
PASJ: Publ. Astron. Soc. Japan 64, 45, 2012 June 25
c� 2012. Astronomical Society of Japan.

A Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm
with Parallel Implementations

Murat KAPLAN

Akdeniz University, Space Sciences and Technologies, TR-07058 Antalya, Turkey
muratkaplan@akdeniz.edu.tr

and
Hasan SAYGIN

İstanbul Aydın University, Beşyol Mah. Inönü Cad. No:38 Sefaköy-Küçükçekmece, İstanbul, Turkey
hasansaygin@aydin.edu.tr

(Received 2010 July 31; accepted 2011 November 12)

Abstract

The time-symmetric block time-step (TSBTS) algorithm is a newly developed efficient scheme for N -body
integrations. It is constructed on an era-based iteration. In this work, we re-designed the TSBTS integration scheme
with a dynamically changing era size. A number of numerical tests were performed to show the importance of
choosing the size of the era, especially for long-time integrations. Our second aim was to show that the TSBTS
scheme is as suitable as previously known schemes for developing parallel N -body codes. In this work, we relied on
a parallel scheme using the copy algorithm for the time-symmetric scheme. We implemented a hybrid of data and
task parallelization for force calculation to handle load balancing problems that can appear in practice. Using the
Plummer model initial conditions for different numbers of particles, we obtained the expected efficiency and speedup
for a small number of particles. Although parallelization of the direct N -body codes is negatively affected by the
communication/calculation ratios, we obtained good load-balanced results. Moreover, we were able to conserve the
advantages of the algorithm (e.g., energy conservation for long-term simulations).

Key words: N -body — parallel algorithms — celestial mechanics — stellar dynamics

1. Introduction

In many practical applications in N -body integrations, the
block time-step approach is preferred. In this approach, many
particles share the same step size, where the only allowed
values for the time-step length are powers of two. Block time-
steps are advantageous to reduce the prediction overheads,
and are needed both for good parallelization and code effi-
ciency. However, the time-symmetricity and symplecticity of
previous direct integration schemes are disturbed by using vari-
able block time-steps.

The algorithm developed by Makino et al. (2006) is the first
algorithm for time symmetrizing block time-steps (TSBTS),
which carry the benefits of time symmetry to block time-step
algorithms. In this algorithmic approach, the total history of
the simulation is divided into a number of smaller periods, with
each of these smaller periods called an “era.” Symmetrization
is achieved by applying a time symmetrization procedure with
an era-based iteration.

The TSBTS algorithm was generated for direct integration of
N -body systems, and as such is suitable to use for a moderate
number of bodies no more than 105. The direct approach to
N -body integration is preferred when we are interested in the
close-range dynamics of the particles, and aiming at obtaining
high accuracy. The algorithm gives us the ability to reach long
integration times with high accuracy. However, it has some
limitations on memory usage, which stem from choosing the
size of the era.

The TSBTS algorithm also provides some benefits for the

parallelization of N -body algorithms. The development of
parallel versions of variable time-step codes becomes increas-
ingly necessary for many areas of research, such as stellar
dynamics in astrophysics, plasma simulations in physics, and
molecular dynamics in chemistry and biology. The most
natural way to do this is through the use of block time-steps,
where each particle has to choose its own power of two, for the
size of its time-step (Aarseth 2003). Block time-steps allow
efficient parallelization, given that large numbers of parti-
cles sharing the same block time-step can then be integrated
in parallel.

In section 2, we summarize the TSBTS algorithm time-
symmetric block time-step algorithm. We provide definitions
for the era concept, and for time-symmetrization of block time-
steps. In section 3, we present sample numerical tests for
choosing the size of the era. We show how important is the
effect of the era size on the energy errors, and the relationship
between the era size and the iteration number. In section 4,
we offer a dynamic era size scheme for both better energy
conservation and better memory usage. In section 5, we present
a parallel algorithm for the TSBTS scheme with a hybrid force
calculation procedure. In section 6, we discuss the load balance
and parallel performance tests of the algorithm. Section 7 sums
up the study.

2. Era-Based Iterative Time-Symmetrization for Block
Time-Steps

In the TSBTS algorithm, an iterative scheme is combined

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



45-2 M. Kaplan and H. Saygın [Vol. 64,

with an individual block time-step scheme to apply the algo-
rithm to the N -body problem effectively. There are two impor-
tant points in this algorithm: the era concept and the time-
symmetrization procedure. The era is a time period in which
we collect and store information for all positions and veloc-
ities of the particles for every step. At the end of each era,
we synchronize all particles with time-symmetric interpolation.
This synchronization is repeated many times during the inte-
gration period, depending on the size of the era.

Let us remember the TSBTS algorithm briefly:
We used a self-starting form of the leapfrog scheme,

rnew = rold + voldΔt +
1

2
aoldΔt2;

vnew = vold +
1

2
.aold + anew/Δt; (1)

with a Taylor expansion for predicted velocities and positions,

rp
new = rold + voldΔt +

1

2
aoldΔt2;

vp
new = vold + aoldΔt: (2)

One of the easiest estimates for the time-step criterion is the
collisional time-step. When two particles approach each other,
or move away from each other, the ratio between the relative
distance and the relative velocity gives us an estimation.

On the other hand, if particles move at roughly the same
velocity, the collision time scale estimate produces infinity
when the particles’ relative velocities are zero. For such cases,
we use a free-fall time scale as an additional criterion, or just
take the allowed largest time-steps for those particles.

Time-steps are determined using both the free-fall time scale
and the collision time scale (3) for particle i by taking the
minimum over the two criterion and over the all j as

ıti = �min
i¤j

(
jrij j
jvij j ;

s
jrij j
jaij j

)
; (3)

where � is a constant accuracy parameter, rij and vij are the
relative position and velocity between particles i and j , and
aij is the pairwise acceleration.

Even if Aarseth’s time-step criterion (Aarseth 2003) serves
us better for avoiding such unexpected situations, and gives
a better estimation, it needs higher order derivatives, and it is
expensive for a second-order integration scheme.

Our time-symmetry criterion is defined in equation (4). This
criterion gives us the smallest n values that suit the condition
Δtn � ıtm

i ,

n = min
k�1

(
k

ˇ̌̌ 1

2k�1
� .ıtm

i + ıtm+1
i /

2

)
; (4)

where m is the iteration counter. Here, m and m + 1 refer to
the beginning and end of the time step.

In the case of block time-step schemes, a group of particles
advances at the same time. At each step of the integration,
a group of particles is integrated with the smallest value of Δtn.
Here, we refer to the group of particles as being particle blocks.
The first group of particles in an era is called the first block.

In the first pass through an era, we perform standard forward
integration with the standard block step scheme, without any

intention to make the scheme time-symmetric. To compute
the forces on the particles with the smallest value of Δtn,
we use second-order Taylor expansions for the predicted posi-
tions, while a first-order expansion suffices for the predicted
velocity. Predicted positions, velocities, and accelerations for
each particle for every time-step are stored during each era.

In the second pass, which is the first iteration, instead
of Taylor expansions, we use time-symmetric interpolations
with stored data. This time, each time-step is calculated in
a different way for symmetrization, as in Algorithm 1. Here,
dtm is the block time-step of the integrated particle group, and
Δtn is the n’th level block time-step, which is obtained from
a time-symmetry criterion [equation (4)]. If the current time
is an even multiple of the current block time-step, that time
value is referred to as even time; otherwise, it is referred to
as odd time.

Algorithm 1: Symmetrization scheme for block time steps
for m = 1 to number of iteration do

if time == odd time then
if dtm ¤ Δtn then

dtm = dtm=2
end if

end if
if time == even time then

if dtm < Δtn then
dtm = dtm � 2

end if
if dtm == Δtn then

dtm = Δtn
end if
if dtm > Δtn then

dtm = dtm=2
end if

end if
end for

Here is a description of the symmetrization scheme for block
time-steps (as in Algorithm 1):

If the current time is odd, first, we try to continue with
the same time-step. If, upon iteration, that time-step
qualifies according to the time-symmetry criterion [as in
equation (4)], then we continue to use the same step size
that was used in the previous step of the iteration. If not,
we use a step size half as large as that of the previous
time-step.

If the current time is even, our choices are: doubling
the previous time-step size; while keeping it the same;
or halving it. We first try the largest value, given by
doubling. If equation (4) shows us that this larger time-
step is not too large, we accept it: otherwise, we consider
keeping the time-step size the same. If equation (4)
shows us that keeping the time-step size the same is okay,
we accept that choice: otherwise, we simply halve the
time-step, in which case no further testing is needed.

The same steps are repeated for higher iterations, as in
the first iteration. The main steps of the integration cycle

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



No. 3] Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm 45-3

Algorithm 2: Sequential Algorithm for TSBTS
1: Initialization:

- Read initial position and velocity vectors from the source.
- Arrange size in the memory.
- Initialize particles’ forces, time-steps, and next block times.
- Sort particles according to time blocks.

2: Start the iteration for the era.
3: Start the integration for the first block of the era.
4: Predict position and velocity vectors of all particles for the current integration time. If this is the first step of the iteration,

or if the time of the particle is smaller than the current time, do direct prediction: otherwise perform interpolation from
the currently stored data.

5: Calculate the forces on the active particles.
6: Correct the position and velocity vectors of the particles in the block.
7: Update their new time-steps and the next block time.

- After the first iteration, symmetrize new time steps according to Algorithm 1.
8: Sort particles according to time blocks.
9: Repeat from Step 3 while the current time is � time at the end of the era.

10: Repeat from Step 2 until the number of the iteration reaches the iteration limit.
11: Repeat from Step 2 for the next era, until the final time is reached.
12: Write the outputs and finish the program.

Fig. 1. Relative energy errors for 100-body problems. 5 different sets of Plummer model initial conditions with 5 different era sizes (0.015625, 0.03125,
0.0625, 0.125, 0.25) were used with 3 iterations for 1000 time units. The top 5 curves (red curves) show linearly growing errors that correspond to errors
for the largest era sizes (0.25). The rest of the curves present the results for other era sizes. The smallest relative errors in the figure (black curves) show
a random-walk fashion and correspond to results to the smallest era size (0.015625). (Color online)

are given by Algorithm 2.

3. Numerical Tests for the Size of the Era

The size of an era can be chosen as any integer multiple of
the maximum allowed time-step. There is no important compu-
tational difference between dividing the integration to the small
era parts, and taking the whole simulation in one big era.
However, some symmetrization routines, such as adjusting the
time-steps and interpolating the old data, increase the computa-

tion time. Additionally, keeping the whole history of the simu-
lation requires a huge amount of memory.

It is important to decide what is the most convenient choice
for an era. We need to store sufficient information from the
previous steps to adjust the time-steps with iterations. To avoid
doing additional work and storing a uselessly large history,
choosing a large size for the era is not recommended. On the
other hand, the era size must be large enough to store rapid and
sharp time-step changes.

We made several tests with different Plummer model initial

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



45-4 M. Kaplan and H. Saygın [Vol. 64,

Fig. 2. Relative energy errors for 100-body problems. 5 different sets of Plummer model initial conditions are used for 5 iterations with 5 different era
sizes (0.015625, 0.03125, 0.0625,0.125, 0.25). In this figure, all of the curves show random-walk fashion instead of linearly growing errors. Also, the
worst relative error is below 0.008, even when it is 0.035 in figure 1. (Color online)

conditions, using different sizes of era. The units were chosen
as standard N -body units (Heggie & Hut 2003), as the grav-
itational constant G = 1, the total mass M = 1 and the total
energy is Etot = �1=4. We limited the maximum time-step
to 1=64. The � parameter was kept larger than usual so as to
see the error growth in smaller time periods. The � parameter
was set as 0.1 for 100-body problems, and 0.5 for 500-body
problems. The Plummer type softening length, �, was taken
as 0.01. Each system was integrated for every era size (1, 0.5,
0.25, 0.125, 0.0625 , 0.03125, 0.015625) for 1000 time units.

Figure 1 shows the energy errors for 5 different 100-body
problems with 5 different era sizes. In these test runs, time-
symmetrized block time-steps were used with 3 iterations. We
also performed test runs for other era sizes (1:0;0:5). However,
the growth of energy errors for these era sizes reached beyond
the scales of this figure. The figure shows that 3 iterations
are not enough to avoid linearly growing errors for large (here,
0.25) era sizes.

We conducted the following tests to see this effect clearly.
Figure 2 shows the energy errors for 5 different 100-body
problems with 5 different era sizes as in the previous figure.
However, we used 5 iterations here. In this figure, the largest
era size (0.25 time unit) does not show a linearly growing error,
exactly contrary to the case of 3 iterations.The improvement
on energy errors comes directly from the iteration process, as
we expected.

We increased the particle number 5 times, and set the �
parameter as 0.5. The � parameter could have been remained
as 0.1, but we forced the algorithm to take larger time-steps,
which in turn produce larger energy errors for relatively small
time periods. Figure 3 shows the energy errors for 5 different
500-body problems with 7 different era sizes. The red curves
show the errors for era sizes of 0.015625, 0.03125, and 0.0625

time units; the black curves show the errors for era sizes of
0.125, 0.25, 0.5, and 1 time units.

It seems that more iterations are needed to obtain smaller
energy errors, while working with larger era sizes. If time-
symmetric block time-steps can not be produced with a small
number of iterations, the total energy error grows linearly. As
indicated by our tests, the iteration number and the era size
must be chosen carefully to ensure symmetric block time-steps.

Although the size of the era is not very important as long as
the iteration number is large enough, a large number of itera-
tions is not the preferred choice, since it demands high compu-
tational cost. Also, the era size would have to be kept small
to avoid huge memory usage. In practice, our tests show that 5
iterations is not enough to prevent linearly growing errors when
we use wore than a 0.25 time unit as the era size.

On the other hand, the era size must be greater than the
greatest time-step. Otherwise, we can not store past infor-
mation for the iteration process, and the algorithm works as
a classical block time-step scheme.

4. Dynamic Era

Our test results for symmetrized time-steps with a small
number of iterations in the previous section show that keeping
the era size large or small has a clear effect on energy errors.
However, the amount of the past position and the velocity infor-
mation increase with the size of the era. Then, many more
iterations are required to obtain optimized time-steps. Also,
increased numbers of iterations consume more CPU time.

Let us remember and give some additional details and defi-
nitions about the relationship between the block time-steps and
the era: similar to the first block definition that we provided in
section 2, the last group of particles in an era is referred to as

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



No. 3] Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm 45-5

Fig. 3. Relative energy errors for 500-body problems. 5 different sets of Plummer model initial conditions were used with 7 different era sizes (0.015625,
0.03125, 0.0625, 0.125, 0.25, 0.5, 1) for each set; 3 iterations were performed in the integrations. The 15 curves (red curves) in the center of the figure
present the results of smaller era sizes (0.015625, 0.03125, 0.0625); the remainder of the 20 curves correspond to larger (0.125, 0.25, 0.5, 1) era sizes.
(Color online)

the last block. The current times in the integration for the first
and last blocks are referred to as the first block time and the last
block time, respectively.

At the end of each era, the integration of every particle stops
at the same time, and new block time-steps are calculated and
assigned for new blocks. The last block can take the maximum
allowed time-step, at most. The first block can take any block
time-step smaller than the maximum allowed time-step. Then,
particles are sorted according to their block time-steps. Also,
every block has its own integration time related to its block
time-step.

If we can find the proper criterion to change it, the era size
can be controlled dynamically. The simplest choices can vary
between 1 time unit and the allowed largest time-step. Our
suggestion is: calculate the new block time-steps and the first
and last block times at the end of each era, and take the differ-
ence between the last and first block times. This difference
gives us a dynamically changing size, and we can assign this
as the size of the new era.

Naturally, sometimes this difference can be larger than 1
time unit, or smaller than the maximum allowed time-step.
Also, if all of the particles take the same time-step in any era,
the difference goes to zero. We can use the maximum allowed
time-step and any power-of-two times of this era size for the
top and bottom limits of the era, respectively. Here, we used
2�3 multiples of the largest time-step for the lower limit. If all
of the particles take the largest time-step, or larger time-steps
than the new era size, there will not be enough past informa-
tion for symmetrization. For these reasons, era size must not
be much smaller than the largest time-step.

If our estimate of the era size is smaller than our largest

time-step, the particles with largest time-steps are excluded
from the integration process of the era, and are then left for
the next era. Errors of energy conservation oscillate in time,
when they happen. We can use the allowed largest time-step
for the era size in these cases. The main steps of the algorithm
is given by Algorithm 4.

In the tests we did for the dynamic era, we used two choices
for the era size: equal to the allowed largest time-step, and
dynamically changing size, as defined above. We already know
from previous runs for these test problems that we obtained
the smallest errors on the total energies when we took the
allowed largest time-steps as the era size. We performed 3 iter-
ations. Figure 4 shows the energy errors for 10 different
100-body problems. The green curves show the results for the
dynamically changing era; the red curves show the results for
the fixed era. Figure 5 shows the energy errors for 10 different
500-body problems.

The results for the dynamic era size are in the same range
as those of the fixed era size. Even if the chosen fixed era size
(0.015625) seems to be like the best choice for previous tests
with the same initial conditions and parameters (i.e., maximum
allowed time-steps, softening and accuracy parameters), in
general, the dynamic era gives modestly better results than the
fixed era for 0.015625. We ran more than 20 tests, and in 45%
of them the errors for the dynamic era size were larger than
errors for the fixed era size. The rest of the results are clearly
better than those for the fixed era sizes; besides, there is an
advantage of reduced memory usage for the same number of
iterations. The running times for the dynamic era size are 10%
less than for fixed era sizes, in general.

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



45-6 M. Kaplan and H. Saygın [Vol. 64,

Algorithm 3: Sequential Algorithm for TSBTS with Dynamic Era Size
1: Initialization (same as Algorithm 2).
2: Set first and last block times.
3: Calculate dynamic era size (dynamic era size = last block time � first block time)

i) if dynamic era size <2 � 10�3 � maximum time-step
dynamic era size = 2 � 10�3 � maximum time-step

ii) if dynamic era size > maximum time-step
dynamic era size = maximum time-step

4: Start the iteration for the era.
5: Start the integration for the first block of the era.
6: Predict the position and velocity vectors of all particles for the current integration time. If this is the first step of the

iteration, or if the time of the particle is smaller than the current time, make a direct prediction: otherwise, perform
interpolation from the currently stored data.

7: Calculate the forces on the active particles.
8: Correct the position and velocity vectors of the particles in the block.
9: Update their new time-steps and next block time.

- After the first iteration, symmetrize new time steps according to Algorithm 1.
10: Sort particles according to time blocks.
11: Repeat from Step 5 while the current time is � time at the end of the era.
12: Repeat from Step 4 until the number of the iteration reaches the iteration limit.
13: Repeat from Step 2 for the next era, until the final time is reached.
14: Write the outputs and finish the program.

Algorithm 4: Sequential Algorithm for TSBTS with Dynamic Era Size
1: Initialization (same as Algorithm 2).
2: Set first and last block times.
3: Calculate dynamic era size (dynamic era size = last block time � first block time)

i) if dynamic era size <2 � 10�3 � maximum time-step
dynamic era size = 2 � 10�3 � maximum time-step

ii) if dynamic era size > maximum time-step
dynamic era size = maximum time-step

4: Start the iteration for the era.
5: Start the integration for the first block of the era.
6: Predict the position and velocity vectors of all particles for the current integration time. If this is the first step of the

iteration, or if the time of the particle is smaller than the current time, make a direct prediction: otherwise, perform
interpolation from the currently stored data.

7: Calculate the forces on the active particles.
8: Correct the position and velocity vectors of the particles in the block.
9: Update their new time-steps and the next block time.

- After the first iteration, symmetrize new time steps according to Algorithm 1.
10: Sort particles according to time blocks.
11: Repeat from Step 5 while the current time is � time at the end of the era.
12: Repeat from Step 4 until the number of the iteration reaches the iteration limit.
13: Repeat from Step 2 for the next era, until the final time is reached.
14: Write the outputs and finish the program.

5. Parallel Algorithm

Basically, there are two well-known schemes that are used
in direct N -body parallelizations: copy and ring.

The ring algorithm is generally preferred for reducing
memory usage. It can be reasonable for shared time-step codes,
but it is not easy to use with block step schemes. It is also
well known from previous studies that this algorithm achieves
almost the same speed-up as the copy algorithm (Makino
2002). The number of particles in the integrated block changes

with every step. In many cases, the size of the integrated block
can be smaller than the number of processors. It is difficult to
obtain a balanced load distribution for such cases.

We used the copy algorithm. While it is much easier to
extend for block step schemes, the copy algorithm also has a
load imbalance problem in classical usage. For any case, the
block size can be smaller than the number of processors, again.

We divided the partitioning strategy into two cases so as to
avoid bad load balancing. In the first case, we divided the parti-
cles when the number of particles in the first block was greater

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



No. 3] Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm 45-7

Fig. 4. Relative energy errors for 10 different 100-body problems. For each initial condition, two algorithms are performed, one with fixed and one with
changing era size; 3 iterations are used for two algorithms. The fixed era size was taken as 0.015625. This value was also used as the allowed largest
time-step for the algorithms. The green curves correspond to the dynamic era sizes, and 70% of them show smaller errors than fixed sizes. (Color online)

Fig. 5. Relative energy errors for 10 different 500-body problems. Fixed and dynamic era sizes are performed for each initial condition, as in Figure 4.
The fixed era size and the allowed largest time-step were taken as 0.015625, just as in previous tests. The results for dynamic and fixed era sizes are in
the same error ranges (40% of them show smaller errors than fixed sizes), and no linearly growing error is observed. (Color online)

than the number of nodes. This is a kind of data partitioning,
with every node containing a full copy of the system. In the
second case, we divide the force calculation of the particles in
the first block as a kind of work partitioning.

Our parallel algorithm works with the following steps, as in
Algorithm 5.

6. Load Balance and Performance

We performed test runs on a Linux cluster in ITU-HPC Lab.1

with 37 dual core 3.40 GHz Intel(R) Xeon(TM) CPU with
Myrinet interconnect.

1 İstanbul Technical University High Performance Computing Lab.

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



45-8 M. Kaplan and H. Saygın [Vol. 64,

Algorithm 5: Parallel TSBTS Algorithm
1: Broadcast all particles. Each node has a full copy of the

system.
2: Initialize the system for all particles in all nodes. Every

node computes time-steps for all particles.
3: Compute and sort time blocks.
4: Integrate particles in the first block whose block times

are the minimum for the era:

i) if the number of the first block � number of nodes:
every processor calculates forces and integrates
(number of first time block)/(number of nodes)
particles.

ii) if the number of the first block < number of nodes:
every processor calculates
(number of particles)/(number of nodes)
part of the forces on the particles of the first block.

5: Update integrated particles.
6: Repeat from Step 3.

The compute time was measured using MPI Wtime(). The
timing for the total compute time was started before the broad-
cast of the system to the nodes, and ended at the end of integra-
tion. The calculation time of the subset of the particles in the
current time block that was being handled by a given processor
was taken as the work load of the processor. In the iteration
process, the largest time was taken as the work load of the
processor for the same time block.

The work load of the i ’th processor for every active inte-
grated particle group is defined as wi ; np is the number of
processors; the mean work load hW i is

hW i =
1

np

npX
i=1

wi ; (5)

and load imbalances are

L.w/ = 1 � hW i
max.wi /

: (6)

Figure 6 shows the load imbalance for a 1000-body problem.
We used 12 processors. In direct N -body simulations, a 1000-
body problem is not a big number for 12 processors (Makino
2002; Harfst et al. 2007; Spinnato 2000). Here, the load imbal-
ance is not seen as more than 0.1%, in general. Moreover, the
load imbalance is smaller than expected. The main reason for
this is in the iteration routines of the TSBTS algorithm, which
increases both the communication and the calculation times for
active particles. Also, when the number of particles in the
first block is smaller than the number of nodes, work parti-
tioning is applied in the algorithm, which also increases the
communication time.

T1 is the running time for one processor; Tn is the running
time for n processors. The speed-up and efficiency are given,
respectively, as:

speed-up =
T1

Tn

; (7)

efficiency =
T1

nTn

: (8)

Fig. 6. Load imbalance for the 1000-body problem Plummer model
initial conditions using 12 processors for 1000 time units. � = 0.1;
era size is taken as the allowed largest time-step. Every single red point
corresponds to a load imbalance for the active particle group at the time
when its vectors are updating. (Color online)

Figures 7 and 8 show the speed-up and efficiency results
of symmetrized and non-symmetrized block time-steps for the
10000-body problem initial conditions with a Plummer soft-
ening length of 0.01, and an accuracy parameter of � = 0.1.
Only one iteration with the TSBTS algorithm corresponds to
an individual block time-step algorithm without symmetriza-
tion. The speedup result for 3 iterations is clearly better than
the result for 1 iteration. These results show that the commu-
nication/calculation ratio decreases with the iteration process,
though iteration needs much more computation time.

For moderately short integration times, as in one time unit
cases, the same error bounds can be obtained with smaller
computation times by classical algorithms. However, the algo-
rithm already shows its advantages in long time integrations.
Figure 9 shows the relative energy errors and CPU times for 20
different 500-body problems with 2 different accuracy parame-
ters [� = 0.1, 0.01] for 1 CPU. Each system was integrated for
1 and 3 iterations and 1000 time units. Even if it is not possible
to obtain the same degree of energy errors for different test
problems, the results are still highly promising. We obtained
significantly better energy errors with the TSBTS algorithm
(3 iterations) than with the classical individual block time-
step algorithm (1 iteration) for the same accuracy parameters
(� = 0.1) in all tests. Also, in some tests (more or less in 20%
of the tests), we obtained better results with 3 iterations for
10-times larger accuracy parameters than with 1 iteration run
for � = 0.01.

For example, in one of our 500-body problems, we obtained
a relative energy error of 5.4 � 10�5 with � = 0.1 for 3 itera-
tions, while it was 3.1 � 10�2 for 1 iteration. To reach the same
error bound with one iteration for 1000-time units, we had to
reduce the accuracy parameter to 10-times smaller (� = 0.01).
Then, we obtained a relative energy error of 1.92 � 10�5 with
1 iteration. In this example, the calculation times for 1 and
3 iterations with � = 0.1 were 6.77 � 103 s, and 3.28 � 104 s,
respectively, while the time was 6.36 � 104 s, for � = 0.01 with
1 iteration. Here, 3 iterations increased the calculation time by

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



No. 3] Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm 45-9

Fig. 7. Speed-up, (7), vs. processor number for the 10000-body
problem Plummer model initial conditions, both for symmetrized and
non-symmetrized individual block time-step algorithms. The contin-
uous curve at the top corresponds to symmetrized block time-steps with
3 iterations. The discontinuous curve at the bottom corresponds to the
classical block time-step algorithm. (Color online)

Fig. 8. Efficiency, (8), vs. processor number for 10000-body problem
Plummer model initial conditions, both for symmetrized and non-sym-
metrized individual block time-step algorithms. The continuous curve
at the top corresponds to symmetrized block time-steps with 3 itera-
tions. The discontinuous curve at the bottom corresponds to the clas-
sical block time-step algorithm. (Color online)

almost a multiple of 2. However, the calculation time increased
by a multiple of 10, while the accuracy parameter was reduced
by the same order.

Figure 10 shows the running time requirements of the algo-
rithm for the same 10000-body problem, both for 1 and 3 iter-
ations, for one N -body time unit. The TSBTS algorithm needs
up to 5-times more run time than the 1 iteration case with
1 CPU for this test (for 500-body tests, this ratio was 4.75 as an
average of their run times). This extra time was consumed by
iteration and symmetrization procedures. The time-consuming
ratio between the 1 and 3 iteration cases was reduced to almost
3.5 times when we increased the number of processors.

Fig. 9. Relative energy errors and the CPU times for 20 different
500-body problems for 1000 time units. One iteration with the TSBTS
algorithm corresponds to the individual block time-step algorithm
without symmetrization. Here, we used two values for the accuracy
parameter (� = 0.1, 0.01). (Color online)

Fig. 10. Performance comparison of the TSBTS algorithm with 3 iter-
ations and the classical individual block time-step algorithm for
10000-body problem Plummer model initial conditions. The top line
corresponds to the TSBTS algorithm, and the one below corresponds
to the non-symmetrized individual block time-step algorithm. (Color
online)

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024



45-10 M. Kaplan and H. Saygın

7. Discussion

We have analyzed the era concept in greater detail for time
symmetrized block time-steps. Our test results show that the
size of the era must be chosen carefully. This is impor-
tant, especially for long-term simulations with highly desir-
able energy conservations. The era size is also important to
avoid the need for additional data storage, and a uselessly high
number of iterations, which require too much running time.

In this work, we suggested a dynamically changing size for
the era. This enabled us to follow the adaptively changing
size for these time periods. In this scheme, the era size was
well-adjusted to the physics of the problem. In many cases,
we obtained better energy errors than previous algorithms with
a fixed era size.

Additionally, we produced a copy algorithm-based parallel
scheme combinied with our time symmetrized block time-step
scheme. We divided the force calculation into two approaches,
according to the number of integrating particles, so as to avoid
bad load balancing. If the number of particles in the integrated
block was greater than the number of processors, we used the
classical approach –the copy algorithm– to calculate the forces.
If we had a smaller number of particles than processors to

integrate, we divided the force calculations between the proces-
sors using work partitioning.

Parallelization of the direct N -body problem already
features some difficulties regarding communication costs. The
communication times dramatically increase with the number
of processors. Previous studies show that using more than
10 processors for a few thousands particles does not result in
a substantial gain (Makino 2002; Harfst et al. 2007; Spinnato
2000). This problem is replicated in individual time-step and
block time-step cases.

Even if we need to expend some additional communica-
tion efforts in our work partitioning approach, we obtain good
load balancing results with this approach. Also, the iteration
process requires much more effort. The speed-up and effi-
ciency results are as we expected for the current implemen-
tations. The scaling of the algorithm can be increased by using
hyper systolic or other efficient algorithms (Makino 2002) in
future studies.

We thank the anonymous referees for their constructive
comments, which helped us to improve the contents of this
paper. We acknowledge research support from ITU-HPC Lab.
grant 5009-2003-03.

References

Aarseth, S. J. 2003, Gravitational N -Body Simulations: Tools and
Algorithms (Cambridge: Cambridge University Press)

Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Zwart, S. P., &
Berczik, P. 2007, New Astron., 12, 357

Heggie, D., & Hut, P. 2003, The Gravitational Million-Body
Problem: A Multidisciplinary Approach to Star Cluster Dynamics
(Cambridge: Cambridge University Press)

Makino, J. 2002, New Astron., 7, 373
Makino, J., Hut, P., Kaplan, M., & Saygın, H. 2006, New Astron., 12,

124
Spinnato, P., van Albada, G. D., & Sloot, P. M. A. 2000, in Proc. of the

8th Int. Conf. on High-Performance Computing and Networking
ed. M. Bubak et al. (London: Springer-Verlag), 249

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/64/3/45/2898266 by Istanbul Aydin U

niversity user on 25 M
arch 2024


