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Abstract. In this work, an affordable solution for the im-
proved performance of circular polarization diversity array 
antenna by helping metasurface structure (MTS) is pre-
sented. The basic structure includes a multi-input feed 
network which is ended to a 2×5 sequentially rotated 
subarray. A layer of MTS has been used to modify basic 
antenna characteristics of inspiring ref. [5]. This 
innovation is aimed to increase the bandwidth of basic 
antenna from 14.7% (5.05–5.85 GHz) to 37.8% (4.5–
6.6 GHz), and 3-dB AR about 4%. Employing MTS layer 
leads to an increase in the gain of the antenna to 15 dBic. 
More details of the antenna are reported in the text. 
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1. Introduction 
Circularly polarized (CP) antennas, due to their ad-

vantages including improved immunity to multipath distor-
tion, polarization mismatch losses, and Faraday rotation 
effects caused by the ionosphere, have been widely em-
ployed in many wireless systems. The CP array antennas 
performances generally depend on radiation elements and 
feed network characteristics. Many feed networks designed 
to improve CP array antennas have been presented [1–11].  
In order to improve both impedance and axial ratio (AR) 
bandwidth, the sequentially rotated (SR) feed network 
technique has been used by many researchers. [1–6]. Disa-
bility to change polarization diversity can be introduced as 
a disadvantage of SR network technique. In other words, 
the SR feed only provides polarization diversity (LHCP or 
RHCP). However, in [5] and [6] antennas with capability to 
change polarization diversity have been reported, but they 
suffer problems such as a low bandwidth and gain [5] and 
a large profile [6]. Recently, metamaterials (MTMs) have 

been extremely investigated to develop the performance of 
the CP patch antenna including overall size reduction and 
increment in bandwidth and gain [7–11].  

In [7], an antenna is reported which consists of two 
parts: i) A metasurface structure (MTS) superstrate consists 
of a 3×4 arranged array of rectangular patches printed on 
a dielectric substrate, and ii) a diagonal slot antenna which 
is etched in the ground plane. The impedance bandwidth 
was 33.7% from 4.2 to 5.9 GHz, and 3-dB AR bandwidth 
was 16.5% from 4.9 to 5.9 GHz with an average gain of 
5.8 dBic. In [10], an MTS-based antenna composed of 
a square patch whose two opposed corners are chamfered 
and sandwiched between a 4×4 arrangement of square 
metal plates and the ground plane. In [11], by combining 
the reported element in [10] with SR technique, a broad-
band impedance and 3-dB AR bandwidth has been re-
ported. Despite using MTS technique has been helped to 
improve characteristics of antenna, there is a vacancy for 
using this technique in circular polarization array antennas.  

In this work, with the aim of addressing the men-
tioned issues such as failure to create two high-gain circu-
lar polarizations in one antenna and miniaturization of the 
antenna size, a three-layered array antenna is presented. 
The first layer includes two input ports, each of them gen-
erating an RHCP or LHCP. Each of the input ports ends to 
a Wilkinson power divider and is connected by metalized 
via holes to the top layer. The second layer includes 2×5 
CP patch elements and four SR feed networks. An MTS in 
the third layer causes improvement of reference antenna [5] 
characteristics. 

A comparison between the suggested antenna with 
reference paper [5] and also recent works is displayed in 
Tab. 1. As seen, the use of the MTS layer leads to increase 
impedance bandwidth, 3-dB AR, and gain of antenna more 
than 22%, 8.5%, and 4dBic, respectively. Despite com-
pared [6–10], the proposed antenna has low impedance and 
AR bandwidth, the gain of it is much greater than theirs. 
Moreover, ref [6] generates only one type of CP (RHCP) 
and the polarization type of [10] is linear. 
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Ref. Polarization type BW 3-dB Axial Ratio Peak gain 

[5] 
Circular (RHCP  

 and LHCP) 
12.5% (4.95–5.61): RHCP 
14.7% (5.05–5.85): LHCP 

16.5% (4.96–5.85): RHCP 
19.2% (4.75–5.76): LHCP 

10.3 dBic:RHCP 
10.7 dBic: LHCP 

[7] Circular (RHCP) 33.7% (4.2–5.9) 16.5% (4.9–5.9) 5.8 dBic 
[8] Linear 36.4% (4.5–6.5) ----- 14.5 dBi 
[9] Linear 8.3% (2.2–2.6) ----- 9.6 dBi 

[10] Circular (RHCP) 45.6% (4.70–7.48) 23.4% (4.9–6.2) 7.6 dBic 
[11] Circular (RHCP) 58.06% (4.4–8) 41.7% (4.75–7.25) 12.1 dBic 
This 
work 

Circular (RHCP 
and LHCP) 

37.8%(4.5–6.6):RHCP 
37.8% (4.5–6.6): LHCP 

21.8%(4.9–6.1):RHCP 
23.4% (4.9–6.2): LHCP 

15 dBic: RHCP 
14.9 dBic: LHCP 

Tab. 1.  The comparison between proposed MTS CP antenna with recent work. 
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Fig. 1. The configuration of the proposed MTS and simulation 
boundary conditions; a) the structure, and b) 
simulation boundary conditions. 

2. MTS 
The configuration of the proposed MTS structure is 

depicted in Fig. 1. By considering the finite-sized metasur-
face structures as a cavity, the surface wave resonances on 
a finite metasurface-based antenna can be qualitatively 
determined by the following equation [13]:  

 
SW MSL    (1) 

where SW represents the propagation constant of the sur-
face wave resonances, and LMS is the total length of the 
metasurface structure given by 

 
MSL N P   (2) 

where N represents the number of cells, and P is the 
periodicity of the metasurface. Inserting equation (2) into 
(1), we have 

 
SW N P

 


. (3) 

It was shown in reference [12] that the propagating 
constant of the surface waves traveling and decaying away 
from the metasurface is related to the decay constant α and 
the frequency ω by the following expression: 

 2 2 2
SW     . (4) 

The propagation constant for the transverse magnetic 
(TM) and transverse electric (TE) waves can be expressed, 
respectively, as follows: 
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where TM and TE represent the propagation constant of 
the TM and TE waves, respectively, c is the speed of light 
in a vacuum,  is the intrinsic impedance, and ZS is the 
surface impedance of the metasurface structure.  

As a simple unit cell model based on a simulation of 
the reflection phase of scattering parameters of a single-
port air-filled waveguide with two perfect electrical con-
ductor (PEC) and two perfect magnetic conductor (PMC) 
walls was utilized to simulate the design, as displayed in 
the inset of Fig. 1(b). The reflection phase of the metasur-
face was calculated, as illustrated in Fig. 2. The resonance 
frequency for the 0° reflection phase was 5.4 GHz, and the 
±90° reflection phase bandwidth was 4.75–5.75 GHz.  

 
Fig. 2. Simulation reflection phase for the metasurface 

structure. 

3. Subarray 
The proposed CP microstrip patch subarray with SR 

feed network is presented in Fig. 3. It consists of 6 (2 × 3) 
square patches and two ring SR feed networks. Indeed, the 
structure is designed based on two ring SR feed networks 
with four (2×2) elements so that each of four elements 
array with its adjacent have a 90-degree rotation and 
adjoining elements have been overlapped together.  The pro- 
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Fig. 3.  The proposed CP radiation elements. 

posed subarray is printed on Rogers RO4003C substrates, 
with εr = 3.38 and tanδ = 0.0027, with a thickness of 
1.524 mm. The microstrip patches radiate CP with attention 
to feed position, and they are usually narrowband in both 
impedance and AR. The proposed subarray is designed 
relying on [5], with this difference that two ports are ad-
justed to generate RHCP and other two ports are considered 
as LHCP. For more details about 2×3 subarray refer to [5]. 

4. Antenna Configuration 
The proposed CP patch array is indicated in Fig. 4. It 

consists of 10 (2 × 5) square patches with chamfering two 
opposite vertices [5], and four ring SR feed networks [5] 
which is sandwiched between ground plane and MTS. The 
proposed antenna is printed on three layers of Rogers 
RO4003C substrates with the same thickness (1.524 mm). 
The MTS is an arranged adjacent plate with periodicity of 
P and a gap of g and is designed at frequency of 5.5 GHz. 
The MTS plates are printed on the top side of substrate-3 
(h3). To obtain a low height and facilitate fabrication pro-
cess, substrate-3 is loaded above substrate-2 without air 
gap. As shown in Fig. 4, to change polarization diversity in 
two states of LHCP and RHCP two input ports on sub-
strate 1 are used. Each of ports ends to a Wilkinson power 
divider whose outputs end to two unequal length arms with 
90-degree phase-difference to provide CP features. 

5. Results and Discussion 
The proposed MTS MIMO CP array antenna is capa-

ble to change polarization diversity from RHCP to LHCP 
by changing input ports. The proposed antenna has been 
fabricated at a printed circuit board (PCB) by a CNC ma-
chine with a tolerance of 0.05 mm. 

The scattering parameters of both ports were meas-
ured by Agilent Vector Network Analyzer (VNA) 8722ES. 
The reflection loss (S11) of port 1 was measured while 
another port was loaded by a standard 50  and this 
method was used for measuring reflection loss of port 2 
(S22). The mentioned method is included in measuring AR, 
gain, and pattern of each port. In order to measure insertion 
loss both ports were simultaneously connected to VNA.  
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Fig. 4. Configuration of the proposed antenna 

(h1 = h2 = h3 = 1.524, P1 = 13.8, C1 = 3, C2 = 1.8, t1 = 8, 
t2 = 11, r1 = 2.48, r2 = 1.08, Wf = 0.2, Lf = 8, g = 0.5, 
P = 8 (all values are in mm)). 

The design procedure and results of basic antenna 
without MTS is utterly discussed in reference [5]. It can 
cover a maximum frequency range of 14.7%  
(5.05–5.85 GHz) and 19.2% (4.75–5.76 GHz) in terms of 
impedance and 3-dB AR bandwidth, respectively. The 
basic antenna has a maximum gain of 10.7 dBic.  

The comparison between simulated and measured re-
sults of scattering parameters of the proposed antenna with 
MTS is presented in Fig. 5(a). The proposed antenna with 
an isolation less than –15 dB can cover an impedance 
bandwidth of 37.8% (4.5–6.6 GHz) for both ports 1 and 2. 
The measured results of AR and gain of antenna for two 
ports are displayed in Fig. 5(b). There is an AR less than  
3 dB in the frequency range of 21.8% (4.9–6.1 GHz) and 
23.4% (4.9–6.2 GHz) for ports 1 and 2, respectively.  

Therefore, by adding MTS surface waves propagating 
are excited to generate additional resonances and increas-
ing impedance and AR bandwidth. 

The peak gain of antenna for port 1 is 15 dBic and for 
port 2 is 14.9 dBic. The measured radiation patterns of the 
proposed antenna at 5.5 GHz for two ports is displayed in 
Fig. 6. When port 1 has been selected as an input port, the 
antenna radiates a half-power beamwidth (HPBW) of 25.8° 
with an average sidelobe level (SLL) less than 16.8 dB. 
These parameters for port 2 are HPBW = 26.2 and average 
SLL less than 16.5 dB. The prototype of the fabricated 
antenna is presented in Fig. 7.  
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(a) 

 
(b) 

Fig. 5. Results of the proposed antenna for two ports:  
(a) Comparison between simulated and measured S-
parameters; (b) measured gain and AR. 

 
(a) 

 
(b) 

Fig. 6. The measured pattern of antenna at 5.5 GHz (solid 
lines are RHCP and dashed lines LHCP, red lines are 
φ = 0° and blue lines are φ = 90°): a) port 1, b) port 2. 

 

 
Fig. 7. The prototype of the proposed MTS antenna. 

6. Conclusion 
A miniaturized metasurface high gain microstrip 

patch array is understood with interlaced SR feed network. 
The combining patch antenna elements together lead to 
decrease aperture size and elements distance in antenna 
array. In comparison with basic work [5], incorporating 
MTS causes to increased BW, AR and gain of antenna 
more than 22%, 4% and 4 dBic, respectively. The most 
important aspect of this paper in comparison with other CP 
antenna, is utilizing two ports to generate two diversity of 
circular polarization at one antenna. Finally, combination 
of SR feed, interlaced patches and MTS plane causes to 
suppress side lobes, and also improves characteristics of 
antenna. 
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