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Abstract: Effective fault detection, classification, and localization are vital for smart grid self-healing
and fault mitigation. Deep learning has the capability to autonomously extract fault characteristics
and discern fault categories from the three-phase raw of voltage and current signals. With the
rise of distributed generators, conventional relaying devices face challenges in managing dynamic
fault currents. Various deep neural network algorithms have been proposed for fault detection,
classification, and location. This study introduces innovative fault detection methods using Artificial
Neural Networks (ANNs) and one-dimension Convolution Neural Networks (1D-CNNs). Leveraging
sensor data such as voltage and current measurements, our approach outperforms contemporary
methods in terms of accuracy and efficiency. Results in the IEEE 6-bus system showcase impressive
accuracy rates: 99.99%, 99.98% for identifying faulty lines, 99.75%, 99.99% for fault classification, and
98.25%, 96.85% for fault location for ANN and 1D-CNN, respectively. Deep learning emerges as a
promising tool for enhancing fault detection and classification within smart grids, offering significant
performance improvements.

Keywords: smart grid (SG); fault classification and detection; deep neural networks; ANN; CNN

1. Introduction

Smart Grids (SG) integrate intelligent communication facilities and interconnected
devices to control and monitor energy demand, enhancing power supply stability and con-
tinuity [1]. Smart grids provide benefits such as demand management, network reliability,
fault/outage detection, energy recovery, and grid stability through balancing production
and consumption [2]. Distributed Generators (DGs) represented by renewable energy
sources are a growing solution for meeting increasing energy demand. They offer numer-
ous advantages, including enhanced power generation efficiency, decreased environmental
pollution, minimized transmission line losses, and improved voltage profile [3]. Trans-
mission line protection involves fault detection, classification, and location determination,
with early detection being crucial for minimizing damage and ensuring uninterrupted
power supply. Fault classification and detection in transmission lines identifies fault types,
enabling efficient maintenance processes and minimizing downtime in addition to isolating
the faulty zone [4,5].

Most of the prior research has concentrated on the development of algorithms that
enhance the accuracy and efficiency of fault detection and classification in power systems.
These studies have primarily utilized signal processing techniques as well as machine/deep
learning approaches. Important features can be obtained from direct measurements, such
as RMS values, voltages, or currents, as well as from transformed signals, such as wavelets,
Fourier transform, and others. However, the direct measurements have certain limitations
in terms of accuracy during the initial post-fault cycles and their susceptibility to minor
variations (outliers) in power quality during normal operation. Conversely, transformed
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signals suffer from a delay in the processing time. Despite the success of utilizing trans-
formed signals, they suffer from significant time delay, which can be crucial in certain
training operations, particularly real-time training operations. There are many methods to
collect data from given networks, such as Power Measurement Unit (PMU) and Supervisory
Control and Data Acquisition (SCADA). The primary objective of a SCADA system is to
collect real-time data from remote locations and present operators with a graphical interface
for monitoring and controlling processes. PMUs facilitate the detection of Frequency Dis-
turbance Events (FDEs) by measuring synchronized phasors in real time, which is essential
for fault classification and detection that rely on voltage/current variations and FDEs [6–9].

The measurement of synchro phasors by PMUs plays a significant role in dynami-
cally monitoring transient processes within energy supply systems, making a valuable
contribution in this regard. The integration of PMUs in power systems greatly enhances
the opportunities for monitoring and analyzing the dynamics of the power system [10–12].
Compared to traditional SCADA measurements, PMUs have a higher sampling rate, allow-
ing for signals to be collected at up to 60 samples per second and FDEs to be captured with
higher precision and speed seconds [13]. This is attributed to the higher sampling rate of
PMUs, which typically ranges from 30 to 120 samples per second, surpassing the sampling
rate of traditional SCADA measurements taken at intervals of 2 to 4 s [10–12,14]. Despite
the fact that there are many types of faults, such as unsymmetrical faults (L-G,LL-G,LL)
and symmetrical faults (LLL-LLLG) [15], deep learning algorithms can detect fault type,
identify fault location and determine faulty parts, learn incipient failure and their causes,
and predict the pattern of faults. Fault detection, classification, and location techniques can
be either data-driven or model-driven, as noted in [16,17].

Data-driven techniques use data mining and machine learning algorithms to ana-
lyze large amounts of data to detect and classify faults. Model-driven techniques use
mathematical models of the power system to detect and locate faults. The selection of the
appropriate technique depends on the specific application and the available data, as each
technique comes with its own set of advantages and disadvantages. The smart grid utilizes
advanced communication and information technologies to improve reliability, flexibility,
and efficiency, but it is susceptible to faults that can lead to power outages. Fault detection,
classification, and localization are critical tasks in smart grid maintenance, allowing for
quick fault identification and power restoration.

Data-driven approaches, such as machine learning-based techniques, are useful for
detecting faults in highly nonlinear systems, as they are not dependent on system struc-
ture [7,18]. With the rapid advancements in deep learning and parallel computing hardware,
data-driven methods have emerged as highly promising solutions for real-time fault diagno-
sis. Furthermore, data-driven algorithms demonstrate strong noise resistance capabilities,
making them particularly well-suited for tackling complex classification problems. Fault
detection and classification tasks have demonstrated the potential of Deep Neural Net-
works (DNNs), including Artificial Neural Networks (ANNs) and Convolutional Neural
Networks (CNNs) [19–21].

In recent years, there has been a notable increase in the complexity of Artificial Neural
Network (ANN) structures, with various architectures being designed to cater to different
application scenarios. The fault detection capabilities of ANN-based methods are advanta-
geous, as they do not rely on a pre-existing knowledge base. This allows them to quickly
and precisely detect, locate, and classify faults within the power system [21,22]. CNNs
have been used for fault classification, and they can be combined with other techniques,
such as Discrete Wavelet Transform (DWT), to develop fault classification approaches [19].

CNNs are commonly used for classification and computer vision tasks [23]. Deep
learning algorithms can be trained on labeled fault data to automatically detect, classify,
and locate faults in the smart grid in real time [24–26]. ANNs are suitable for handling
various data types, while CNNs are ideal for image-based data [24,27]. These algorithms
have gained significant usage in fault detection and diagnosis tasks across different systems,
such as power distribution grids, transmission lines, and photovoltaic modules. The main
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goal of these approaches is to create an artificial neural network system that can rapidly
identify and classify different types of faults in transmission lines as soon as they occur.
ANNs and CNNs can diagnose faults in the smart grid in real time, outputting the fault
diagnosis, including the fault type and location, enabling operators to take the necessary
actions. The use of these models has the potential to enhance the reliability and efficiency
of power systems, minimizing downtime and improving customer satisfaction. A study
introduced a deep neural network (ANN and CNN)-based approach for detecting and
isolating faults in microgrids without the need to shut down the entire system. These
algorithms have the potential to improve the reliability and efficiency of smart grids [28–30].
The algorithms used current and voltage measurements, which were pre-processed to detect
characteristic changes in current and voltage signals caused by faults in the network.

The proposed model’s Deep Neural Network (DNN) algorithm [31] has the capability
fto detect faults and determine fault location in medium or low voltage in transmission
systems as well as distribute systems. The aim of the proposed data-driven model is
to precisely identify the Faulty Line Identifier (FLI), Fault Class Types (FCT), and Fault
Locations Estimator (FLE) in smart grids using Deep Neural Networks (DNNs) including
but not limited to ANNs and CNN. The proposed data-driven model has the capability
to detect various types of faults, such as single-line to ground, double-line, double-line
to ground, and three-phase faults. Furthermore, the proposed scheme has the capability
to identify fault class, faulty line, and the fault location in the grid simultaneously in the
whole system. The proposed method in this study simplifies the process by eliminating the
pre-processing steps as in [32,33], feature engineering, and conversion of signals, resulting
in a more efficient approach. This avoids the unnecessary steps of converting voltage and
current signals into grayscale images or other transformations to extract the meaningful
features from signals, which was required in many previous studies.

This paper makes significant contributions in the following aspects:

• Introducing innovative fault detection methods using Artificial Neural Networks
(ANNs) and one-dimensional Convolutional Neural Networks (1D-CNNs) for
smart grids.

• Isolating faults in microgrids without the need to shut down the entire system.
• Simplifying the fault detection process by eliminating pre-processing steps, feature

engineering, and signal conversion, resulting in a more efficient approach.
• Improving the reliability and efficiency of smart grids by accurately identifying the

Faulty Line Identifier (FLI), Fault Class Types (FCT), and Fault Locations Estimator
(FLE) using DNNs.

• Achieving optimal accuracy rates in fault detection, classification, and location for
both ANN and 1D-CNN models in the IEEE 6-bus system.

• Offering significant performance improvements in fault detection and classification
within smart grids by reducing testing time as much as possible, which is considered
a crucial factor in real-time scenarios when using deep learning techniques.

The upcoming sections of this paper will be structured as follows: Section 2 provides
an overview of the system and details the data generation process. In Section 3, the im-
plementation and training of the proposed models are described, along with a discussion
on the performance of the multi-class fault classification. Section 4 further examines the
proposed model. Lastly, Section 5 presents a summary of the findings, concluding the paper.

2. System Simulation and Data Collection

The IEEE N-bus system is a standard power system used in electrical engineering to
evaluate various power system analysis and control algorithms. To generate a data-driven
model of this system in MATLAB, a mathematical model is built based on collected data
from the system. Figure 1 shows the single-line configuration of the IEEE 6-bus system,
which comprises three traditional voltage sources with a voltage rating of 132 kV and a
frequency of 60 Hz. Data were gathered across a spectrum of scenarios, encompassing
different expected load profiles. Additionally, data were collected in situations where



Energies 2023, 16, 7680 4 of 19

distributed sources, such as photovoltaic systems or variable wind turbines, were connected.
This inclusion aimed to enhance the robustness and reliability of the study’s findings.

The IEEE 6-bus test case represents a simple approximation of the distribution power
system. It has six buses, four generators, three loads, and seven transmission lines.
The transmission lines are modeled as medium lines with three-phase pi section lines.
Additionally, the system includes three loads that consume both active and reactive power
at bus 2, bus 5, and bus 6.To simulate any type of fault, we used the three-phase fault block,
and, by selecting any phase (A, B, C) and ground G, it was possible to set the fault type,
while the current and voltage were collected from both sides of the transmission line during
fault. The line model divided it into two sections. The purpose of dividing the line into
two parts is to change the values of resistance and inductance in a certain way, through
which we can change the location of the fault during the simulation process.

Deep learning algorithms are used to detect patterns and relationships in the simulated
data, and the learned model can predict the system’s behavior under different conditions.
In this study, MATLAB/SIMULATION is used to simulate the system with fault blocks
generating data. Table 1 provides details of the data generators, line data, and load data
used in the simulation. The system consists of six pi-section lines with a length of 100 km.
The utility grid in the system has a rating of 1000 MVA, operates at 132 kV voltage, and has
a base frequency of 60 Hz.

Building a data-driven model of the IEEE 6-bus system using MATLAB can help
engineers and researchers better understand the system’s behavior and develop more
effective control and optimization strategies [34]. Time series data voltage and current
signals for simulations were generated using MATLAB/SIMULINK 2022b. All experiments
were conducted on a system equipped with an Intel CORE i7-10510U CPU, operating at
1.80 GHz (base clock) and 2.30 GHz (turbo boost), along with 16 GB of RAM. The training
progress was implemented using the Python scikit-learn library, Jupyter (notebook), and
Google Colab environments.

Figure 1. Single-line diagram of IEEE 6-bus.
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Table 1. IEEE 6-bus system, line data, generator information, and load data.

Line Data Generator Data LoadData

Line No. Bus Code R (p.u) X (p.u) Generator No. P+jQ (p.u) Voltage (p.u) MVA Bus Type Bus No. P (MW) Q (MVAR)

1 1-2 0.05 0.20 G1 0+j0 1.00 100 slack At Bus 2 20 10
2 2-3 0.10 0.50 G2 0.1+j0.05 1.041 15 PV At Bus 5 40 15
3 3-4 0.20 0.80 G3 0.30+j0.2 1.0190 40 PV At Bus 6 30 10
4 4-5 0.10 0.30 G4 0.2+j0.1 1.071 30
5 5-6 0.20 0.40
6 6-1 0.10 0.15
7 2-5 0.20 0.50

The simulation system proposed in this study captures voltage and current signals
in three phases, which are sampled at a frequency of 2.5 kHz [34], resulting in 41 samples
during a single cycle (2500 ÷ 60). To obtain sufficient data for training and evaluating the
proposed model’s performance, various fault and non-fault scenarios are simulated by
adjusting the system’s parameters and settings. Table 2 presents detailed configurations for
both fault and non-fault scenarios. These simulations are conducted to ensure the model’s
versatility and ability to detect and classify different types of faults that may occur in the
smart grid system.

Table 2. Configuration for fault possibility cases during simulation.

Parameters Possible Configuration No. of Cases

Fault class A-G, B-G, C-G, AB, BC, AC, AB-G, BC-G, AC-G, ABC, and Normal 11
Faulty Line Line Line1, Line2, Line3, Line4, Line5, Line6, and Line7 7
Fault Location 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of line length 10
Fault Resistanc (Rf) 0.1, 10, and 50 3

Table 3 provides an overview of the cases and labels for each class. The fault class
comprises 8610 cases, which were generated by adjusting system parameters and configu-
rations. On the other hand, the non-fault class consists of 2310 cases. To ensure accuracy,
overlapping values have been eliminated. The table displays the total number of sampled
data for three categories: 10 Fault Class (FCT), 7 Faulty Line (FLI), and 10 Fault Location
(FLE). Various fault types were simulated by modifying fault resistances in different lines
and locations within the system.

The data collection process accounted for different fault resistance values, including
low and high settings. Fault resistance, along with inception angle, is a critical parameter
for detecting faults in electrical systems, as it undergoes changes when a fault occurs.
These changes lead to voltage and current variations in the affected section. Consequently,
incorporating different fault resistance values in the data collection process is vital for
enhancing the accuracy of fault detection models.

Table 3. Total no. of samples for FCT, FLI, and FLE.

Fault Class
Type (FCT)

No. of
Distribution

Faulty Line
Identifier (FLI)

No. of
Distribution

Fault Location
Estimator (FLE)

No. of
Distribution

Normal 15,120 Normal 15,120 Normal 15,120
AG 10,080 Line1–2 14,400 10% Line Length 11,200
BG 10,080 Line2–3 14,400 20% Line Length 11,200
CG 10,080 Line3–4 14,400 30% Line Length 11,200

ABG 10,080 Line4–5 14,400 40% Line Length 11,200
ACG 10,080 Line5–6 14,400 50% Line Length 11,200
BCG 10,080 Line6–1 14,400 60% Line Length 11,200
ABC 10,080 Line2–5 14,400 70% Line Length 11,200
AB 10,080 - - 80% Line Length 11,200
AC 10,080 - - 90% Line Length 11,200
BC 10,080 - - - -
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Figure 2 depicts the waveform of three-phase voltage and current signals in different
simulated fault cases, each with varying fault resistances. The occurrence of the fault is
at t = (1/60) s, and the voltage and current waveforms undergo noticeable modifications
for different resistance values after the fault. When a fault occurs, the system impedance
decreases, which leads to a rapid surge in fault current. The rise in current levels has
the potential to inflict damage on electrical components and can also affect the overall
stability of the system. Furthermore, fault voltage plays a critical role in determining the
type and location of the fault. During a fault, the voltage waveform experiences significant
changes, and the magnitude of these alterations depends on the fault type and its location.
By analyzing the changes in the voltage waveform, it becomes possible to determine both
the type and location of the fault.

Figure 2. Waveforms of three-phase voltages and currents on different fault types as follows: (a) three-
phase voltages of Phase A to ground fault, (b) three-phase currents of Phase A to ground fault (AG),
(c) three-phase voltages of Phase B to Phase C to ground fault (BCG), (d) three-phase currents of
Phase B to Phase C to ground fault (BCG), (e) three-phase voltages of Phase A to Phase B to Phase
C to ground fault (ABCG), (f) three-phase currents of Phase A to Phase B to Phase C to ground
fault (ABCG).

3. The Proposed Methodology

As mentioned in the previous section, we provided an overview of the generated
dataset, followed by an explanation of the data collecting approach. Lastly, we present the
theoretical principles and architecture of the proposed deep learning model. The training
and validation datasets consist of input feature spaces, each comprising extended sequences
of high-dimensional vectors derived from the real values of three-phase voltage and current
signals measured at various locations.

In this study, we introduce three novel models. The first model serves as a classifier
tasked with detecting faults and determining the specific faulty section. Subsequently,
a second classifier is created for each identified section, facilitating the classification of faults
based on their types, thus enabling fault diagnosis within that particular region. Finally,
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a third classifier model is utilized to estimate the distance at which the fault occurred within
the identified section, as illustrated in Figure 3.

Figure 3. Flow chart of transmission line fault classification method based on ANN and CNN
in general.

3.1. Artificial Neural Network (ANN)

The aim of this research is to develop an ANN model capable of classifying all fault
types, including no-fault scenarios, in a distribution network that may be penetrated with
Distributed Generators (DGs). Figure 4 outlines the proposed methodology through a
schematic block diagram. The dataset used for this study consists of raw samples of three-
phase voltage and current in fault and no-fault scenarios, each labeled accordingly. Deep
Neural Networks (DNNs) have become a robust model for non-linear statistical modeling,
particularly in the field of fault detection and classification.

ANNs comprise various architectures, including Feed-Forward Neural Networks
(FNNs) and Recurrent Neural Networks (RNNs). Among them, Long Short-Term Memory
(LSTM) networks are particularly suitable for time sequence classification since they can
address problems associated with exploding and vanishing gradients [35]. The proposed
model has undergone two training methods: Normal Classification (NC) and Cross-Fold
Validation (CV). NC involves dividing the dataset into two groups: a training set (80%) and
a testing set (20%), whereas CV involves partitioning the dataset into 10 folds, with each
fold having a distinct training and testing set.

The generated dataset is partitioned into a training set and a testing set. The training
set is used to train the proposed model, while the testing set is used to evaluate the model
performance after the training process to show the effectiveness of the models. Due to
the varying dataset distribution in each fold, cross-validation guarantees that all data are
utilized for both training and testing during the training process. In the training phase,
in this study, the proposed ANN model is trained in offline phase using a training set with
their corresponding actual labels.

The proposed methodology consists of two phases, namely, the training phase and
the testing phase, which are illustrated in Figure 5. During the training phase, the model
extracts features from the raw data and generates trained weights or trainable parameters.
During the testing phase, the model operates in online mode, where it takes raw data
as input without undergoing any feature extraction. Leveraging the trained parameters,
the model then predicts the label of unseen or new data as output, eliminating the need for
any additional preprocessing steps.
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Figure 4. Proposed ANN architecture for fault classification, identification, and location.

Figure 5. Flow chart of transmission line data training and testing based on proposed methods.

To evaluate the performance of the proposed model, the predicted and actual labels
of the test data are compared. The architecture of the proposed ANN model comprises
five layers (L0–L4), including an input layer and an output layer. For the FCT classifier,
the model has a total of 187,059 trainable parameters. For the FLI, it has 176,520 trainable
parameters, and for the FLE, it has 177,546 trainable parameters, as depicted in Table 4.
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Table 4. Structures of the ANN models.

Layer No. Layer Detail Output Shape Training Parameters

L0 Input data (60 × 1) -
L1 dense (Dense) (None, 128) 7808
L2 dense_1 (Dense) (None, 256) 33,024
L3 dense_2 (Dense) (None, 512) 131,584
L4 dense_3 (Dense) FTC (None, 11) 5643

FLI (None, 08) 4104
FLE (None, 10) 5130

Various performance metrics, such as Accuracy, Recall, Sensitivity, Specificity, Pre-
cision, and F1-Score, based on True Positives (TP), False Positives (FP), False Negatives
(FN), and True Negatives (TN) as shown in Equations (1)–(5) are utilized to evaluate the
proposed model (FCT, FLI, and FLE). In the context of binary and multiclass classification,
the abbreviations have the following meanings:

• TP (True Positives) represents the number of positive elements correctly predicted
as positive.

• FP (False Positives) denotes the number of negative elements incorrectly predicted
as positive.

• FN (False Negatives) represents the number of positive elements incorrectly predicted
as negative.

• TN (True Negatives) denotes the number of negative elements correctly predicted
as negative.

The performance metric formulas are as follows:

TotalAccuracy =
sumo f TP

sumo f con f usionmatrix
(1)

Precision =
TP

TP + FP
(2)

Recall = sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

f ˘measure = 2 × Precision × Recall
Precision + Recall

(5)

The article discusses the suitability of different evaluation metrics for different types
of datasets. Accuracy is recommended for symmetrical datasets, while F1-Score is better
for uneven class distributions. Precision measures the confidence level in true positives,
and Recall measures the coverage of all positives. Specificity can be used to avoid false
positives in critical cases.

The performance of the proposed model was assessed through 10-fold cross-validation,
and the outcomes are presented in Tables 5 and 6. Additionally, Figure 6 displays the
training curve for fold number 5.

To assess the performance of the ANN model for fault detection, classification, and fault
location, various configurations were employed. These configurations included different
settings of parameters and hyper-parameters for the model’s layers. By exploring diverse
combinations, the aim was to optimize the model’s effectiveness and achieve the best
possible results for the specific tasks of fault detection, classification, and localization.
Parameters are important for making predictions, while hyper-parameters are crucial for
optimizing the model.
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Table 5. The results of the 10-fold cross-validation for fault classification FCT using the ANN.

Fold No. Accuracy Precision Recall F1-Sore

Fold-1 0.99344 0.960 0.990 0.975
Fold-2 0.99438 0.990 0.990 0.990
Fold-3 0.99570 1.000 1.000 1.000
Fold-4 0.99537 1.00 1.000 1.000
Fold-5 0.99089 0.900 1.000 0.947
Fold-6 0.98968 0.980 0.990 0.985
Fold-7 0.99266 1.000 1.000 1.000
Fold-8 0.99444 0.990 0.990 0.990
Fold-9 0.99299 0.990 0.990 0.990
Fold-10 0.99692 0.980 0.990 0.985

Average 0.99365 0.974 0.994 0.986

Table 6. The performance result of fold no. 5 for the proposed ANN.

Class Precision Recall F1-Score Accuracy FP FN Support

Normal 1.000 1.000 1.000 0.9950 0 7 1495
AG 0.990 1.000 0.995 1.000 3 6 996
BG 0.970 1.000 0.985 0.999 8 8 1072
CG 1.000 0.990 0.995 1.000 5 8 1066
AB 0.990 0.990 0.990 0.9960 18 7 941
AC 0.9900 1.000 0.995 0.999 13 11 1015
BC 1.000 0.990 0.995 0.994 3 25 984

ABG 0.990 0.960 0.975 0.980 27 8 1040
ACG 0.970 0.990 0.980 0.975 2 27 990
BCG 0.990 1.000 0.995 0.989 0 42 982
ABC 1.000 0.990 0.995 0.978 42 24 1011

Average 0.990 0.9918 0.991 0.9914 11,592

Figure 6. Training and loss curve of fold no. 5 for fault classification type using ANN model.

The hyper-parameter settings of the proposed models are presented in Table 7. In this
work, we have used a well-known optimizer ‘Adam’ and categorical-cross entropy as a
loss function. Table 8 compares the performances of different ANN models, and the results
show that increasing the number of convolutional layers improves fault classification per-
formance but leads to an increase in trainable parameters. The proposed model achieves
superior performance with fewer trainable parameters, achieving a balance between per-
formance and complexity.
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Table 7. Hyper-parameter configuration of proposed method.

ANN CNN

Hyperparameter FCT FLI FLE FCT FLI FLE

Optimizer Adam Adam Adam Adam Adam Adam
Epoch number 50 50 100 100 50 100
Learning rate 0.001 0.001 0.0001 0.001 0.001 0.0001
Batch size 128 128 128 128 128 128
Loss function categorical categorical categorical categorical categorical categorical
Activation
function RELU RELU tanh RELU RELU tanh

Output layer Softmax Softmax Softmax Softmax Softmax Softmax

Table 8. Performance results of different ANN models for FCT, FLI, and FLE in the studied system.

Normal Classification (NC) Cross-Validation (CV) 10-Fold

ANN Model Trainable
Parameters

FCT
Accuracy %

FLI
Accuracy %

FLE
Accuracy %

FCT
Accuracy %

FLI
Accuracy %

FLE
Accuracy %

1 Denes+ FC 9227 99.36 99.45 97.87 97.85 99 94.58
2 Denes+ FC 43,659 99.6 99.78 98 98.45 99.15 95.32
3 Denes+ FC 178,059 99.75 99.99 98.25 98.99 99.55 96.75

3.2. Convolution Neural Network (CNN)

The study proposes a deep learning algorithm using one dimensional CNNs for Fault
Type Classification (FTC), Line Faulty Detection (LFI), and Fault Location Estimation (FLE)
based on raw data samples. CNNs have been designed to provide specific features to
neural networks, which enhance their ability to process image inputs and improve their
feature extraction efficiency. Typically, these networks are used for recognizing 2D images.
However, the proposed CNN in this study utilizes 1D convolutional layers that can directly
handle numerical datasets without requiring any preprocessing. Previous studies, as
in [36,37], have commonly depicted color information in an image by utilizing multiple
channels for each pixel. The structure of 1DCNNs consists of different layers that carry out
functions such as feature extraction and reducing network size.

This study examines the network architecture and clarifies how the CNN model
functions. The 1DCNN architecture consists of three primary layers: the convolutional
layer, pooling layer, and fully connected layer. The training process involves adjusting a set
of filters that move across the input matrix and calculate the dot product between the input
and filter values. In this study, we examine the 1DCNN architecture and explain how the
model works. The proposed 1DCNN model is composed of ten layers, denoted as L1 to
L10, out of which four are dense or weighted layers, as outlined in Table 9. The architecture
of the CNN model is visually depicted in Figure 7.

Table 9. Architectural details of proposed CNN models.

Layer No. Layer Detail Kernal Size Output Shape Trainable
Parameters

L1 Input Raw Data Sample - 60 × 1 -
L2 conv1d_2+ Relu 1 × 3 60 × 16 64
L3 conv1d_3+ Relu 1 × 3 60 × 16 784
L4 MaxPooling1D 1 × 2 30 × 16 -
L5 conv1d_4+ Relu 1 × 3 15 × 64 1586
L6 conv1d_5+ Relu 1 × 3 15 × 64 3104
L7 MaxPooling1D 1 × 2 15 × 32 -
L8 Batch_Normalization (BN) - 15 × 32 128
L9 Flatten - 480 -

L10 Dense + SoftMax - 11 5291
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Figure 7. Architecture of the proposed 1DCNN model.

The proposed 1DCNN model is fed with raw data, representing direct measurements
of three-phase voltages and currents (60 features) collected from all buses and transmission
lines. These measurements are used without any preprocessing and represent data for a
single cycle. The proposed models in this study have two convolutional stacked layers,
with each layer containing two 1D convolutional layers. The primary objective of these
convolutional layers is to automatically extract important features from the input voltage
and current during offline phase. The main function of using Batch Normalization (BN)
in the CNN is to address the internal covariate shift input features problem that arises
during training. Covariate shift occurs when the distribution of the input to a layer changes,
which makes it difficult for the network to learn and slows down the training process. BN
addresses this problem by normalizing the input features in each batch, thereby reducing
the internal covariate shift and stabilizing the network’s training process. Additionally,
BN can also act as a regularizer by reducing the generalization error of the network and
improving its overall performance [38].

The activation function serves as a mathematical operation that converts the input
into a non-linear output. It plays a critical role as a gate, regulating the flow of information
between the input, the hidden neuron, and the output in a neural network. In each
convolutional layer, the rectified linear activation function (Relu or tanh) is employed for
its advantageous properties. Convolutional layers utilize the mathematical operation of
convolution, which differs from the matrix multiplication used in other types of neural
networks. The one-dimensional convolution operation can be mathematically represented
by Equation (6), as follows:

Cj = f

[
n

∑
i=1

(
xi+j × Wi

)
+ b

]
(6)

In this context, the convolution output layer is denoted by Cj, and the activation
function used is tanh (f). x and W represent the mini batch of input data and filters,
respectively, and b is bias of each neuron. BN (x) represents batch normalization applied
to input x, n refers to the dimension of the filter, and b represents the bias term. The 1D
convolutional layers at L2, L3, L5, and L6 utilize sets of learnable filters. The first stacked
convolutional layer employs 16 filters, while the second stacked convolutional layer uses
32 filters. As previously mentioned, both the 10-fold cross-validation method and custom
train/test split were employed.

For cross-validation, the model was trained for 50 epochs, while for custom splitting,
it was trained for 100 epochs, with a batch size of 20. Table 10 presents the performance
metrics of the proposed models. It can be observed that the accuracy of each model is
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consistently high, exceeding 0.99, except for the fault location model (FLE), at about 0.96,
which exhibits a slightly lower accuracy compared to the other models. The various CNN
configurations are implemented with various selections of the number of convolutional
layers to analyze the performance behavior of the CNN models for fault classification,
detection, and fault location. Furthermore, Table 10 shows that as the number of con-
volutional layers increases, the performance for fault classification, detection, and fault
location improves. As the number of convolutional layers increases, the number of trainable
parameters also increases. However, the suggested model outperforms others while main-
taining a lower number of trainable parameters, mainly due to the utilization of stacked
convolutional layers. This approach achieves a balance between model performance and
complexity, resulting in improved performance without excessive complexity in terms of
trainable parameters.

Table 10. Performance results of different CNN models for FCT, FLI, and FLE in the studied system.

Normal Classification (NC) Cross-Validation (CV) 10-Fold

CNN Model Trainable
Parameters

FCT
Accuracy %

FLI
Accuracy %

FLE
Accuracy %

FCT
Accuracy %

FLI
Accuracy %

FLE
Accuracy %

4 Denes+ FC 10,394 99.83 99.98 89.45 99.34 99.7 92.57
6 Denes+ FC 28,698 99.998 99.97 95.41 99.32 99.99 96.85

Figure 8a illustrates the accuracy and loss curves for Fault Class Type (FCT) during
training and testing cases across 50 epochs for line faulty and 100 epochs for fault class
and fault location. It can be observed that initially, the testing curve attempts to closely
align with the training curve. However, around epoch 40, a plateau in model performance
becomes apparent. The observed behavior suggests that the initial learning rate requires
more epochs to achieve model convergence with higher performance. The model struggles
to learn the problem efficiently using the initial learning rate, as shown in Figure 8b,c. As a
result, adopting an adaptive learning strategy becomes crucial to address this issue.

By reducing the learning rate at that point, the model achieves better performance on
both the training and test sets with quicker convergence. Eventually, the proposed models
achieve convergence with higher performance after approximately 30 epochs in cases of
line faulty, while in cases of fault location, the model converges at 60, as evidenced by the
training curve closely aligning with the testing curve. This indicates that there is no need
for further reduction of the learning rate or additional training epochs, as the model has
reached a satisfactory level of performance.

Figure 9 depicts the confusion matrix, providing a comprehensive evaluation of the
classification performance. It represents the predicted results in the matrix’s rows and the
actual results in the columns. The diagonal elements represent accurately classified samples,
while the off-diagonal elements indicate misclassified samples. In Figure 9a, the Fault
Class Type response (FCT) for the testing data is showcased. Although a few acceptable
misclassified errors are observed when compared to the extensive test data, the overall
classification performance remains noteworthy. Furthermore, Figure 9b illustrates the Line
Faulty Identifier (LFI), and Figure 9c displays the Fault Location Estimation (FLE) for nine
predefined locations.
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(a) Training and loss curve of FTC with NC.

(b) Training and loss curve of LFI with NC.

(c) Training and loss curve of FLE with NC.

Figure 8. Training and loss curve for training progress.
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(a) Confusion matrix of FCT with NC. (b) Confusion matrix of LFI with NC.

(c) Confusion matrix of FLE with NC.

Figure 9. Confusion matrix of proposed CNN using testing data.

4. Discussion

The proposed models were extensively compared with various previous methods
using data generated from a simulated system. In this comprehensive analysis, both
the classification accuracy and computational time cost were considered as the basis for
comparison. The proposed models are compared with several traditional machine learning
methods, which include Support Vector Machine (SVM) [39,40], Decision Tree (DT), and
KNN [40,41] classification models.

In these studies, significant features are obtained either directly or through transform-
ing the voltage and current signals into another domain. These extracted features are
then utilized to train machine learning algorithms effectively. Furthermore, the proposed
models were also compared with deep learning algorithms such as CNN [42], which uses
wavelet-based features and Gated Recurrent Unit (GRU) [43], which are considered as
modern deep learning methods that process the raw input and voltage samples similarly to
the proposed models. The study performs a comprehensive comparison of the performance
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and computational time cost between the considered previous methods and the proposed
models. The outcomes of this comparison are outlined in Table 11.

Table 11. Comparison of different methods in terms of accuracy and computational time.

Training Phase (Offline) Testing Phase (Online)

Classification
Model

Accuracy Feature Extraction
(s)

Training Time
(s)

Feature Extraction
(s)

Testing Time
(s)

SVM [40] 0.9961 406.87 124.23 48.21 4.70
KNN [41] 0.9902 406.87 0.02 48.21 0.097

DT [41] 0.999 406.87 0.15 48.21 0.006
GRU [43] 0.9979 - 1350.42 - 4.57
CNN [42] 0.9988 - 882.16 - 1.21

Proposed ANN 0.999 - 1466 - 0.097
Proposed CNN 0.999 - 1512 - 0.1035

Table 11 illustrates that the accuracy of the proposed model is similar to other models,
with the DT model achieving the same accuracy as the proposed model. However, this
does not necessarily mean that the computational time is the same. In the training phase,
machine learning models typically required less computational time compared to deep
learning models, as well as the proposed models. However, manual feature extraction for
machine learning models can add extra computational time and effort.

The findings indicate that the automatic feature extraction process of DNN models
makes deep learning algorithms computationally more intensive during model training.
However, during online mode, these models are specifically designed for their intended
task, which is to predict faulty class labels for unseen data or test cases. In this mode of
execution, the models are utilized solely for making predictions and effectively managing
real-time scenarios, without the need for any additional training or model adjustments.
On the other hand, conventional machine learning models typically demand considerably
more computational time during the testing phase in online mode. Therefore, the pro-
posed models achieve comparable performance with a total computational time of only
0.097–0.1035 s during testing. Once trained, these deep learning models do not require
feature extraction or features in online mode.

5. Conclusions

This study addresses the crucial task of fault detection, classification, and location
within multi-machine power systems, a critical aspect of smart grids. Simulated faulty
data, derived from actual values of three-phase voltages and currents, were meticulously
collected, preprocessed, and classified using deep learning algorithms. Novel classifier
models based on Artificial Neural Networks (ANNs) and 1D Convolution Neural Networks
(1D-CNNs) were introduced for intelligent fault identification, classification, and location
within the IEEE 6-bus system in different scenarios.

These models demonstrated notable precision, achieving accuracies of 99.99%, 99.98%
for identifying faulty lines, 99.75%, 99.99% for fault classification, and 98.25%, 96.85%
for fault location for ANN and 1D-CNN, respectively. Importantly, this study stands out
due to its comprehensive approach, encompassing the entirety of the network rather than
focusing on isolated subsections. Our approach sampled faults without specific restrictions,
such as feature selection and data reduction, thereby mitigating the computational burden
of condition-based pattern selection. This renders our approach generalizable for fault
analysis in power transmission networks, consequently bolstering computational efficiency
during both the training and testing phases.

Additionally, we conducted a comprehensive comparative analysis of our models
against established fault analysis techniques [44–50], affirming their superior performance.
Table 12 provides a concise representation of our model’s notable fault analysis efficacy.
It is worth noting that the combination of voltage and current signals enhanced accu-
racy by utilizing their behavior and features during the fault (transient time). In contrast,
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image-based methods, while potentially more accurate, introduce a higher computational
burden, underscoring the appeal of employing raw data (1D) directly. This research con-
tributes to advancing fault detection, classification, and localization, which holds significant
implications for enhancing power system reliability within smart grids.

Table 12. Comparison of different methods.

Model Name Input Parameter Data Type Learning Type FCT Accuracy

DBN [44] Voltage Signal Unsupervised+ Supervised 99.00%
DSE-SVM [45] Current Signal Supervised 96.00%

PNN [46] Voltage Signal Supervised 99.33%
LSTM [47] Voltage Signal Supervised 99.77%

SAT-CNN [48] Voltage and current Image Unsupervised 99.72%
MobileNetV3-SA [49] Voltage and current Image Supervised 99.90%

Waveform Encoding and
Segmentation [50] Voltage and current Image Supervised 99.77%

The proposed ANN Voltage and current Signal Supervised 99.75%
The proposed CNN Voltage and current Signal Supervised 99.99%

Future Work: Through the envisaged methodology, we intend to broaden the scope
of our research to encompass diverse and intricate network structures. It is important
to acknowledge that our proposed approach may be susceptible to external noise or the
influence of switching loads. We also plan to work with varying dataset sizes and imple-
ment a combined algorithm strategy to mitigate the occurrence of false trips or inadvertent
malfunctions in the protection system. Finally, the scalability assessment will be explored
in our proposed method on larger systems to verify its effectiveness and robustness when
applied to more extensive and complex scenarios.
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