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In this study, we use the molecular and diquark-antidiquark tetraquark pictures to investigate magnetic 
and quadrupole moments of the Bc-like ground state tetraquarks with the QCD light-cone sum rules 
with quantum numbers J P = 1+. In the numerical analysis, to obtain the magnetic and quadrupole 
moments of Bc-like tetraquark states molecular and diquark-antidiquark forms of interpolating currents, 
and photon distribution amplitudes have been used. The magnetic moments are acquired as μMol

Zucūb̄
=

1.18+0.52
−0.40 μN , μDi

Zucūb̄
= 3.05+1.19

−0.95 μN , μMol
Zdcd̄b̄

= 0.32+0.18
−0.10 μN , and μDi

Zdcd̄b̄
= 2.38+0.95

−0.75 μN . The hadrons’ 
magnetic and quadrupole moments are another fundamental observable as their mass, which provides 
information on the underlying quark structure and dynamics. The results obtained in both pictures are 
quite different from each other. Any experimental measurement of the magnetic moments can provide 
an understanding of the internal structure of these states. We get nonzero but small values for the 
quadrupole moments of Bc-like tetraquark states showing non-spherical charge distributions. Hopefully, 
the examinations given in this study will be helpful to an experimental search of them, which will be an 
interesting research subject.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Motivation

The experimental discovery of exotic states began in 2003 with the observation of the X(3872) [1], though they were suggested long 
ago that states other than standard hadrons could exist. Since 2003, scientists have been increasingly interested in investigating and 
understanding the nature of exotic states that differ from standard mesons and baryons. Analysis of exotic states plays a key role in 
understanding low-energy QCD and therefore it is quite important to search for them in experiments. So far, many exotic states have 
been observed by different experimental facilities. Many different theoretical interpretations of these states have been suggested, such as 
tetraquarks, pentaquarks, hybrids, glueballs, and so on (see the reviews of Refs. [2–17], and references therein, for further details).

Most of the discovered tetraquark states belong to the class of so-called hidden-charm or bottom states including the cc̄ or bb̄ pair. 
However, the first principles of QCD do not prohibit the existence of open-flavor tetraquarks. The Bc -like tetraquarks belong to another 
type of exotic state. Although these states have not been observed experimentally, they have attracted the attention of physicists [18–28]. 
In Refs. [18,19], Zhang et al., have employed to calculate the masses for [Q q̄][Q̄ (′)q] and [Q s̄][Q̄ (′)s] molecular states within the QCD sum 
rules, including the contributions of the operators up to dimension six in OPE. In Ref. [20], Sun et al., have studied the interaction between 
the S-wave D(∗)/D(∗)

s meson and S-wave B(∗)/B(∗)
s meson in the one-boson exchange model and they predicted the existence of many 

Bc-like molecular states. In Ref. [21], Albuquerque et al., have studied the mass of the exotic Bc-like molecular states using QCD sum rules 
and they predicted for these states masses around 7.0 GeV. In Ref. [22], Chen et al., have performed QCD sum rule analysis and extracted 
the masses of [bcq̄q̄], [bcs̄s̄] and [qcq̄b̄] and [scs̄b̄] tetraquark states and they estimated that the tetraquark states [qcq̄b̄] and scs̄b̄] lie below 
the thresholds of D(∗) B(∗) and D(∗)

s B(∗)
s respectively. In Refs. [23,24], Agaev et al., have studied the spectroscopic parameters for Bc -like 

tetraquark states [cq][b̄q̄] and [cs][b̄s̄] with quantum numbers J P = 0+, 1+ through QCD sum rule technique and their analyzes indicated 
that the masses are about 6.97 − 7.06 GeV for the [cq][b̄q̄] tetraquark states and 7.01 − 7.30 GeV for the [cs][b̄s̄] tetraquark states. In 
addition to the mass calculations of these states, some strong decay channels were also investigated in these studies and the relevant 
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coupling constants were obtained. In Ref. [25], Wang et al., studied the masses for fully open-flavor tetraquark states [bcq̄s̄] and [scq̄b̄]
with quantum numbers J P = 0+, 1+ in the framework of QCD sum rule method and their computations showed that the masses are 
about 7.1 − 7.2 GeV for the [bcq̄s̄] tetraquark states and 7.0 − 7.1 GeV for the [scq̄b̄] tetraquarks. In Ref. [26], Z.-G. Wang has constructed 
the diquark-antidiquark type current operators to study the axial-vector Bc-like tetraquark states with the QCD sum rules with quantum 
numbers J P = 1+−, 1++ and predicted mass of these states given as M Zbc̄(1+−) = 7.30 ± 0.08 GeV and M Zbc̄(1++) = 7.31 ± 0.08 GeV, 
respectively. In Ref. [27], Wu et al., calculated the spectra of the possible Q 1q2 Q̄ 3q̄4 (Q = b, c and q = n, s with n = u, d) tetraquark states 
by using the chromomagnetic interaction model in the diquark-antiquark picture. In Ref. [28], Ortega et al., have obtained the masses of 
D B , D B∗ , D∗B , and D∗B∗ states through the quark model and their computations indicated that the masses are about 7.1 − 7.3 GeV for 
the Bc-like tetraquark states.

The studying these Bc -like systems: contrary to cc̄ and bb̄, the Bc-like tetraquarks cannot annihilate into gluons and therefore these 
states are very stable, with narrow widths. Because of these properties, they are quite valuable to study heavy-quark dynamics and 
understanding the dynamics of the QCD at a deeper level. To better understand the internal structures of these states, it is also important 
to study decay channels such as strong, radiative, and electromagnetic together with their spectroscopic parameters. Calculation of the 
electromagnetic properties of the particles allows us to obtain important data about the substructure of the particles under investigation. 
Since in the past magnetic moments estimations from this sort of model have been well accomplished, to distinguish among the possible 
configurations, it seems to be helpful to investigate also the magnetic moments of multiquark states. Furthermore, the magnetic moments 
of the hadrons are important measurables like their masses, which have substantial knowledge about the underlying quark configurations, 
and can be used to distinguish the preferred quark configurations from different theoretical approximations and deepen our understanding 
of the underlying dynamics. Inspired by the above reasons, in this work, we will study the magnetic and quadrupole moments for the 
Bc-like (Zcb̄ for short) ground state tetraquarks with the quantum numbers J P = 1+ in the method of QCD light-cone sum rules (LCSR) 
which is the powerful quantitative tool to investigate features of hadrons. The key idea and the defining characteristic of the LCSR are that 
the short-distance operator product expansion is replaced by the light-cone expansion in operators of increasing twist [29–31]. Over the 
past few decades, LCSR has shown to be a very robust method for investigating non-perturbative hadron properties such as form factors, 
coupling constants, and magnetic moments associated with conventional and unconventional hadron states. The applications of the QCD 
sum rules and LCSR to some cc̄ and bb̄ tetraquark states can be seen in Refs. [32–56].

The article is organized as follows. In Sec. 2, we briefly introduce our notations and apply the LCSR method to evaluate the magnetic 
and quadrupole moments of Zcb̄ tetraquark states as molecular and diquark-antidiquark structures. In Sec. 3, the numerical analysis and 
discussions for the magnetic and quadrupole moments of the Zcb̄ tetraquark states are presented. The obtained results are summarized 
and discussed in Sec. 4. The appendixes include explicit expressions of the correlator used in computations of the magnetic moments of 
the Zcb̄ tetraquark states and some details about calculations.

2. Magnetic and quadrupole moments from LCSR

To evaluate the magnetic and quadrupole moments of the Zcb̄ ground state tetraquarks within the LCSR, we start with the following 
correlator

�μν(p,q) = i

∫
d4xeip·x〈0|T { Jμ(x) J †

ν(0)}|0〉γ , (1)

where q is the momentum of the photon, the γ stands for the external background electromagnetic field and Jμ(x) is the interpolating 
currents of the Zcb̄ ground state tetraquarks with the quantum numbers J P = 1+ . The corresponding molecular and diquark-antidiquark 
interpolating currents are given by

J Mol
μ (x) = [q̄a(x)iγ5ca(x)][b̄b(x)γμqb(x)], (2)

J Di
μ (x) = [qT

a (x)Cγ5cb(x)][qa(x)γμCb
T
b (x)] + [qT

a (x)Cγ5cb(x)][qb(x)γμCb
T
a (x)], (3)

where C is the charge conjugation operator and q(x) denotes one of the u(x) or d(x) quarks.
To get LCSR for the magnetic and quadrupole moments we follow standard instructions of the LCSR method and express the correlator 

�μν(p, q) in connection with the physical parameters of the Zcb̄ tetraquark states, which results in obtaining �Had
μν (p, q). From another 

side, the same correlator should be acquired concerning the quark-gluon degrees of freedom �Q C D
μν (p, q). Matching the coefficients of 

various Lorentz structures from two different representations of the same correlator and performing double Borel transformations and 
continuum subtraction to remove the effects of the continuum and higher states, we get LCSR for the magnetic and quadrupole moments 
of the Zcb̄ tetraquark states.

We will begin our analysis by calculating the hadronic representation of the correlator. To do this, the correlator is computed by its 
fulfillment with the intermediate Zcb̄ tetraquark states where p2 > 0, (p + q)2 > 0. By applying the four-integral over x we obtain

�Had
μν (p,q) = 〈0 | Jμ(x) | Zcb̄(p)〉

p2 − m2
Zcb̄

〈Zcb̄(p) | Zcb̄(p + q)〉γ 〈Zcb̄(p + q) | J †
ν(0) | 0〉

(p + q)2 − m2
Zcb̄

+ higher states. (4)

The matrix element 〈0 | Jμ(x) | Zcb̄(p)〉 is given as

〈0 | Jμ(x) | Zcb̄(p)〉 = λZcb̄
εθ
μ , (5)

with εθ
μ and λZ ¯ being the polarization vector and residue of the Z ¯ tetraquark states, respectively.
cb cb

2
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The matrix element 〈Zcb̄(p) | Zcb̄(p + q)〉γ can be written in connection with the Lorentz invariant form factors as follows [57]:

〈Zcb̄(p, εθ ) | Zcb̄(p + q, εδ)〉γ = −ετ (εθ )α(εδ)β
[

G1(Q 2) (2p + q)τ gαβ + G2(Q 2) (gτβ qα − gτα qβ)

− 1

2m2
Zcb̄

G3(Q 2) (2p + q)τ qαqβ

]
, (6)

where the polarization vectors of the initial and final Zcb̄ tetraquark states are represented εδ and, εθ and ετ is the polarization vector of 
the photon. Here, G1(Q 2), G2(Q 2) and G3(Q 2) are invariant form factors, with Q 2 = −q2.

Employing Eqs. (4)-(6), the correlator takes the form,

�Had
μν (p,q) =

ερ λ2
Zcb̄

[m2
Zcb̄

− (p + q)2][m2
Zcb̄

− p2]
{

G1(Q 2)(2p + q)ρ

[
gμν − pμpν

m2
Zcb̄

− (p + q)μ(p + q)ν

m2
Zcb̄

+ (p + q)μpν

2m4
Zcb̄

× (Q 2 + 2m2
Zcb̄

)

]
+ G2(Q 2)

[
qμgρν − qν gρμ − pν

m2
Zcb̄

(
qμpρ − 1

2
Q 2 gμρ

) + (p + q)μ

m2
Zcb̄

(
qν(p + q)ρ + 1

2
Q 2 gνρ

)
− (p + q)μpν pρ

m4
Zcb̄

Q 2
]

− G3(Q 2)

m2
Zcb̄

(2p + q)ρ

[
qμqν − pμqν

2m2
Zcb̄

Q 2 + (p + q)μqν

2m2
Zcb̄

Q 2 − (p + q)μqν

4m4
Zcb̄

Q 4
]}

. (7)

The magnetic dipole (F M(Q 2)) and quadrupole (FD(Q 2)) form factors are described in terms of G1(Q 2), G2(Q 2) and G3(Q 2) form 
factors as:

F M(Q 2) = G2(Q 2) ,

FD(Q 2) = G1(Q 2) − G2(Q 2) + (1 + τ )G3(Q 2) , (8)

where τ = Q 2/4m2
Zcb̄

with Q 2 = −q2. In the static limit, Q 2 = 0, the F M(Q 2 = 0) and FD(Q 2 = 0) form factors are related to the 
magnetic moment (μ), and quadrupole moment (D) as follows

eF M(0) = 2mZcb̄
μ,

eFD(0) = m2
Zcb̄

D . (9)

In QCD representation, the correlator in Eq. (1), is evaluated concerning the QCD degrees of freedom in deep Euclidean region where 
p2 << 0 and (p + q)2 << 0. To do this, we insert the interpolating currents in the correlator and contract the heavy and light quark fields 
utilizing Wick’s theorem. As a result of these steps, we get following expressions for the Zcb̄ states

�QCD−Mol
μν (p,q) = i

∫
d4xeip·x〈0 | Tr

[
γμSbb′

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

] | 0〉γ , (10)

�QCD−Di
μν (p,q) = i

∫
d4xeip·x〈0 |

{
Tr

[
γμ S̃b′b

b (−x)γν Sa′a
q (−x)

]
Tr

[
γ5 S̃aa′

q (x)γ5 Sbb′
c (x)

]
+ Tr

[
γμ S̃a′b

b (−x)γν Sb′a
q (−x)

]
Tr

[
γ5 S̃aa′

q (x)γ5 Sbb′
c (x)

]
+ Tr

[
γμ S̃b′a

b (−x)γν Sa′b
q (−x)

]
Tr

[
γ5 S̃aa′

q (x)γ5 Sbb′
c (x)

]
+ Tr

[
γμ S̃a′a

b (−x)γν Sb′b
q (−x)

]
Tr

[
γ5 S̃aa′

q (x)γ5 Sbb′
c (x)

]}
| 0〉γ , (11)

where

S̃ i j
Q (q)(x) = C SijT

Q (q)(x)C,

with C and T being the charge conjugation and transpose of the operator, respectively. Here, Sq(x) and S Q (x) represent the full light and 
heavy quark propagators. Throughout our calculations, we use the x-space expressions for the light and heavy quark propagators [58,59]:

Sq(x) = i
x/

2π2x4
− 〈q̄q〉

12

(
1 − i

mqx/

4

)
− 〈q̄q〉

192
m2

0x2
(

1 − i
mqx/

6

)
− igs

32π2x2
Gμν(x)

[
/xσμν + σμν /x

]
, (12)

S Q (x) = m2
Q

4π2

[
K1

(
mQ

√−x2
)

√−x2
+ i

x/ K2

(
mQ

√−x2
)

(
√−x2)2

]
− gsmQ

16π2

1∫
0

dv Gμν(vx)

[(
σμνx/ + x/σμν

)

×
K1

(
mQ

√−x2
)

√−x2
+ 2σμν K0

(
mQ

√
−x2

)]
, (13)

where 〈q̄q〉 is light-quark condensate, m0 is defined through 〈0 | q̄ gs σαβ Gαβ q | 0〉 = m2
0 〈q̄q〉, Gμν is the gluon field strength tensor, v is 

line variable and Ki ’s are modified Bessel functions of the second kind. The first term of the light and heavy quark propagators correspond 
3
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Table 1
Magnetic moments of the Zcb̄ states (in 
units of nuclear magnetons μN ).

Picture μZucūb̄
μZdcd̄b̄

Diquark 3.05+1.19
−0.95 2.38+0.95

−0.75
Molecule 1.18+0.52

−0.40 0.32+0.18
−0.10

to the perturbative or free part and the rest belong to the interacting parts. The correlator in QCD representation includes two different 
contributions: perturbative and nonperturbative. How perturbative and nonperturbative contributions are calculated in the analysis is given 
in Appendix A using Eq. (10) as an example. The QCD degrees of freedom representation of the correlator can be obtained in terms of the 
quark-gluon properties via the photo DAs and after performing an integration over x, the expression of the correlator in the momentum 
representation can be calculated straightforwardly.

To determine LCSR for the magnetic and quadrupole moments, we perform double Borel transformation and continuum subtraction to 
suppress the higher states and continuum effects. As a result, we get

μMol
Zcb̄

λ2−Mol
Zcb̄

= e

m2
Z

cb̄
M2 �

Q C D
1 (M2, s0), (14)

μDi
Zcb̄

λ2−Di
Zcb̄

= e

m2
Z

cb̄
M2 �

Q C D
2 (M2, s0), (15)

DMol
Zcb̄

λ2−Mol
Zcb̄

= m2
Zcb̄

e

m2
Z

cb̄
M2 �

Q C D
3 (M2, s0), (16)

DDi
Zcb̄

λ2−Di
Zcb̄

= m2
Zcb̄

e

m2
Z

cb̄
M2 �

Q C D
4 (M2, s0). (17)

For the sake of simplicity, only the explicit expressions of the �Q C D
1 (M2, s0) and �Q C D

2 (M2, s0) functions are presented in Appendix B.

3. Numerical illustrations and discussions

In this section, we perform the LCSR analyses for the magnetic and quadrupole moments of Zcb̄ tetraquark states. We use the values 
of masses, residues and various QCD condensates as follows: mu = md = 0, mc = 1.67 ± 0.07 GeV, mb = 4.78 ± 0.06 GeV, mMol

Zcb̄
= 6.85 ±

0.15 GeV, mDi
Zcb̄

= 7.06 ± 0.78 GeV, λMol
Zcb̄

= 0.036 ± 0.011 GeV5 [21], λDi
Zcb̄

= 0.024 ± 0.08 GeV5 [24] m2
0 = 0.8 ± 0.1 GeV2 [60], 〈ūu〉 = 〈d̄d〉 =

(−0.24 ± 0.01)3 GeV3 [60], 〈g2
s G2〉 = 0.88 GeV4 [6], f3γ = −0.0039 GeV2 [61] and χ = −2.85 ± 0.5 GeV−2 [62]. To proceed with the 

numerical calculations distribution amplitudes of the photon are needed. The explicit expressions of the photon distribution amplitudes 
and numerical values of input parameters are borrowed from Ref. [61].

There are two free parameters in Eqs. (14)-(17), the Borel mass parameter (M2) and the continuum threshold (s0). By taking into 
consideration that the magnetic and quadrupole moments are physical observables they should be less dependent on the free parameters 
M2, and s0. To obtain reliable working regions for these free parameters, we use three criteria to constrain them: The convergence of the 
operator product expansion (OPE), the pole contribution (P C ), and the magnetic and quadrupole moments dependence on M2 and s0. In 
the LCSR analysis, the P C requires that it should exceed 20% of the total contributions, which is typical for the multiquark states. We 
also demand that the series of light-cone expansion converge and contributions of the higher twist and higher condensate terms are less 
than 10% of the total contribution. Considering these constraints working intervals of these helping parameters have been determined as 
follows:

58.0 GeV2 ≤ s0 ≤ 60.0 GeV2,

7.5 GeV2 ≤ M2 ≤ 9.5 GeV2. (18)

Our numerical computations indicate that by taking into account these working intervals for the helping parameters, the magnetic and 
quadrupole moments of the Zcb̄ tetraquark states P C varies within the interval 30% ≤ P C ≤ 59% corresponding to the upper and lower 
limits of the Borel mass parameter. When we analyze the OPE convergence, we see that the contribution of the higher twist and higher 
dimensional terms in OPE is 3% of the total and the series shows good convergence. As an example, in Fig. 1, we also show the variation of 
the extracted magnetic moment of Zcb̄ tetraquark states with the Borel mass M2 using three fixed values of the continuum threshold s0. 
It can be seen from this figure that the magnetic moment indicates a weak dependence on M2 in its working region. Though the magnetic 
moment of Zcb̄ tetraquark states show some dependence on s0, it remains inside the limits allowed by the method and constitutes the 
main parts of the uncertainties.

We have determined all necessary parameters to specify the numerical values for the magnetic and quadrupole moments of Zcb̄
tetraquark states. As a result of our comprehensive numerical calculations, the magnetic moments of Zcb̄ tetraquark states are given in 
Table 1. It should be noted here that in numerical calculations we take into account the uncertainties in the input parameters, uncertainties 
entering into the photon DAs, as well as uncertainties because of the variations of Borel mass parameter M2 and continuum threshold s0. 
We would like to point out that roughly 18% of the errors in the numerical results are due to the mass of tetraquarks, 15% belongs to 
the residue of tetraquarks, 30% belongs to s0, 7% belongs to M2, 13% belongs to photon DAs and the remaining 17% corresponds to other 
input parameters.
4
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Fig. 1. The dependence of magnetic moment of the Zcb̄ tetraquark states on M2 at three fixed values of s0.

Table 2
Quadrupole moments of the Zcb̄ states (in units of 
f m2).

Picture DZucūb̄
(×10−2) DZdcd̄b̄

(×10−2)

Diquark −1.40+0.40
−0.40 0.70+0.30

−0.30
Molecule −0.40+0.10

−0.10 0.20+0.05
−0.05

The magnitude of the results obtained for the magnetic moments also gives the possibility to be measured experimentally. It follows 
from these results that the magnetic moments of Bc -like ground state tetraquarks are large enough to be measured in future experiments. 
When we compare the numerical results of the two pictures above, we observe that states with the same quantum numbers have dif-
ferent magnetic moments, which clearly shows the magnetic moment strongly depends on the structure of the hadron. This implies that 
any possible experimental measurement of magnetic moments can help us understand the internal structure of these states. Different 
magnetic moments will affect both the total and differential cross sections in the photo- or electro-production of Bc-like tetraquarks. 
Thus, information on the Bc -like tetraquarks magnetic moments will help us unveil the mysterious curtain over the Bc -like tetraquarks 
and deepen our understanding of the underlying quark structure and dynamics. Our results on magnetic moments of the Bc -like ground 
state tetraquarks may be checked in the framework of the alternative phenomenological models. Hopefully, the examinations given in this 
study will be helpful to an experimental search of them, which will be an interesting research subject.

To our best knowledge, this is the first study in the literature committed to the investigation of Bc-like tetraquark magnetic and 
quadrupole moments. Hence, theoretical predictions or experimental data are not yet existing to compare them with our numerical 
values. However, we give the magnetic moment results of the standard B∗

c meson so that the reader can better understand the difference 
in the results obtained for the Bc -like ground state tetraquarks. The magnetic moments of B∗

c meson have been extracted using the Bag 
model [63], extended Bag model [64] and Blankenbecler-Sugar (BSLT) equation [65]. The obtained results are given as μB∗

c
= 0.20 μN , 

μB∗
c
= 0.38 μN and μB∗

c
= 0.426 μN for the Bag model, extended Bag model, and BSLT, respectively. We would like to point out that only 

magnetic moment results for vector B∗
c mesons have been calculated in the literature and therefore these results are presented. As we 

mentioned above, it is given only to make the results understandable for the reader.
We also present numerical results of quadrupole moments of Bc -like tetraquark states, and their numerical values are given in Table 2. 

We can notice that just like the magnetic moment results, the quadrupole moment results obtained using two different configurations are 
different from each other. The quadrupole moments of the Bc -like tetraquark states indicate non-spherical charge distributions. The signs 
of quadrupole moments are negative for Zucūb̄ tetraquark states and positive for Zdcd̄b̄ tetraquark states, which correspond to the oblate 
and prolate charge distributions, respectively.
5
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4. Summary and outlook

We have employed the molecular and diquark-antidiquark tetraquark pictures to extract magnetic and quadrupole moments of the 
Bc-like ground state tetraquarks with the QCD light-cone sum rules with quantum numbers J P = 1+ . Comparing the numerical results 
of the above two configurations, we notice that the magnetic moments of the Bc -like tetraquark states with the same quantum numbers 
differ significantly from each other, which can be used to identify the underlying structure of these states. We have also extracted the 
quadrupole moments of these states. The quadrupole moments of the Bc -like tetraquark states indicate non-spherical charge distributions.

The magnetic moment of hadrons is an essential ingredient in calculations of the photo- and electro-production cross sections and may 
be obtained from the experiments in the future. With the increased luminosity in future runs, spectroscopic parameters and magnetic 
moments of Bc-like tetraquark states may be extracted from experimental facilities, which may help distinguish different theoretical 
approaches and deepen our understanding of the underlying dynamics governing their formations. It will also be important to determine 
the branching ratios of the different decay modes and decay channels of the Bc-like tetraquark states. Furthermore, the study of the 
Bc-like tetraquark states in other theoretical models can also be very interesting.
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Appendix A. Perturbative and nonperturbative contributions of QCD side of the correlation function

In this appendix, we will show in a short example how the perturbative and nonperturbative contributions, which appear in the 
analysis of the QCD side of the correlation function, are calculated.

�QCD−Mol
μν (p,q) = i

∫
d4xeip·x〈0 | Tr

[
γμSbb′

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

] | 0〉γ . (19)

As we mentioned above, the correlator in Eq. (19) includes different types of contributions: the photon can be emitted both perturba-
tively or non-perturbatively.

Practically, perturbative contributions, the photon interacts with one of the quarks, can be computed by replacing one of the light or 
heavy-quark propagators in Eq. (19) by

S f ree →
∫

d4 y S f ree(x − z) /A(z) S f ree(z) , (20)

the remaining three propagators are taken as full quark propagators. The QCD light-cone sum rule calculations are usually done on a 
fixed-point gauge is also known as Fock-Schwinger gauge. The most important reason for using this gauge is to express the external 
background field according to the field strength tensor and also the use of this gauge is preferred because it provides some convenience 
in calculations. For the electromagnetic field, it is characterized by xμ Aμ = 0. In this gauge, the external electromagnetic potential is given 
by

Aα(z) = −1

2
Fαβ zβ = −1

2
(εαqβ − εβqα) zβ . (21)

Equation (21) is inserted into Eq. (20), we obtain

S f ree → −1

2
(εαqβ − εβqα)

∫
d4z zβ S f ree(x − z)γα S f ree(z) . (22)

After some computations for S f ree
q and S f ree

Q , their final form becomes:

S f ree
q (x) = eq

32π2x2

(
εαqβ − εβqα

)(
x/σαβ + σαβ x/

)
,

S f ree
Q (x) = −i

eQ mQ

32π2

(
εαqβ − εβqα

)[
2σαβ K0

(
mQ

√
−x2

)
+

K1

(
mQ

√−x2
)

√−x2

(
x/σαβ + σαβ x/

)]
. (23)

Equation (23) is inserted into Eq. (19), and as a result these manipulations for the perturbative contributions we get

�
QCD−Mol
μν−Pert (p,q) = i

∫
d4xeip·x Tr

[
γμS f ree

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

]
δbb′

+ Tr
[
γμSb′b

q (x)γν S f ree
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

]
δbb′

+ Tr
[
γμSb′b

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 S f ree

c (x)γ5 Sa′a
q (−x)

]
δaa′

+ Tr
[
γμSb′b

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5 S f ree
q (−x)

]
δa′a. (24)
6
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It should be noted that all possibilities have been considered in the above equation. In the first line of Eq. (24), the photon interacts 
perturbatively with one of the light quark propagators, while the remaining three quark propagators are taken as full. Similarly, in the 
second line of Eq. (24), the photon interacts perturbatively with one of the heavy quark propagators, while the other propagators are taken 
as full, and so on.

Nonperturbative contributions, the photon is radiated at long distances, can be computed by replacing one of the light quark propaga-
tors in Eq. (19) by

Sab
αβ → −1

4
(q̄a�iq

b)(�i)αβ, (25)

where �i = I, γ5, γμ, iγ5γμ, σμν/2 and the remaining three propagators are considered as full quark propagators including the perturba-
tive as well as the nonperturbative contributions. In the second case, the correlator takes the form,

�
QCD−Mol
μν−Nonpert(p,q) = − i

4

∫
d4xeip·x〈0 |

{
Tr

[
γμ�iγν Sb′b

b (−x)
](

q̄b(x)�iq
b′
(0)

)
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

]
+Tr

[
γμSbb′

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5�i
](

q̄a(x)�iq
a′
(0)

)}
| 0〉γ . (26)

By replacing one of the light quark propagators and using the expression q̄a(x)�iqa′
(0) → 1

3 δaa′
q̄(x)�iq(0), the Eq. (26) takes the form

�
QCD−Mol
μν−Nonpert(p,q) = −i

∫
d4xeip·x

{
Tr

[
γμ�iγν Sb′b

b (−x)
]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

]
δbb′

+Tr
[
γμSbb′

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5�i
]
δa′a

}
1

12
〈γ (q)|q̄(x)�iq(0)|0〉. (27)

In addition to the above computations, when a light quark interacts with a photon nonperturbatively, a gluon can also be released from 
one of the remaining three quark propagators. The expression obtained after performing these calculations is as follows:

�
QCD−Mol
μν−Nonpert(p,q) = −i

∫
d4xeip·x

{
Tr

[
γμ�iγν Sb′b

b (−x)
]
Tr

[
γ5 Saa′

c (x)γ5 Sa′a
q (−x)

][(
δbb′

δb′b − 1

3
δbb′

δb′b
)

+
(
δbaδb′a′ − 1

3
δbb′

δaa′) +
(
δba′

δb′a − 1

3
δbb′

δa′a
)]

+Tr
[
γμSbb′

q (x)γν Sb′b
b (−x)

]
Tr

[
γ5 Saa′

c (x)γ5�i
][(

δba′
δb′a − 1

3
δbb′

δa′a
)

+
(
δb′a′

δba − 1

3
δb′bδa′a

)
+

(
δaa′

δa′a − 1

3
δaa′

δa′a
)}

× 1

32
〈γ (q)|q̄(x)�i Gμν(vx)q(0)|0〉, (28)

where we used

q̄a(x)�i G
bb′
μν(vx)qa′

(0) → 1

8

(
δabδa′b′ − 1

3
δaa′

δbb′)
q̄(x)�i Gμν(vx)q(0). (29)

We observe that matrix elements of the form 〈γ (q)|q̄(x)�iq(0)|0〉 and 〈γ (q) 
∣∣q̄(x)�i Gμνq(0)

∣∣ 0〉 are required. These matrix elements 
are parameterized concerning the photon distribution amplitudes (DAs) and explicit expressions of these DAs are given in Ref. [61]. 
In addition to these matrix elements, non-local operators such as four quarks (q̄qq̄q) and two gluons (q̄GGq) can also be seen in the 
calculations. However it is known that the effects of such nonlocal operators are small [66,67], and hence we will neglect them. Using 
Eqs. (24), (27) and (28), the calculations of the QCD side of the correlator of the analysis are obtained.

Appendix B. Explicit forms of the �Q C D
i (M2, s0) functions

In this appendix, we give the explicit expression for the �Q C D
1 (M2, s0) and �Q C D

2 (M2, s0) functions:

�
Q C D
1 (M2, s0) = − eb

15728640π5

[
1440mb P2π

2
(

I[0,4,1,0] − 3I[0,4,1,1] + 3I[0,4,1,2] − I[0,4,1,3] − 3(I[0,4,2,0]

− 2I[0,4,2,1] + I[0,4,2,2] − I[0,4,3,0] + I[0,4,3,1]) − I[0,4,4,0]
)

+ 480m2
0mc P2π

2
(

I[0,3,2,0]
− 2I[0,3,2,1] + I[0,3,2,2] − 2I[0,3,3,0] + 2I[0,3,3,1] + I[0,3,4,0] + 6I[1,2,2,1] − 3I[1,2,2,2]
− 6I[1,2,3,1]

)
+ 10(−P1 + 48mc P2π

2)
(

I[0,4,2,0] − 3I[0,4,2,1] + 3I[0,4,2,2] − I[0,4,2,3]
− 2I[0,4,3,0] + 4I[0,4,3,1] − 2I[0,4,3,2] + I[0,4,4,0] − I[0,4,4,1] + 4I[1,3,2,1] − 8I[1,3,2,2]
7
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+ 4I[1,3,2,3] − 8I[1,3,3,1] + 8I[1,3,3,2] + 4I[1,3,4,1]
)

− 9
(

2I[0,6,2,1] − 7I[0,6,2,2]
− 5I[0,6,2,4] + I[0,6,2,5] − 6I[0,6,3,1] + 15I[0,6,3,2] − 12I[0,6,3,3] + 3I[0,6,3,4] + 6I[0,6,4,1]
− 9I[0,6,4,2] + 3I[0,6,4,3] − 2I[0,6,5,1] + I[0,6,5,2] + 6I[1,5,2,2] − 18I[1,5,2,3] + 18I[1,5,2,4]
− I[1,5,2,5] − 18I[1,5,3,2] − 18I[1,5,3,3] + 18I[1,5,3,4] − 18I[1,5,4,2] + 18I[1,5,4,3]

− I[1,5,5,2]
)]

+ 5ec P1

56623104π5

[
12I[0,4,2,1] − 4I[0,4,2,0] − 12I[0,4,2,2] + 4I[0,4,2,3] + 5I[0,4,3,0] − 10I[0,4,3,1]

+ 5I[0,4,3,2] + 2I[0,4,4,0] − 2I[0,4,4,1] − 3I[0,4,5,0] − 32mb

(
4P2π

2
(

I[0,2,1,0] − 2I[0,2,1,1]

+ I[0,2,1,2] − 2I[0,2,2,0] + 2I[0,2,2,1] + I[0,2,3,0] − 2I[1,1,1,0] − 4I[1,1,1,1] + 2I[1,1,1,2]

− 4I[1,1,2,0] + 4I[1,1,2,1] + 2I[1,1,3,0]
))

− 16I[1,3,2,1] − 32I[1,3,2,2] + 16I[1,3,2,3]

− 8I[1,3,3,1] + 20I[1,3,3,2] − 8I[1,3,4,1]
]

+ eq

5242880π5

[
5P1

(
I[0,4,3,0] − 2I[0,4,3,1] + I[0,4,3,2] − 2I[0,4,4,0] + 2I[0,4,4,1] + I[0,4,5,0]

+ 8I[1,3,3,1] − 4I[1,3,3,2] − 8I[1,3,4,1]
)

− 240mc P2π
2
(

I[0,4,3,0] − 2I[0,4,3,1] + I[0,4,3,2]
− 2I[0,4,4,0] + 2I[0,4,4,1] + I[0,4,5,0] + 8I[1,3,3,1] − 4I[1,3,3,2] − 8I[1,3,4,1]

)
− 9

(
I[0,6,3,0]

− 4I[0,6,3,1] + 6I[0,6,3,2] − 4I[0,6,3,3] + I[0,6,3,4] − 3I[0,6,4,0] + 9I[0,6,4,1] − 9I[0,6,4,2]
+ 3I[0,6,4,3] + 3I[0,6,5,0] − 6I[0,6,5,1] + 3I[0,6,5,2] − I[0,6,6,0] + I[0,6,6,1] + 6I[1,5,3,1]
− 18I[1,5,3,2] + 18I[1,5,3,3] − 6I[1,5,3,4] − 18I[1,5,4,1] + 36I[1,5,4,2] − 18I[1,5,4,3]

+ 18I[1,5,5,1] − 18I[1,5,5,2] − 6I[1,5,6,1]
)]

+ m2
0

(
17eq I4[S] I[0,5,3,0] + 2eq I4[T1]I[0,5,4,0] + 476 eq f3γ π2 I2[V] I[0,4,4,0]

)
+ χ m2

0

(
238 eq

× I1[V] I[0,6,4,0] + 13eq I3[S] I[0,6,3,0] + 8eq I3[T1]I[0,6,2,0]
)
, (30)

�
Q C D
2 = eb

11796480π5

[
960 m2

0 mc P2π
2
(

I[0,3,2,0] − 2I[0,3,2,1] + I[0,3,2,2] − 2I[0,3,3,0] + 2I[0,3,3,1]

+ I[0,3,4,0] + 6I[1,2,2,1] − 3I[1,2,2,2] − 6I[1,2,3,1]
)

+ 5

(
576mb P2π

2
(

I[0,4,1,0] − 3I[0,4,1,1]

+ 3I[0,4,1,2] − I[0,4,1,3] − 3(I[0,4,2,0] − 2I[0,4,2,1] + I[0,4,2,2] − I[0,4,3,0] + I[0,4,3,1]) − I[0,4,4,0]
)

+ (P1 − 192mc P2π
2)

(
I[0,4,2,0] − 3I[0,4,2,1] + 3I[0,4,2,2] − I[0,4,2,3] − 2I[0,4,3,0] + 4I[0,4,3,1]

− 2I[0,4,3,2] + I[0,4,4,0] − I[0,4,4,1] + 4
(

I[1,3,2,1] − 2I[1,3,2,2] + I[1,3,2,3] − 2I[1,3,3,1] + 2I[1,3,3,2]

+ I[1,3,4,1])))
− 18

(
2I[0,6,2,1] − 7I[0,6,2,2] + 9I[0,6,2,3] − 5I[0,6,2,4] + I[0,6,2,5] − 6I[0,6,3,1]

+ 15I[0,6,3,2] − 12I[0,6,3,3] + 3I[0,6,3,4] + 6I[0,6,4,1] − 9I[0,6,4,2] + 3I[0,6,4,3] − 2I[0,6,5,1]
+ I[0,6,5,2] + 6

(
I[1,5,2,2] − 3I[1,5,2,3] + 3I[1,5,2,4] − I[1,5,2,5] − 3(I[1,5,3,2] − 2I[1,5,3,3]

+ I[1,5,3,4] − I[1,5,4,2] + I[1,5,4,3]) − I[1,5,5,2]))]

+ 5ec P1

56623104π5

[
12I[0,4,2,1] − 4I[0,4,2,0] − 12I[0,4,2,2] + 4I[0,4,2,3] + 5I[0,4,3,0] − 10I[0,4,3,1]
8
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+ 5I[0,4,3,2] + 2I[0,4,4,0] − 2I[0,4,4,1] − 3I[0,4,5,0] − 64mb

(
P2π

2
(

I[0,2,1,0] − 2I[0,2,1,1]

+ I[0,2,1,2] − 2I[0,2,2,0] + 2I[0,2,2,1] + I[0,2,3,0] − 2I[1,1,1,0] − 4I[1,1,1,1] + 2I[1,1,1,2] − 4I[1,1,2,0]

+ 4I[1,1,2,1] + 2I[1,1,3,0]
))

− 16I[1,3,2,1] − 16I[1,3,2,2] + 32I[1,3,2,3] − 8I[1,3,3,1] + 24I[1,3,3,2]

− 16I[1,3,4,1]
]

+ eq

141557760π5

[
− 800mb P1

(
4P2 π2

(
I[0,2,1,0] − 2I[0,2,1,1] + I[0,2,1,2] − 2I[0,2,2,0] + 2I[0,2,2,1]

+ I[0,2,3,0] − 2
(

I[1,1,1,0] − 2I[1,1,1,1] + I[1,1,1,2] − 2I[1,1,2,0] + 2I[1,1,2,1] + I[1,1,3,0])))

− 5P 1
(

20I[0,4,2,0] − 60I[0,4,2,1] + 60I[0,4,2,2] − 20I[0,4,2,3] − 7I[0,4,3,0] + 14I[0,4,3,1] − 7I[0,4,3,2]
− 46I[0,4,4,0] + 46I[0,4,4,1] + 33I[0,4,5,0] + 4

(
20I[1,3,2,1] − 40I[1,3,2,2] + 20I[1,3,2,3] + 26I[1,3,3,1]

+ 7I[1,3,3,2] − 46I[1,3,4,1])) − 216

(
4mc

(
20P2π

2(I[0,4,3,0] − 2I[0,4,3,1] + I[0,4,3,2] − 2I[0,4,4,0]

+ 2I[0,4,4,1] + I[0,4,5,0] + 8I[1,3,3,1] − 4I[1,3,3,2] − 8I[1,3,4,1])) + 3
(

I[0,6,3,0] − 4I[0,6,3,1]
+ 6I[0,6,3,2] + I[0,6,3,4] − 3I[0,6,4,0] + 9I[0,6,4,1] − 9I[0,6,4,2] + 3I[0,6,4,3] + 3I[0,6,5,0]
− 6I[0,6,5,1] + 3I[0,6,5,2] − I[0,6,6,0] + I[0,6,6,1] + 6

(
I[1,5,3,1] − 3I[1,5,3,2] + 3I[1,5,3,3]

− I[1,5,3,4] − 3(I[1,5,4,1] − 2I[1,5,4,2] + I[1,5,4,3] − I[1,5,5,1] + I[1,5,5,2]) − I[1,5,6,1]
)))]

+ 32m2
0

[(
26eq I4[S] I[0,5,3,0] + 12eq I4[T1]I[0,5,4,0] + 238 eq f3γ π2 I2[V] I[0,4,4,0]

)
+ χ

(
476 eq I1[V]

× I[0,6,5,0] + 26eq I3[S] I[0,6,4,0] + 12eq I3[T1]I[0,6,3,0]
)]

, (31)

where P1 = 〈g2
s G2〉, P2 = 〈q̄q〉 are gluon and u/d-quark condensates, respectively. We should also mention that, in Eqs. (30) and (31), for 

the sake of brevity we have only presented the terms that give substantial contributions to the numerical values of the observables under 
investigation and ignored to present many higher dimensional operators though they have been considered in the numerical calculations.

The functions I[n, m, l, k], I1[F ], I2[F ], I3[F ] and I4[F ] are defined as:

I[n,m, l,k] =
s0∫

(mc+mb)2

ds

1∫
0

dt

1∫
0

dw e−s/M2
sn (s − (mc + mb)

2)m tl wk,

I1[F] =
∫

Dαi

1∫
0

dv F(αq̄,αq,αg)δ
′(αq + v̄αg − u0),

I2[F] =
∫

Dαi

1∫
0

dv F(αq̄,αq,αg)δ
′(αq̄ + vαg − u0),

I3[F] =
∫

Dαi

1∫
0

dv F(αq̄,αq,αg)δ(αq + v̄αg − u0),

I4[F] =
∫

Dαi

1∫
0

dv F(αq̄,αq,αg)δ(αq̄ + vαg − u0),

where F stands for the corresponding photon DAs.
9
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