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Abstract: In this study, the effects of the use of improved fusel oil on engine performance and on
exhaust emissions in a spark-ignition engine were investigated experimentally in consideration of the
water, gum, and moisture content at high compression ratios according to TS EN 228 standards. In the
study, a four-stroke, single-cylinder, air-cooled, spark plug ignition engine with an 8/1 compression
ratio was used at three different compression ratios (8/1, 8.5/1, 9.12/1). Experiments were performed
for six different ratios of fuel blends (F0, F10, F20, F30, F40, and F50) at a constant speed and different
loads. The data obtained from the experiments were compared with the original operating parameters
of the engine while using gasoline. According to the test results, the optimal engine performance
was at a 9.12/1 compression ratio and with a F30 fuel blend. With the increase from an 8/1 to 9.12/1
compression ratio for the F30 fuel blend, the overall efficiency increased by 6.91%, and the specific
fuel consumption decreased by 2.35%. The effect of the optimum fusel blend on the emissions was
also examined and CO emissions were reduced by 36.82%, HC emissions were reduced by 23.07%,
and NOx emissions were reduced by 15.42%, while CO2 emissions were increased by 13.88%.

Keywords: fusel oil; SI engine; compressions ratio; engine performance; emission; removal of gum
and water content

1. Introduction

Due to the increasing energy demand in the world and the fact that the petroleum fuels used in
motor vehicles will not be able to meet the needs in the near future, recently, many studies have been
carried out on alternative energy sources and the development of existing systems [1].

In addition to fossil fuels, alternative fuels are used in internal combustion engines. Fusel oil can
be used as an alternative fuel in internal combustion engines due to the amount of alcohol it contains.
As alternative fuels are advantageous over fossil fuels, due to the lower exhaust emissions, and because
they are renewable and can be produced from waste materials, they are more economical. Alcohols can
be used in engines as standalone fuel or as gasoline–alcohol blends [1]. Alcohols may have a cooling
effect on the fresh mixture due to their lower thermal values and higher vaporization temperatures,
which may result in an increased volumetric efficiency of the engine [2–4]. Since alcohols are higher in
octane number than gasoline, the engine can operate at higher compression ratios, which in turn can
improve engine efficiency and reduce fuel consumption [5–8].

Fusel oil is a distillation by-product from ethyl alcohol fermentation [9]. Normal and branched
chain monohydric alcohols with lower carbon atoms (2–5 carbon atoms) are the only natural sources of
fusel oil [9–11]. Fusel oil may be colorless, yellow, brown, or green, depending on the type of substance

Energies 2020, 13, 1824; doi:10.3390/en13071824 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13071824
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/7/1824?type=check_update&version=2


Energies 2020, 13, 1824 2 of 14

used in fermentation; it has a very sharp, unpleasant, and irritating odor [12]. In addition, fusel oil is
contained at the rates of 0.1% to 0.7% in sugar beet molasses residue. The composition and quantity of
fusel oil varies depending on the type of carbon source used in the process of alcohol production by
fermentation and the methods of preparation and the resolution of the fusel oil from the fermentation
mixture [9,12].

In some studies on fusel oil, the effects of fusel oil–gasoline blends on engine characteristics were
investigated by reducing the amount of H2O in fusel oil for internal combustion engines [13–15].
The effect of fusel oil on the combustion and performance of the engine was investigated by improving
the calorific value by decreasing the moisture content, and the moisture content was found to have
negatively affected the combustion [16,17]. In order to determine the optimal fusel oil–gasoline blend,
engine performance and emission values were investigated using the response surface technique
(RSM) by operating the engine at a specific load [18–20]. The effects of fusel oil on combustion,
specifically before and after the removal of moisture content, were examined comparatively and
analyzed statistically [21,22]. In other studies on fusel oil, the effects of fusel–gasoline blends on engine
performance and emissions were also investigated [8,23–26].

The utilization of waste fusel oil as an alternative fuel source over gasoline is important in terms of
preventing environmental pollution and for the economic use of natural resources. Literature reviews
have revealed that there were no studies on the use of fusel oil in internal combustion engines at
different compression ratios [16,18,23,27–29]. This study fills a gap in the literature as it uses the waste
fusel oil, a by-product obtained from the ethanol production processes of sugar production plants,
as an alternative energy source to unleaded gasoline, a petroleum-based fuel, in a spark plug ignition
engine [30,31]. Different physical and chemical characteristics of waste fusel oil and water as well
as the gum and moisture ratios were analyzed according to the standard methods and were then
accorded to the standards [32]. In addition, the ratio of an optimal fuel mixture at constant speed
and the different operating loads at different compression ratios was determined, and their effects on
engine performance and exhaust emissions were investigated.

2. Materials and Methods

2.1. Test Fuel Improvement

The fusel oil used in the experiments was supplied by Eskişehir Sugar Plant and Konya Sugar
Plant, both of which produce ethyl alcohol with a 99.5% purity according to the TS 1810 standard.
Molasses fusel, which is an oily, yellow to brown liquid, was used in the study. The H2O content was
found to be 240 mg/kg, and the distillation analysis showed a flash point of 39.5 ◦C. The test results by
TUBITAK MRC to the physical and chemical composition properties of the fusel oil sample used as an
alternative fuel in this study are shown in Table 1.

Table 1. Composition of fusel oil blend.

Amyl Alcohol Chemical
Formula

Molecular
Weight (g/mol)

Density
(g/cm3)

Boiling
Point (◦C)

Melting
Point (◦C)

Volume
(%)

Viscosity
(cp)

Specific Heat
(J/Kg ◦K)

2-Methyl
1-Butanol C5H12O 88.148 0.815 129 −70 0.22 4 2386.5

4-Methylpe
2-Penthanol C6H14O 102 0.8079 131.8 −90 0.27 - -

i-amyl alcohol
(3-Methyll 1-Butanol) C5H12O 88 0.809 132 −117.2 62.29 3.86 2239.9

n-Hexanol
(1-Hexyl Alcohol) C6H14O 102 0.8186 157.2 −51.6 0.51 - -

n-Heptanol
(1-Heptil Alcohol) C7H16O 116 0.824 175 −34.6 0.08 - -

i-Butanol C4H10O 74 0.805 108 −108 8.71 3.5 2470.2

n-Butanol C4H10O 74 0.81 117 −79.9 0.12 2.6 2876.3

n-Propanol C3H8O 60 0.804 97.2 −127 0.738 2.256 2470.2

i-Propanol C3H8O 60 0.789 82.5 −85.8 8.06 2.1 2763.3

Ethanol C2H6O 46 0.789 78 −112 11.09 1.41 2847.1

Water H2O 18 1 100 0 10.3 1 4186.8
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2.2. Preparation of a Proper Fuel Blend

The amount of H2O contained in fusel oil as a factory waste has adverse effects on engine
performance and combustion [15]. Even though olefins increase the octane number in gasoline,
the unstable olefins formed during cracking cause the formation of gum when they come into contact
with air to oxidize. Figure 1 shows the amount of gum in the fusel–gasoline blend. The amount of
gum and H2O in the fusel oil prevents a homogeneous blend with gasoline [19]. In order to provide
an alternative fuel, the amount of gum must be reduced, and it must be refined to reduce the water
content. For this purpose, the fusel oil, having been subjected to a series of processes, was made
available for use in engine tests.
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Figure 1. Gum amount in the fusel–gasoline blend.

Distillation efficiency of fusel oil was found to be 96.5% at the final boiling point, 139.9 ◦C.
The amount of gum present is at the limit determined by TS EN 228, which is a maximum of
5 mg/100 mL. In the mixture of a fusel–gasoline fuel blend (10% fusel + 90% gasoline), this value
was found to be 26.6 mg/100 mL, which was reduced to 13.4 mg/100 mL using a gum solver and to
0.8 mg/100 mL using a molecular sieve Z4-01 (2.5–5 mm) moisture scavenger, and was refined of H2O
approximately by 96.9%. The reduction in gum and H2O was observed on a GC/MS chromatography
mass spectroscopy device. The fuel blend was accorded to TS EN 228 standards, and a homogeneous
fuel blend was obtained. Removal of water content from fusel oil leads to a distillation of alcohols in
lower temperatures but does not cause a significant change in the amount of alcohol [24]. Figure 2
shows the Sieve Z4-01 (2.5–5 mm) moisture scavenger and the improved fusel–gasoline blends.
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2.3. Experiment Fuels

Five blends of unleaded gasoline–fusel oil were prepared, and their characteristics are shown in
Table 2.

Table 2. Fuel blends and characteristics.

Blend. Composition Density
(g/m3)

Lower Calorific
Value (KJ/kg)

Engine
Octane

Number

Research
Octane

Number

Freezing
Point (◦C)

F0 0% fusel oil
100% unleaded gasoline 721.79 43,580 86.51 96.33 −53

F10 10% fusel oil
90% unleaded gasoline 726.03 42,449.60 87.08 97.80 >50

F20 20% fusel oil
80% unleaded gasoline 735.13 41,319.20 87.12 97.84 >50

F30 30% fusel oil
70% unleaded gasoline 750.55 40,188.81 87.17 98.30 >50

F40 40% fusel oil
60% unleaded gasoline 758.54 39,058.41 88.50 98.34 >50

F50 50% fusel oil
50% unleaded gasoline 764.83 37,928.02 89.30 98.38 >50

F100 100% fusel oil
0% unleaded gasoline 852.1 32,276.04 103.61 106.82 >50

2.4. Increase of Compression Rate for the Test Engine

In the experiments, three different cylinder heads of the spark-ignition engine used were removed
from the grounding plates and grinded, and the compression ratio was altered. Cylinder heads were
grinded at ateliers of Mercedes Benz (Hadımköy, Istanbul-Turkey) through measurements. Figure 3
shows the grinding operations; 0.40 and 0.80 mm of sawdust were removed from the cylinder heads.
In order to calculate the compression ratios, the volumetric capacity of the cylinder was measured.
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The geometric compression ratio, defined as the ratio of the cylinder volume (V1) at initial
compression to the end-compression volume (V2), is shown in Equation (1), where Vh is the piston
displacement (swept) volume and Vc is clearance volume.

ε =
V1

V2
=

Vh + Vc

Vc
= 1 +

Vh
Vc

(1)
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In the actual engine, the compression does not start at bottom dead center (BDC) but after the
intake valve is closed. Therefore, the compression ratio (εg) of the actual motor can be expressed as in
Equation (2). Vk is the volume that the piston covers until the valves close after BDC. Table 3 shows
the altered compression ratios.

εg =
(Vh −Vk) + Vc

Vc
(2)

Table 3. Altered compression rates.

Volumetric Values ε

Unmodified engine 8

Cylinder head grinded by 0.40 mm 8.50

Cylinder head grinded by 0.80 mm 9.12

2.5. Experiment Procedure

In the experiments, a Honda HK 550 MS, which is a four-stroke, single cylinder, carburetted, and
spark-ignition generator, was used. The technical specifications of the generator and the engine of the
generator used in the experiments are given in Table 4.

Table 4. Technical specifications of the test engine.

Specifications

Model Honda GX390

Type 4-stroke, overhead cam, single cylinder

Compression ratio 8.0:1

Cooling system Forced-air cooling

Piston displacement (cm3)
(Bore × Stroke) (mm)

389 (86.0 × 64.0)

Net power (SAE 1349) 11.8/11.7 HP
(8.7 kW) @ 3600 rpm

Net torque (SAE 1349) 2.70 kg/m
(26.5 N/m) @ 2500 rpm

Power Generator Specifications

Model Honda HK 550 M/MS

Max. output 55 kW

Voltage 230 V

Phase Single-phase

Frequency 50

Power factor 13.0 @ 3600

AC circuit breaker Yes

A Bilsa MOD 2210 WINXP-K exhaust gas analyzer was used in the experiments to measure the
CO, HC, CO2, and NOx emissions, and lambda (λ) values. The precisions are shown in Table 5.
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Table 5. Measurement ranges of the exhaust gas analyzer.

Parameters Limits Precision

CO 0–10.0 vol.% 0.001%

CO2 0–20.0 vol.% 0.001%

HC 0–10.000 vol. ppm 1 ppm

O2 0–10 vol.% 0.01%

NOx 0–5000 1 ppm

Lambda 0.5–2.00 0.001

RPM 0–9990 rpm 10 rpm

Lambda 0.5–2.00 0.001

The experimental setup is shown in Figure 4. In order to measure fuel consumption, an Ender
SWOCK YP20002 electronic scale that can measure up to 2 kg with a precision of 0.01 g was used.
A Delta SW 305 digital chronometer was used to determine the fuel consumption per unit time.
A K/pt100 type thermocouple was used to measure the exhaust gas temperature. The PCE-FOT 10
brand digital instrument was used to measure the engine oil temperature. The numerical data from
the sensors were read from the motor and monitored on the test computer. Since the lower thermal
value of fusel oil is lower than that of gasoline, the main nozzle on the carburettor was widened to
adjust to λ = 1. The nozzle cross-section was adjusted to λ = 1 in all experiments by means of the
conical-tipped fuel adjustment screw. The air excess coefficient was monitored on the computer during
the experiments. Six 1000 W halogen projector lamps were used to load the fixed speed generator at
different operating loads for dynamometer purposes.
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Figure 4. An overview of the experimental setup.

A system consisting of a piezoelectric pressure transducer, inductive pick-up, charge amplifier,
oscilloscope, and personal computer (PC) was set up to measure the in-cylinder pressure of the test
engine. To collect data for the in-cylinder pressure, a Kistler model 611C piezoelectric transducer
mounted on the spark plug was used, where the in-cylinder pressure values were transferred to a
Rigol digital oscilloscope (DS2202E) via a Kistler model 5018A charge amplifier and recorded on a PC.
The data regarding the crank angles and the position of the top dead center were transmitted to an
oscilloscope via an inductive pick-up.
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Before starting the data collection for the experimental tests, the engine was operated until it
reached the operating temperature. Engine tests were conducted at constant speed using six different
volumetric fuel blends (F0, F10, F20, F30, F40, and F50) at the original cylinder head (CR = 8:1); the
overall efficiency at 1000–6000 W load ranges, specific fuel consumption, in-cylinder pressure data, and
the CO, HC, CO2, and NOx exhaust emission values were examined. As a result, an optimal fuel blend
and the most efficient operation range were determined at different compression ratios (8.5/1–9.12/1).

3. Findings and Discussion

3.1. Brake Thermal Efficiency and In-Cylinder Pressure at Different Compression Ratios

Brake thermal efficiency is the ratio of the useful mechanical power obtained from the engine to
the energy released by the fuel consumed per unit time [33]. Since the octane numbers of alcohols are
higher than those of gasoline, they can work without knocking at high compression rates. This, as it
increases the combustion efficiency and, thus, the end-compression temperature and pressure, can
provide a higher overall efficiency than does the gasoline [34].

The most important parameters having an effect on engine efficiency are the physical and chemical
characteristics and the compression ratio of the fuel used [6,34,35]. Figure 5 shows the brake thermal
efficiency graph based on a CR of 8/1 engine load. At an 8/1 compression ratio, we found that for
all loads, the brake thermal efficiency for the F10, F20, and F30 fuel blends, when compared to that
of the F0 fuel, increased by an average of 1.41%, 2.77%, and 4.29% respectively, whereas for the F40
and F50 fuel blends, it decreased by an average of 5.33% and 10.54%, respectively. The abundance of
oxygen content in the molecular structure of alcohols in the fusel oil and the higher octane number in
comparison to gasoline improved combustion and increased efficiency. For higher rates of fusel oil
in fuel blends, as the H2O content increases, the temperature inside the cylinder and the efficiency
decrease. This shows that the H2O content of fusel oil decreases efficiency, as shown in some studies
in the literature [18,27,36,37]. Awad et al. [13] conducted an RSM analysis to examine the effect of
different H2O content of fusel oil–gasoline blends on engine performance. It was stated that fusel oil
with water content within fusel oil–gasoline blends, whether water is reduced or not, has a significant
effect on the brake thermal efficiency (BTE) engine load.
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Figure 5. Overall efficiency graph based on an engine load at a cylinder head (CR) of 8:1.

Figure 6 shows the in-cylinder pressure graph of six different fuel blends (F0, F10, F20, F30,
F40, F50) at a CR of 8:1. The vaporization temperature of fusel oil is higher than that of gasoline.
The increase in the internal combustion pressure (ICP) ratio, the decreased H2O content of the fusel
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oil, the higher octane number of fusel oil in comparison to gasoline and fusel oil’s oxygen content
improved the combustion. The review of graph showed that the ICP of F30 fuel increased by the fusel
ratio in the fuel blend, and it was found to be 33.02 bars.Energies 2020, 13, x FOR PEER REVIEW 8 of 14 
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Figure 6. In-cylinder pressure graph at a CR of 8:1.

The overall efficiency increased in parallel with the increase in the amount of load. According
to the experimental results, among the blends tested, the F30 fuel has the highest overall efficiency.
Figure 7 shows the overall efficiency changes at all loads studied with the F30 fuel blend at three
different compression ratios. When the compression ratio was increased from 8:1 to 8.5:1 and then
to 9.12:1 for all the loads tested using the F30 fuel blend, on average, there was an increase by 4.29%,
8.07%, and 17.20%, respectively. It was found that the overall efficiency of the F30 fuel blend at the
compression ratio of 9.12 was the highest. An increase in the cylinder temperature due to the increase
in compression ratio and the compression of the air–fuel mixture in a smaller area resulted in a better
combustion and evaporation of the high-octane fusel oil. This result is similar to some studies in the
literature [38,39].
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The in-cylinder pressures of the F30 and F0 fuels at a compression ratio of 8.5:1 and 9.12:1 are given
in Figure 8. In Figure 8A, at a CR of 8.5:1, the maximum pressure of the fuel F30 after the initiation of
combustion cycle was measured to be 40.62 bars with a 6.8% increase in pressure in comparison to the
F0 fuel. In Figure 8B, at a CR of 9.12:1, the maximum pressure of the fuel F30 after the initiation of the
combustion cycle was measured to be 51.98 bars with a 6.12% increase in pressure in comparison to the
fuel F0.
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3.2. Brake Specific Fuel Consumption

Specific fuel consumption is the value that shows how much of the chemical energy of the fuel
used in the engine to produce heat is converted to power in the crankshaft [40]. In other words, specific
fuel consumption refers to the amount of fuel consumed per unit power. Specific fuel consumption
decreased as the engine load and the CR increased. When the specific fuel consumption of F30 fuel
for all engine loads at 8:1 compression ratio increased to 8.5:1 and then to 9.12:1, the specific fuel
consumption increased by an average of 3.56% and decreased by an average of 1.27% and 9.08%,
respectively, in comparison to the F0 fuel. This is shown in Figure 9. Since CR increases engine
efficiency and power, specific fuel consumption decreases with a CR increase. The lower thermal
value of fusel oil is lower than that of gasoline. The lower thermal value of fusel oil increased the fuel
consumption in order to generate the same power at a CR of 8:1. This is similar to some studies in the
literature [39,41].
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3.3. Effect of Fusel Blends on the Amount of Carbon Monoxide Emissions at Different Compression Ratios

CO emissions occur in the cases of incomplete combustion and insufficient oxygen in the cylinder
to achieve a full combustion in the rich air/fuel mixtures when there is not enough time for combustion
in the cylinder [41]. The CO emission concentration depends largely on the engine operating condition
and the air/fuel ratio. Figure 10 shows the CO emission changes based on the compression ratios
of the F30 fuel at all engine loads and at constant speed. For all the engine loads for the F30 fuel
blend, in comparison to the F0 fuel, the volumetric CO emission values decreased by 20.88% at CR 8:1,
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40.02% at CR 8.5:1, and 49.81% at CR 9:1. This is similar in some studies in the literature [7,26,42,43].
As the CR increases, the chemical reactions increase, and CO emissions may decrease as combustion
temperature increases.
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3.4. Effect of Fusel Blends on the Amount of Hydrocarbon Emissions at Different Compression Ratios

Hydrocarbon (HC) emission occurs in the case of incomplete combustion due to lack of air and
oxygen in the cylinder [41,43]. HC emission is the fuel that is exhausted unburned. HC emission
changes for the F30 fuel are shown in Figure 11. Turbulence in the cylinder increases due to the
increase in engine load. Since the turbulence near the exhaust duct enables post-exhaust oxidation, HC
emissions decrease as the load increases. The F30 fuel used in the experiments showed a decrease
in HC emission values due to increased engine loads. For all the engine loads for the F30 blend,
in comparison to the F0 fuel, the HC emissions at CRs of 8:1, 8.5:1, and 9.12:1 decreased by an average
of 30.19%, 45.38%, and 52.07%, respectively. The highest HC emission was at a CR of 8:1, and the
lowest HC emission was at a CR of 9.12:1. This is similar to some studies in the literature [41].
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3.5. Effect of Fusel Blends on the Amount of Carbon Dioxide Emissions at Different Compression Ratios

Carbon dioxide (CO2) is an end combustion product of any fuel containing a carbon molecule in
its structure. In gasoline engines, the emission of carbon dioxide is related to the complete combustion
of the fuel and occurs due to the high combustion temperature. The presence of sufficient oxygen
(O2) for complete combustion increases the amount of carbon dioxide (CO2) emissions. Since fusel
oil contains oxygen, the hydroxyl radical OH (one of the major oxidizing agents) converts carbon



Energies 2020, 13, 1824 11 of 14

monoxide to carbon dioxide with the presence of sufficient oxygen O2. Figure 12 shows the variation of
CO2 emissions at different compression rates and at all loads. For all engine loads for the F30 blend, in
comparison to the F0 fuel, the volumetric CO2 emissions increased by an average of 12.56% at CR 8:1,
by 17.65% at CR 8.5:1, and by 24.99% at CR 9.16:1. The abundance of O2 content in fusel oil improved
the combustion. This shows similarities with some studies in the literature, where alcohol fuels reduce
the amount of CO2 due to the high O2 content [41].
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3.6. Effect of Fusel Blends on the Amount of Nitrogen Oxides Emissions at Different Compression Ratios

NOx is an exhaust emission product due to cylinder temperatures. NOx emissions are particularly
noticeable at temperatures above 1500 ◦C [19]. The second most important parameter having effect
on NOx formation is the oxygen concentration in the cylinder [13]. Figure 13 shows the NOx graph
for the different compression ratios of F0 and the F30 blend. For all engine loads tested with the F30
blend in comparison to F0, NOx emission decreased by an average of 58.23%, 39.88%, and 15.42% at
CRs of 8:1, 8.5:1, and 9.12:1, respectively. As CR increases, NOx emissions increase as the combustion
temperature increases. The reason why NOx emission is lower for fusel oil at different compression
ratios compared to that of gasoline is due to the lower thermal value and alcohol and H2O content of
fusel oil. This situation is similar to some studies in the literature [6,41,44].
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4. Results

The conversion of waste fusel oil into an alternative fuel source to gasoline is important in terms of
preventing environmental pollution and the economic use of natural resources. In this study, water and
gum content of fusel–gasoline blends were improved upon; the optimal fuel blend was determined,
and the effect of increasing compression ratio was investigated. The test was carried out in a single
cylinder, four-stroke, SI engine at different working loads, at λ = 1, and at different compression ratios.
The CO, HC, CO2, and NOx values were measured as BTE, brake specific fuel consumptions (BSFC),
ICP, and the emission values of the improved fusel oil.

Gum and H2O content of fusel oil was reduced by 0.8 mg/100 ml, and a homogenous fuel blend
was obtained. The presence of oxygen in the fusel oil and the higher octane number of it, in comparison
to gasoline, increased the combustion efficiency of the improved fusel oil fuel blend. For all engine
loads, F30 was found to be the ideal fuel blend with a BTE increase by 4.29% and with a maximum
pressure value of 33.2 bars for ICP at a CR of 8:1.

Increasing the compression ratio increased the post-combustion pressure and temperature. F0 and
the F30 fuel blend were compared at all loads and with different compression ratios. BTE improved by
17.20%, and ICP increased by 52.1% for the improved fusel oil blend at a CR of 9.12:1. BSFC was found
to be the most efficient compression ratio by a reduction of 9.08%. Due to the higher latent vaporization
heat and abundant oxygen content of the improved fusel oil, for the ideal blend, namely, F30, the CO,
HC, and NOx decreased by 49.81%, 52.07%, and 15.42% respectively, whereas CO2 increased by 24.99%
at a CR of 9.12:1.

Fusel oil cannot be blended homogeneously due to the gum and H2O content in it; this not only
causes knocking by worsening the combustion in the engine, but it also causes corrosion by leaving
soot residue in the cylinder and intake valve. Experiment results show that waste fusel oil, obtained as
a by-product, can be used as an alternative fuel to a certain extent in the gasoline engines after a series
of processes.
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