
∣
∣ f (x)

g(x)

∣
∣
∣ is bounded as ‖x‖ → ∞.f :

Rn → Rn is said to be nonsingular, if m(f−1(A)) = 0 for every
measurable set A with m(A) = 0. For a set V ⊂ Rn , 1V denotes
the characteristic function of V . For a function f : Rn → Rn ,
Df denotes the Jacobian of f and ∇ · f denotes the divergence
of f . For f : Rn → R, ∇f denotes the gradient of f . For a
matrix A, AT denotes the transpose of A. For symmetric matri-
ces A and B, we use the notation A < B (A ≤ B) to mean that
B − A is positive (semi)definite. Finally, we use the phrases “al-
most all,” “almost every,” and “almost everywhere” in the sense
of Lebesgue measure, namely, the set of points for which the
argument fails is contained in a set of zero Lebesgue measure.

II. ALMOST GLOBAL STABILITY OF SWITCHED SYSTEMS

In this section, we present sufficient conditions for almost
global stability of nonlinear switched systems.

Initially, we state some results on the almost global stability
of autonomous systems using Lyapunov densities, not only for
the sake of completeness but also for their use in showing the
global existence of almost all solutions of switched systems.
Consider the following ordinary differential equation:

ẋ = f(x) (1)

where f : Rn → Rn is continuously differentiable and f(0) =
0. The following proposition can be seen as a modified version
of Rantzer’s theorem for autonomous systems for which almost
all solutions are known to exist for all positive times.

Proposition 1: (Adapted from [11, Th. 4.2]) Suppose that for
almost every x0 ∈ Rn , a forward-complete solution x : R≥0 →
Rn of (1) with x(0) = x0 exists. Assume that there exists a non-
negative, continuously differentiable function ρ : Rn \ {0} →
R satisfying the following condition

ρ(x) is integrable away from 0

∇ · (ρf)(x) > 0 for almost all x ∈ Rn \ {0}.

Then, almost all solutions of (1) converge to 0 as t → ∞.
The following proposition is used to ensure the global exis-

tence of almost all solutions.
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Proposition 2: Assume that there exists a nonnegative, con-
tinuously differentiable function ρ : Rn \ {0} → R satisfying

(1 + ‖f(x)‖)ρ(x) is integrable away from 0

∇ · (ρf)(x) > 0 for almost all x ∈ Rn \ {0}.
Then, for almost every initial state x0 ∈ Rn , a forward-complete
solution x : R≥0 → Rn of (1) with x(0) = x0 exists and con-
verges to 0 as t → ∞.

Proof: Consider the time scaling tnew =∫ t

0 [1 + ‖f (x(s)) ‖] ds, under which the scaled solutions
x(tnew) satisfy the scaled system dx/dtnew = fnew(x), where
fnew(x) := f(x)/(1 + ‖f(x)‖). Solutions of the scaled
vector field fnew exist globally and they produce the same
trajectories as x(t) with the direction of time preserved
(see [36, page 184]). Therefore, it is enough to show the
convergence of almost all solutions of fnew to 0, since the
convergence of trajectories x(t) to a bounded set implies
their existence for all t ∈ R≥0 . This can be done by applying
Proposition 1 with ρnew(x) := (1 + ‖f(x)‖)ρ(x), noting that
∇ · (ρnewfnew)(x) = ∇ · (ρf)(x) > 0. �

Remark 1: Proposition 2 differs from Rantzer’s original the-
orem in that it assumes the integrability of (1 + ‖f(x)‖)ρ(x)
away from 0 instead of the integrability of ‖f(x)‖ρ(x)/‖x‖
away from 0. We prefer the former condition as it implies the
integrability of ρ(x) away from 0, which is used in the proof of
the main theorem for switched systems ahead.

Let us consider a nonlinear switched system given by

ẋ(t) = fσ (t)(x(t)), σ ∈ Sτ , t ∈ [0,∞). (2)

Here, σ : [0,∞) → {1, . . . , N} is called a switching signal that
is a right-continuous, piecewise constant function with finitely
many discontinuities on any finite interval. Sτ denotes the set of
all switching signals satisfying tk − tk−1 ≥ τ, k ∈ Z>0 , where
tk denote the kth discontinuity point of σ (t0 = 0 is assumed)
and τ is called a minimum dwell time. We call each system given
by ẋ = fp(x), for p ∈ {1, 2, . . . , N} a subsystem of (2). We
assume that each subsystem fp : Rn → Rn , p ∈ {1, 2, . . . , N}
is continuously differentiable and share a common equilibrium
at 0, namely fp(0) = 0.

Let us denote the value of σ(t) for t ∈ [tk−1 , tk ) by pk . A
switching signal can then be identified using these values as

σ(t) = ((p1 ,Δt1), (p2 ,Δt2), . . .) (3)

where Δtk = tk − tk−1 ≥ τ is the operation time for the sub-
system fpk

on the kth constant operation of the switched system.
In examples, we will mostly use periodic switching signals,
which we identify by a finite sequence (showing the shortest
repeating pattern) as

σ(t) = ((p1 ,Δt1), . . . , (pn ,Δtn ))

= ((p1 ,Δt1), . . . , (pn ,Δtn ), (p1 ,Δt1), . . .)
(4)

which has a minimum period of Δt1 + · · · + Δtn .
Definition 1: The nonlinear switched system (2) is said to be

almost globally stable for a σ ∈ Sτ if the following condition
holds.

For almost every x0 ∈ Rn , a forward-complete solution
x : R≥0 → Rn of (2) for the switching signal σ and the
initial state x(0) = x0 exists and converges to 0 as t → ∞.

The system (2) is said to be almost globally stable if it is
almost globally stable for every σ ∈ Sτ .

Note that if forward-complete solutions exist for almost all
initial states for each subsystem, then forward-complete solu-
tions of the switched system (2) exist for almost all initial states
when σ ∈ Sτ for some τ > 0.

We are now ready to state our main result, which employs
multiple Lyapunov densities and a dwell time condition to en-
sure almost global stability.

Theorem 1 (Main Result): Consider the switched system
(2). Suppose that for each p ∈ {1, 2, . . . , N}, there exist a
constant κp > 0 and a nonnegative, continuously differentiable
function ρp : Rn \ {0} → R, such that

(1 + ‖fp(x)‖)ρp(x) is integrable away from 0 (5)

∇ · (ρpfp)(x) ≥ κpρp(x) ∀ x ∈ Rn \ {0}. (6)

Suppose also that the functions ρp , p ∈ {1, . . . , N} satisfy the
following compatibility condition:

∀ p,m ∈ {1, . . . , N}, ∃ cpm ∈ R>0 :

ρp(x) ≤ cpm ρm (x) ∀ x ∈ Rn \ {0}. (7)

Then, the system (2) is almost globally stable for any

τ > τmin := min
β1 ,...,βN ∈R> 0

max
p,m∈{1,2,...,N }

ln
(

βp

βm
cpm

)

κp
. (8)

Proof: See Section III.
Remark 2: Once multiple Lyapunov densities satisfying the

conditions (5)–(7) are found, computing τmin is not a difficult
task. This is because the expression of τmin in (8) is equivalent to
the so-called maximum cycle ratio of doubly weighted directed
graphs [37] for which fast algorithms exist [38]. 1 In details, con-
sider the globally coupled directed graph G = {N , E , w1 , w2},
where N := {1, . . . , N} is the set of vertices, E := N ×N is
the set of directed edges, and the weights w1 , w2 : E → R are
defined as w1((p,m)) := ln cpm and w2((p,m)) = κp . Let C
be the set of all cycles in G and define the cycle ratio of a cycle
C = {(p0 , p1), . . . , (pl−1 , pl = p0)} ∈ C of length l as

w(C) =
∑l

n=1 w1((pn−1 , pn ))
∑l

n=1 w2((pn−1 , pn ))
.

The maximum cycle ratio of G is then defined as wmin :=
maxC∈C w(C), which is equal to τmin by [37, Th. 1.1]. In par-
ticular, for bimodal systems, the dwell time condition (8) can be
written as

τ > τmin :=
ln c12 + ln c21

κ1 + κ2
. (9)

Let us consider the case where all Lyapunov densities consid-
ered in Theorem 1 are identical, namely there exists a common

1This also proves that the maximum in (8) is attained.
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Lyapunov density satisfying conditions (5) and (6) and the con-
dition (7) is satisfied for cpm = 1 ∀ p,m. In this case, τmin in
(8) is obtained as zero by choosing β1 = · · · = βN . Hence, we
have the following corollary of Theorem 1 that shows that the
existence of a common Lyapunov density implies almost global
stability of a nonlinear switched system with an arbitrary small
dwell time.

Corollary 1: Consider the switched system (2). Assume that
there exist a constant κ > 0 and a nonnegative, continuously dif-
ferentiable function ρ : Rn \ {0} → R such that the following
conditions are satisfied for all p ∈ {1, 2, . . . , N}:

(1 + ‖fp(x)‖)ρ(x) is integrable away from 0 (10)

∇ · (ρfp)(x) ≥ κρ(x) ∀ x ∈ Rn \ {0}. (11)

Then, the system (2) is almost globally stable for any τ > 0.
Remark 3: It may be possible to generalize Corollary 1 to

the set of arbitrary (nonchattering) switching signals Snonchatt,
containing all signals that have finitely many discontinuities
on finite intervals. Obviously, Corollary 1 applies only to
∪τ >0Sτ � Snonchatt. This is because our proof technique (see
Section III) requires a minimum dwell time for each switching
signal considered. Whether or not, Corollary 1 can be extended
to Snonchatt remains to be an open problem.

We now illustrate some applications of the main result. The
following example shows that a nonlinear switched system with
a common Lyapunov density is almost global stable but may not
exhibits global stability.

Example 1: Consider the switched system (2) with N = 3
and the subsystems given as

f1(x1 , x2) =

(
x2 − x1 + 3x1x2

−x2 − x1 + x2
2 − 2x2

1

)

f2(x1 , x2) =

(
−x2 − x1 + x2

1 − 2x2
2

−x2 + x1 + 3x1x2

)

f3(x1 , x2) =

(
x2 − x1 − x2

1 + 2x2
2

−x2 − x1 − 3x1x2

)

.

Let us consider ρ(x) =
(
x2

1 + x2
2
)−5/2

. Equation (10) is satis-
fied because (1 + ‖fp‖) ρ is of the same order as ‖x‖−3 for
p = 1, 2, 3. Moreover, it can be shown that ∇ · (ρfp) = 3ρ for
p = 1, 2, 3. Therefore, (11) is satisfied for κ = 3. As a result,
by Corollary 1, 0 is almost globally stable.

Fig. 1 exhibits a solution of the system for the following
periodic switching signal:

σ(t) =
(
(1, 0.5), (2, 0.3), (3, 0.2)

)
(12)

with period 1. It is seen in Fig. 1 that the backward solution
(obtained by extending the switched system and the switching
signal backward in time in a trivial way) approaches to a limit
cycle as t → −∞, whereas the forward solution approaches
to 0 as t → ∞. The existence of the unstable limit cycle im-
plies the lack of global stability for the switched system, i.e.,

Fig. 1. Solution of Example 1. The dotted line is for the backward
solution, which approaches to a limit cycle as t → −∞. The solid line is
for the forward solution, which approaches to 0 as t → ∞.

not all initial states lead to convergence of solutions to the
origin.

The following example illustrates an application of
Theorem 1.

Example 2: Consider the switched system (2) with N = 2
and with subsystems

f1(x1 , x2) =

(
−0.1x1 + x2 + 3x1x2

−x1 − 0.1x2 − 2x2
1 + x2

2

)

f2(x1 , x2) =

(
−0.1x1 − 2x2 + 0.5x2

1 − 4x2
2

0.5x1 − 0.1x2 + 1.5x1x2

)

.

Let us consider ρ1(x1 , x2) =
(
x2

1 + x2
2
)−5/2

and ρ2(x1 , x2) =
(
(0.5x1)2 + x2

2
)−5/2

. Equation (5) is satisfied because
(1 + ‖fp‖) ρp is of the same order as ‖x‖−3 for p = 1, 2.
Moreover, it can be shown that ∇ · (ρpfp) = 0.3ρp for p =
1, 2. Therefore, (6) is satisfied for κ1 = κ2 = 0.3. Equation
(7) is also satisfied since ρ1(x) ≤ c12ρ2(x), for c12 = 1 and
ρ2(x) ≤ c21ρ1(x), for c21 = 25 . Applying Theorem 1 with for-
mula (9), we obtain that the origin is almost globally stable for all
switching signals with dwell time τ > τmin = ln(25 )

0.6 = 5.7762.
Fig. 2 depicts a solution of the switched system for a periodic
switching signal that does not satisfies the dwell time condition
τ > 5.7762.

III. PROOF OF THE MAIN RESULT

The proof of the main result (see Theorem 1) is organized
as follows: We first state a sufficient condition for the almost
global stability of a discrete-time nonautonomous system (see
Lemma 2). Then, the almost global stability of the continuous-
time switched system (2) is characterized by the almost global
stability of the discretizations of (2) for fixed switching signals
(see Lemma 3). These lemmas, with the help of a monotonicity
property of Lyapunov densities (see Lemma 5) result in a less
conservative sufficient condition for the almost global stability
of (2) (see Lemma 6), on which the proof of Theorem 1 is based.
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Fig. 2. Solution of Example 2 for the switching signal σ(t) =
((1, 4.7), (2, 1.7)) that does not satisfy the dwell time condition τ >
5.7762. The solution approaches to a limit cycle.

A. Preliminaries for Transfer Operators

Let M(Rn \ {0}) denote the linear vector space of equiv-
alence classes of measurable functions from Rn \ {0} to R,
where two functions are assumed to be equal if they agree on a set
of full Lebesgue measure. Therefore, all statements for the func-
tions in M(Rn \ {0}) should be understood to hold for almost
all points in Rn \ {0}. For a nonsingular map f : Rn → Rn

with f(0) = 0, let us denote the Frobenius–Perron operator and
the Koopman operator for f restricted to Rn \ {0} as P and U ,
respectively. Recall that P : M(Rn \ {0}) → M(Rn \ {0})
provides information about the evolution of densities (possibly
with infinite mass) and is uniquely defined via

∫

V

Pρdx =
∫

f −1 (V )
ρdx (13)

(see [39, p.238]). P is a positive operator, i.e., ρ > 0 ⇒ Pρ > 0,
and it can be written explicitly as

Pρ(x) = ρ(f−1(x)) det
(
Df−1) (14)

whenever f is differentiable and invertible (see [31,
Remark 3.2.4]). The Koopman operator U : M(Rn \ {0}) →
M(Rn \ {0}) provides the evolution of observables (possibly
essentially unbounded) and is defined as Ug(x) = g (f(x)). We
define 〈g, ρ〉 :=

∫
Rn gdμρ(x), where μρ(V ) :=

∫
V ρdx. Dual-

ity between P and U is expressed by 〈Ug, ρ〉 = 〈g, Pρ〉. Note
that we allow both sides of the duality equation to be infinite.
For more details on transfer operators, see [31] and [40].

B. Almost Global Stability of Discrete-Time
Nonautonomous Systems

Consider the discrete-time nonautonomous system

x(k + 1) = fk (x(k)) , k ∈ Z≥0 (15)

where fk : Rn → Rn , k ∈ Z≥0 , where fk s are nonsingular
maps. We assume that 0 is a common fixed point for all maps;
namely, fk (0) = 0, k ∈ Z≥0 . Denote the solution of (15) for an

initial state x(0) = x0 ∈ Rn by φk (x0) = fk−1 ◦ · · · ◦ f0(x0).
We say that the system (15) is almost globally stable if
limk→∞ φk (x) = 0 for almost every x ∈ Rn .

For maps fk , k ∈ Z≥0 , let us denote the Frobenius–Perron
operator and the Koopman operator for fk restricted to Rn \
{0} as Pk and Uk , respectively. Similarly, Frobenius–Perron
operators and Koopman operators for the solution maps φk ,
k ∈ Z>0 restricted to Rn \ {0} can be written as

P→k := Pk−1 ◦ · · · ◦ P0

U→k := U0 ◦ · · · ◦ Uk−1

which are dual to each other, namely 〈g, P→kρ〉 = 〈U→k g, ρ〉.
We set P→0 and U→0 to be the identity operators.

The following result is a direct consequence of the Borel–
Cantelli lemma.

Lemma 1: Equation (15) is almost globally stable if there
exists a ρ ∈ M(Rn \ {0}) such that ρ(x) > 0 and ρ̄ :=∑∞

k=0 P→kρ is integrable away from 0.2

Proof: For an ε > 0, consider the events E
(ε)
k = {x ∈ Rn |

U→k1B c
ε
(x) = 1} = f−1

0 · · · f−1
k−1(B

c
ε), where Bc

ε is the com-

plement of the ε−ball of 0. Define E(ε) := lim supk→∞ E
(ε)
k =

∩∞
k=0 ∪∞

k ′=k E
(ε)
k ′ , which is the set of all initial states for which

the solution of (15) visits Bc
ε infinitely often. It suffices to show

that m(E(ε)) = 0 for any ε > 0. This is because the set∪kE(εk )

for a sequence εk → 0 is a set of Lebesque measure zero and its
complement contains the set of all initial state that converge
to 0. Consider the measure μρ(V ) :=

∫
V ρdx, with respect

to which m is absolutely continuous3 (since ρ(x) > 0), i.e.,
m(W ) = 0 whenever μρ(W ) = 0. Therefore, we only need to

show that μρ(E(ε)) = 0. Note that μρ(E
(ε)
k ) = 〈U→k1B c

ε
, ρ〉 =

〈1B c
ε
, P→kρ〉. Since ρ̄ is integrable away from 0, we have

〈1B c
ε
, ρ̄〉 < ∞, and

∞∑

k=0

μρ(E
(ε)
k ) =

∞∑

k=0

〈1B c
ε
, P→kρ〉 = 〈1B c

ε
, ρ̄〉 < ∞.

By Borel–Cantelli lemma, this implies μρ(E(ε)) = 0, and there-
fore, m(E(ε)) = 0 for all ε > 0. �

Note that if the conditions in Lemma 1 are satisfied, then ρ is
also integrable away from 0. This is because ρ ≤ ρ̄ due to the
positivity of Pk , k ∈ Z≥0 .

The following lemma can be seen as the discrete-time coun-
terpart of Theorem 1.

Lemma 2: Equation (15) is almost globally stable if there
exist a positive constant α < 1 and a sequence of positive func-
tions ρk ∈ M(Rn \ {0}), k ∈ Z≥0 dominated by a function
ρmax ∈ M(Rn \ {0}), i.e., ρk ≤ ρmax , k ∈ Z≥0 , such that the
following statements hold:

ρmax is integrable away from 0, and
Pkρk ≤ αρk+1 for all k ∈ Z≥0 ,

where Pk denotes the Frobenius–Perron operator of fk restricted
to Rn \ {0} for each k ∈ Z≥0 .

2Note that ρ̄ is well defined as a function from Rn \ {0} to R ∪ {∞}.
3In fact, μρ and m are equivalent, i.e., they have the same measure zero set.

This is because μρ is absolute continuous with respect to m by its definition.
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Proof: Define ρ̄ :=
∑∞

k=0 P→kρ0 . Note that Pkρk < αρk+1
implies Pk+1Pkρk ≤ Pk+1αρk+1 ≤ α2ρk+2 due to the posi-
tivity of the Frobenius–Perron operator. Iterative application of
this gives

ρ̄ ≤ ρ0 + αρ1 + α2ρ2 + · · · ≤ ρmax
1

1 − α

which implies that ρ̄ is integrable away from 0. Therefore,
Lemma 1 for ρ = ρ0 implies the result. �

C. Discretizations of (2) for a Switching Signal

We assume that for any σ ∈ Sτ , almost all solutions of (2)
exist for all t > 0. For a fixed σ ∈ Sτ , we consider the time ΔT
maps Φ(ΔT )

i , i ∈ N which map the states at time i · ΔT to the
states at time (i + 1) · ΔT under the dynamics of (2). This gives
rise to a discrete-time nonautonomous system

x(k + 1) = Φ(ΔT )
k (x(k)) , k ∈ Z≥0 (16)

which produces solutions that are discretizations of the
continuous-time trajectories of (2). Note that the system (16) for
σ ∈ Sτ is a discrete-time nonautonomous system in the form of
(15), with the only difference being that the maps in (16) are de-
fined almost everywhere. Nevertheless, Lemma 2 applies to (16)
as the measurable functions and the Frobenius–Perron operators
in this lemma are defined up to a set of measure zero.

Lemma 3: Assume that almost all solutions of (2) exist for
σ ∈ Sτ . Then, the switched system (2) is almost globally stable
for σ ∈ Sτ if and only if its discretization (16) for σ is almost
globally stable for all sufficiently small ΔT > 0.

Proof: The necessity part of the proof is trivial. To show the
sufficiency, let us choose a sequence of sufficiently small num-
bers {ΔTi}i∈Z> 0 → 0 such that the discretization (16) with
sampling time ΔTi is almost globally stable for all i ∈ Z>0 .
In other words, for each i ∈ Z>0 , there exists a set Ni of zero
Lebesgue measure such that all initial points in Rn \ Ni con-
verge to 0 for the discretization (16) with sampling time ΔTi .
Set N := ∪iNi , which has zero Lebesgue measure. It is enough
to show that a solution of (2), say x(t), for a given σ ∈ Sτ

and an initial state x(0) = x0 ∈ Rn \ N converges to 0 if its
discretization x(kΔTi), namely the solution of (16) with sam-
pling time ΔTi for x(0) = x0 , converges to 0 for all i ∈ Z>0 .
We show this by contradiction as follows: Let us assume that
limk→∞ x(kΔTi) = 0 for all i ∈ Z>0 and limt→∞ x(t) �= 0.
The second assumption implies that there exists ε > 0 such
that for each time T , there exists a larger time T ′(T ) such
that x(T ′(T )) ∈ Bc

ε , whereas the first assumption implies that
there exists k1 ∈ Z≥0 such that the sequence x(kΔT1) is
contained in Bc

ε/2 for all k ≥ k1 . Hence, by the continuity of
x(t) with respect to t, we can choose an increasing sequence
of time instants {tk}k∈Z≥0 such that ‖x(t0)‖ = ε/2 where
t0 > k1ΔT1 , ‖x(tk )‖ = ε for all odd ks and ‖x(tk )‖ = ε/2 for
all even ks. This can be done as follows: Set k = k1 , consider
x(kΔT1) ∈ Bε/2 and x(T ′(kΔT1)) ∈ Bc

ε , and by continuity
choose t0 , t1 ∈ (kΔT1 , T

′(kΔT1)] such that ‖x(t0)‖ = ε/2
and ‖x(t1)‖ = ε (see Fig. 3). Repeat this process for k = k2
satisfying k2ΔT1 > t1 to obtain t2 and t3 and so on. By the

Fig. 3. Illustration for the proof of Lemma 3.

continuous differentiability of fps, there exists a common local
Lipschitz constant L on Bε valid for all fps. Consid-
ering x(tk+1) = x(tk ) +

∫ tk + 1

tk
fp(x(s))ds for an even k,

and applying Gronwall inequality, we obtain ‖x(tk+1)‖ ≤
‖x(tk )‖eL(tk + 1 −tk ) . Then, we have lim infk (tk+1 − tk ) ≥
ln(2)

L > 0. Hence, one can choose a sufficiently small ΔTj such
that x(kΔTj ) visits Bε \ Bε/2 infinitely often, which contra-
dicts limk→∞ x(kΔTj ) = 0. �

D. Monotonicity of the Lyapunov Density

We now state some technical lemmas that provide the re-
quired link between the properties of Lyapunov densities for
continuous-time and discrete-time cases.

Lemma 4 (see [1]): Let D ⊂ Rn be open and f : D → Rn ,
ρ : D → R be continuously differentiable functions with ρ be-
ing integrable. Let φt denote the solution map of ẋ = f(x). For
a measurable set Z, assume that φs(Z) = {φs(x)|x ∈ Z} is a
subset of D for all s between 0 and t. Then, we have
∫

φt (Z )
ρ(x)dx −

∫

Z

ρ(x)dx =
∫ t

0

∫

φs (Z )
[∇ · (fρ)](x)dxds.

Lemma 5: For a continuously differentiable vector field f :
Rn → Rn with f(0) = 0, suppose that almost all solutions of
ẋ = f(x) exist for all t > 0. Assume that there exist a constant
κ > 0 and a nonnegative, continuously differentiable function
ρ : Rn \ {0} → R such that the following statements hold.

1) ρ(x) is integrable away from 0.
2) ∇ · (ρf) ≥ κρ.

Then, for all T > 0

P (T )ρ ≤ e−κTρ

where P (T ) is the Frobenius–Perron operator of the time T
solution map of ẋ = f(x).

Proof: Let T > 0 and XT be the set of initial states for
which the solution of ẋ = f(x) exists for t ∈ [0, T ]. XT is an
open subset of Rn [41, Th. 3.5] and by assumption, Rn \ XT

is a zero measure set. Hence, it suffices to show that P (T )ρ ≤
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e−κTρ on XT \ {0}. Let Z be an arbitrary compact subset in
XT \ {0} and φ(t, x) = φt(x) denote the flow map generated
by the vector field f . The set φ([0, T ], Z) is compact due to
the continuity of φ(t, x) in both time and space variables. Thus,
{0} and φ([0, T ], Z) are disjoint closed subsets of Rn . By the
normality of Rn , there exist a pair of disjoint open sets U and V
such that {0} ⊂ U, φ([0, T ], Z) ⊂ V. Therefore, ρ is integrable
on V and Lemma 4 for D = V implies
∫

φT (Z )
ρ(z)dz −

∫

Z

ρ(z)dz =
∫ T

0

∫

φs (Z )
[∇ · (fρ)](z)dzds.

(17)
Using the Frobenius-Perron operator P (−s) for the map φ−s :=
(φs)−1 for s ∈ [0, T ] and applying ∇ · (fρ)(x) ≥ κρ(x), we
obtain
∫

Z

P (−T )ρ(x)dx −
∫

Z

ρ(x)dx ≥
∫ T

0

∫

Z

κP (−s)ρ(x)dxds.

(18)

Since ∇ · (fρ)(x) ≥ κρ(x) > 0, applying Lemma 4 again for
t = s, where 0 ≤ s ≤ T, we obtain

∫

Z

P (−s)ρ(x)dx >

∫

Z

ρ(x)dx. (19)

(18) and (19) imply
∫

Z

P (−T )ρ(x)dx >

∫

Z

(1 + κT )ρ(x)dxds.

Finally, we have P (−T )ρ(x) > (1 + κT )ρ(x), since Z is an
arbitrary compact subset in X \ {0}. By using the positivity
of the Frobenius-Perron operator, we obtain that P (T )ρ(x) <

1
(1+κT ) ρ(x). Dividing the interval [0, T ], into equal pieces,

Δt = T
n , we obtain P (Δt)ρ(x) < 1

(1+ κ T
n )

ρ(x). Then, for all

n ∈ Z>0

P (T )ρ(x) =
(
P (Δt))n

ρ(x) <
1

(1 + κT
n )n

ρ(x).

Taking the limit as n → ∞, we get P (T )ρ(x) ≤ e−κT ρ(x). �

E. Sufficient Condition via Frobenius–Perron Operators

The proof of Theorem 1 relies on a less-conservative lemma
stated as follows.

Lemma 6: Consider the switched system (2). Assume that
there exist constants τmin > 0 and κp > 0, p ∈ {1, 2, . . . , N}
and nonnegative, continuously differentiable functions ρp :
Rn \ {0} → R, p ∈ {1, 2, . . . , N} such that the following con-
ditions are satisfied for all p,m ∈ {1, 2, . . . , N}:

(1 + ‖fp(x)‖)ρp(x) is integrable away from 0 (20)

∇ · (ρpfp)(x) ≥ κpρp(x) ∀ x ∈ Rn \ {0} (21)

P (τm in )
p ρp(x) ≤ ρm (x) ∀ x ∈ Rn \ {0} (22)

where P (t)
p is the Frobenius–Perron operator of the time t map

for the subsystem ẋ = fp(x). Then, the system (2) is almost
globally stable for any τ > τmin .

Proof: Proposition 2 together with (20) and (21) implies
that for each subsystem ẋ = fp(x), p = 1, 2, . . . , N, almost all
solutions exist for all t ≥ 0. Therefore, for the switched system
(2) almost all solutions exist for all t ≥ 0. To guarantee that
almost all solutions converge to 0, in view of Lemma 3, we show
that almost all solutions converge to 0 for the discretization (16)
for all sufficiently small ΔT . This can be done by proving that
the assumptions in Lemma 2 are satisfied for (16) for a sequence
of density function labeled as

(νk )k∈Z> 0 =
(
ν

(1)
1 , . . . , ν

(K 1 )
1 , ν

(1)
2 , . . . , ν

(K 2 )
2 , ν

(1)
3 , . . .

)
.

Here, Ki is the number of sampling instants in the interval
[ti−1 , ti) (see Fig. 4).

Without loss of generality, we assume that the switching in-
stants satisfy ti − ti−1 < 2τ for all i ∈ Z≥0 , since otherwise
we could split the subsystem operation interval [ti−1 , ti) into
pieces of length greater than or equal to τ by adding dummy
switching instants in this interval that represent switchings from
the subsystem fpi

to the same subsystem fpi
. This results in an

upper bound on Kis as Ki ≤ Kmax := 2τ/ΔT . Note that the
first sampling instant in the interval [ti−1 , ti) is K̄i−1ΔT , where
K̄i = K1 + · · · + Ki for all i ∈ Z>0 and K̄0 = 0 (see Fig. 4).
We define ν

(j )
i recursively as follows:

1) ν
(1)
i = P (K̄ i−1 ΔT −ti−1 )

pi ρpi
,

2) ν
(j+1)
i = P (ΔT −Δτ /Ki )

pi ν
(j )
i , for j = 1, . . . , Ki − 1,

where Δτ := τ − τmin . Note that recursive application of the
above-mentioned yields

ν
(Ki )
i = P (Δti −Δτ +Δτ /Ki −(ti −(K̄ i −1)ΔT ))

pi
ρpi

. (23)

Equation (20) implies that each νk is integrable away from
0. [42, Th. 1] implies ρk (x) > 0.4 Hence, positivity of the
Frobenius–Perron operator implies that νk > 0. It remains to
show that there exists α < 1 such that for all k, Pkνk ≤ ανk+1
almost everywhere, where Pk is the Frobenius–Perron operator
of the map Φ(ΔT )

k . We assume that ΔT is sufficiently small

such that Φ(ΔT )
k either consists of a time ΔT map of a sub-

system fp or is a composition of two maps, a ΔT1 map of a
subsystem fp and a ΔT2 map of the next subsystem fm , where
ΔT1 + ΔT2 = ΔT . In particular, for k not equal to any K̄m ,
Φ(ΔT )

k consists of one time ΔT map (see Fig. 4) and from
Lemma 5, we have

Pkνk = P (ΔT )
pi

ν
(j )
i ≤ P (Δτ /Ki )

pi
ν

(j+1)
i ≤ e−κp i

Δτ /Ki ν
(j+1)
i

≤ ανk+1

where i is such that [(k − 1)ΔT, kΔT ) ⊂ [ti−1 , ti), j is such
that k = K̄i−1 + j and α := e−(minp κp )Δτ /Km a x . For k = K̄i

for some i, Φ(ΔT )
k consists of two maps in general, as explained

earlier, in particular with ΔT1 = ti − (K̄i − 1)ΔT and ΔT2 =

4The requirement of the existence of all solutions in the proof of [42, Th. 1]
can be replaced by the weaker requirement that almost all solutions exists for
t > 0.
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Fig. 4. Illustration for the proof of Lemma 6.

K̄iΔT − ti . Using (23), we have

Pkνk = P (ΔT2 )
pi + 1

P (ΔT1 )
pi

ν
(Ki )
i

= P (K̄ i ΔT −ti )
pi + 1

P (Δti −Δτ )
pi

P (Δτ /Ki )
pi

ρpi
.

Using Δti − Δτ ≥ τmin and invoking Lemma 5 for the last
Frobenius–Perron operator above, we get

Pkνk ≤ P (K̄ i ΔT −ti )
pi + 1

P (τm in )
pi

e−κp i
(Δτ /Ki )ρpi

≤ P (K̄ i ΔT −ti )
pi + 1

P (τm in )
pi

αρpi
.

Finally, (22) implies Pkνk ≤ P (K̄ i ΔT −ti )
pi + 1 αρpi + 1 = αν

(1)
i+1 =

ανk+1 . �

F. Proof of Theorem 1

Existence of almost all solutions of the switched system
follows as in the proof of Lemma 6. Assume that condi-
tions (5)–(7) are satisfied for densities ρ∗p , p ∈ {1, . . . , N}.
Equation (5) implies that ρ∗ps are integrable away from 0.
Let β∗

p , p ∈ {1, . . . , N} be the numbers for which the min-
imum in (8) is attained (the minimum is attained by [37,
Th. 1.1]). Define ρ̃p := β∗

pρ
∗
p for p ∈ {1, . . . , N}. Equation (7)

implies
β ∗

p

β ∗
m

cpm ≥ ρ̃p

ρ̃m
, and (8) implies τmin ≥

ln
(

β ∗
p

β ∗
m

cp m

)

κp
≥

ln
(

ρ̃ p
ρ̃ m

)

κp
, which leads to e−κp τm in ρ̃p ≤ ρ̃m . Hence, by Lemma 5,

P (τm in )
p ρ̃p ≤ e−κτm in ρ̃p ≤ ρ̃m , and the proof follows by apply-

ing Lemma 6 for densities ρ̃p , p ∈ {1, . . . , N}.

IV. SOME REMARKS

We now remark on the monotonicity of multiple Lyapunov
densities and on the generality of Lemma 6.

Fig. 5. Change of integrals of densities with time.

A. Monotonicity of Lyapunov Densities

Values of multiple Lyapunov functions decrease with time
(along solutions) monotonically on each operating interval and
from one switching instant to the next, allowing increases at
switching instants. As an analogue to this, integrals of multi-
ple Lyapunov densities increase with time (over a set of states)
on each operating interval and from one switching instant to
the next, allowing decreases at switching instants (see Fig. 5).
To be precise, assume that the switched system operates ini-
tially with the subsystem fpk

on the interval [tk−1 , tk ) and then
switches to the subsystem fpk + 1 at the switching instant tk .
Recall that μρ(V ) :=

∫
V ρdx. Equation (21) and Lemma 5 im-

ply that P (t)
pk ρpk

< ρpk
for t > 0. Integrating both sides over

φt(V ), where V is a measurable set of states and φt is the time
t solution map of the subsystem fp , we get

∫
φt (V ) P (t)

pk ρpk
dx <

∫
φt (V ) ρpk

dx, which implies that
∫

V ρpk
dx <

∫
φt (V ) ρpk

dx. As
a result, μρp k

(V ) increases on the interval [tk−1 , tk ). On the
other hand, since tk − tk−1 > τmin , we have

P (tk −tk −1 )
pk

ρpk
= P (τm in )

pk
P (tk −tk −1 −τm in )

pk
ρpk

< P (τm in )
pk

ρpk
≤ ρpk + 1
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where the first inequality follows from the positivity of
the Frobenius–Perron operator and the second inequality
follows from (22). Integrating both sides of the inequal-
ity P (tk −tk −1 )

pk ρpk
< ρpk + 1 over Vtk

:= φtk −tk −1 (Vtk −1 ) for

a measurable set Vtk −1 , we have
∫

Vt k
P (tk −tk −1 )

pk ρpk
dx <

∫
Vt k

ρpk + 1 dx, which implies
∫

Vt k −1
ρpk

dx <
∫

Vt k
ρpk + 1 dx.

Therefore, we obtain μρp k
(Vtk −1 ) < μρp k + 1

(Vtk
) meaning that

integrals of densities (μρσ ( t ) ) increase with time from one
switching instant to the next, which is depicted in Fig. 5.

B. Special Case: Linear Switched Systems

For linear switched systems with stable subsystems, Lemma 6
generalizes an LMI condition based on multiple quadratic Lya-
punov functions [35]. Consider

ẋ(t) = Aσ (t)x(t), σ ∈ Sτ , t ∈ [0,∞) (24)

where Aps are Hurwitz matrices. The sufficient condition ob-
tained in [35] for the exponential stability of (24) is that
there exist τmin < τ and positive definite, symmetric matrices
P1 , . . . , PN such that

AT
pPp + PpAp < 0, p ∈ {1, . . . , N} (25)

eAT
p τminPm eAp τmin < Pp, p,m ∈ {1, . . . , N}. (26)

Let us consider densities for each subsystem as

ρp = (xTPpx)−γ (27)

where Pps are n × n positive definite symmetric matrices and
γ ≥ 2 is sufficiently large. We want to show that for this partic-
ular choice of densities, Lemma 6 generalizes conditions (25)
and (26). The integrability condition (20) in Lemma 6 is sat-
isfied since ‖fp(x)‖ρp(x) = ‖Apx‖(xTPpx)−γ is of the same
order as ‖x‖−(2γ−1) ≤ ‖x‖−3 . In order to see that (25) implies
(21), observe that (25) implies

∃ε > 0 : xT
(
AT

pPp + PpAp

)
x ≤ −εxTPpx. (28)

Set γ := κp −trace(Ap )
ε , which is positive, because trace(Ap) < 0

by the stability of subsystems. Multiplying both sides of (28) by
−γ

(
xTPpx

)−γ−1
, we get

−γ(xTPpx)−γ−1xT
(
AT

pPp +PpAp

)
x+(xTPpx)−γ trace(Ap)

≥ κp(xTPpx)−γ .

which is equivalent to (21) under (27), in view of ∇ · (ρpfp) =
∇ρpfp + ρp∇ · fp , where fp = Apx and ∇ · fp = trace(Ap).
Note that γ can be made arbitrary large as ε in (28) can be
chosen arbitrarily small, therefore the integrability condition
is not violated. Now, assume that (26) is satisfied for some
τmin < τ. Then, there exists β ∈ (0, 1) arbitrarily close to 1
such that

xTeAT
p τm in Pm eAp τm in x ≤ βxTPpx. (29)

Set γ := −trace(Ap )τm in
ln β . Then, (29) implies

xTeAT
p τm in Pm eAp τm in x ≤ e

trace(A p ) τ m in
γ xTPpx. (30)

Applying the state transformation x = e−Ap τm in x̂ and taking to
the power −γ, we get
(
x̂Te−AT

p τm in Ppe
−Ap τm in x̂

)−γ

det(e−Ap τm in ) ≤ (
x̂TPm x̂

)−γ

which is equivalent to (22) under (27), in view of (14). Note
that γ can be made arbitrary large by choosing β sufficiently
close to one, therefore γs in the aforementioned discussion can
be chosen identically.

V. CONCLUSION

We have derived sufficient conditions for the almost global
stability of nonlinear switched systems with time-dependent
switching. Our method is based on multiple Lyapunov densi-
ties and can be seen as the analogue of the multiple Lyapunov
function technique, for the framework of almost global stability.

After this paper, new directions in the field of almost global
stability may open up. First, the use of Lyapunov densities for the
verification of temporal properties, such as safety, reachability,
eventuality, and avoidance, studied in [20], can be considered
for switched nonlinear systems. Second, following the ideas
presented in [43] and [44] for the graph-based estimations of
the average dwell time, the techniques in this paper can be used
to obtain graph-based estimations of the average dwell time for
the almost global stability of nonlinear switched systems.
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