
Phys. Lett. B 849 (2024) 138424

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

A model for time-evolution of coupling constants

Taekoon Lee

Department of Physics, Kunsan National University, Gunsan 54150, Korea

A R T I C L E I N F O A B S T R A C T

Editor: G.F. Giudice A general model is proposed for time-varying coupling constants in field theory, assuming the ultraviolet cutoff 
is a varying entity in the expanding universe. It is assumed that the cutoff depends on the scale factor of the 
universe and all bare couplings remain constant. This leads to varying renormalized coupling constants that 
evolve in proportion to the Hubble parameter. The evolution of the standard model constants is discussed.
The fundamental laws of physics are generally considered univer-

sal, independent of time and location. While this universality is taken 
for granted locally, it is an intriguing question whether it extends to the 
entire history of the universe. Noting the similarity in the large ratios, 
of order 1039, of the electric to gravitational forces between an electron 
and a proton and the age of the universe in atomic time units, Dirac 
proposed that such a large number has to do with the age of the uni-

verse, with the gravitational constant being inversely proportional to it 
[1]. While this turned out to be incompatible with various evidences, 
including the geological ones [2], the question on the constancy of phys-

ical constants over a cosmological time scale has been of great interest 
ever since [3,4].

The implication of time dependence of the physical laws would un-

questionably be revolutionary. Above all, varying constants violate the 
equivalence principle of general relativity that the physical laws be 
same to all free falling observers, which would require a modification 
of the general relativity, and perhaps a fundamental change in our un-

derstanding of the spacetime.

Being accurately measurable the fine structure constant 𝛼 has at-

tracted a special attention in the study of time-variation of physical 
constants, and a broad class of theoretical models on varying 𝛼 is 
based on scalar fields, which include the dilaton from the string the-

ory or a Kaluza-Klein mode of higher-dimensional spacetime models. 
In these models the scalar field couples to the electromagnetic fields 
non-minimally, and the evolution of the scalar field renders the fine 
structure constant to vary in time and space. In other models based on 
grand unified theories (GUTs) a varying fine structure constant would 
imply varying gauge couplings of the strong, weak interactions as well, 
resulting in a varying nucleon mass [5,6].

In this note we propose a mechanism for time-varying coupling con-

stants in field theories in general. It may appear that a field theory 

such as the standard model would not allow varying coupling constants 
within its framework. There is however a venue: the ultraviolet (UV) 
cutoff. In a renormalizable theory of elementary particles the cutoff is 
usually introduced to regularize the divergence of loop amplitudes. The 
cutoff could be an artifact of renormalization process, and in asymptot-

ically free theories like the quantum chromodynamics (QCD) it needs 
not have a physical meaning and can be put to an infinite limit. On 
the other hand in a theory like quantum electrodynamics (QED), which 
is thought to be a trivial theory in the infinite cutoff limit, the cutoff 
should be finite for the theory to have non-vanishing interactions. In 
this case the cutoff would be physical and the theory must be consid-

ered as a low energy effective theory. In this note we consider a field 
theory as an effective theory and assume the UV cutoff is finite and 
physical. We further suppose the cutoff is also time-varying. Since the 
renormalizable couplings are related to the bare couplings at the cutoff 
scale via the renormalization group equations (RGEs), they will vary as 
the cutoff varies, provided the bare couplings remain constant.

As an illustration let us consider the QCD. Because the QCD is 
asymptotic free and UV safe, the cutoff may be rendered to infinity. 
In the chiral limit, where quarks are massless, the nucleon mass 𝑚𝑛 can 
be written in the form

𝑚𝑛 =Λ𝑓 (𝑔Λ) (1)

where Λ, 𝑔Λ are the UV cutoff and the bare coupling, respectively, and 
𝑓 is a function given by the beta function of the coupling. In renormal-

ization theory, 𝑚𝑛 is invariant under the variation of the cutoff because 
the bare coupling varies as well according to the RGE so that 𝑚𝑛 re-

mains constant. We may now assume, however, the QCD is an effective 
theory built on a lattice, like the lattice QCD, but the cutoff, the inverse 
of lattice spacing, is physical, and time-dependent, while the bare cou-

pling remains at a fixed but small value so that the theory remains near 
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the continuum limit. The nucleon mass will then vary in proportion to 
the cutoff as given in Eq. (1) — a varying nucleon mass.

This idea can be easily implemented on a general renormalizable 
theory. Let us consider the RGEs for a set of 𝑁 dimensionless couplings 
𝛼𝑖(𝜇), where 𝑖 = 1, 2, ⋯ , 𝑁 :

𝜇
𝑑𝛼𝑖(𝜇)
𝑑𝜇

= 𝛽𝑖(𝛼1(𝜇),⋯ , 𝛼𝑁 (𝜇)) , (2)

where the couplings and the beta functions are from a mass-independent 
renormalization scheme like the MS scheme. We shall now assume that 
the cutoff varies under the expansion of the universe, while the bare 
couplings 𝛼B

𝑖
≡ 𝛼𝑖(Λ) remain constant. To see the variation of 𝛼𝑖(𝜇) un-

der this boundary condition we write the solution of Eq. (2) in the 
form:

𝛼𝑖(𝜇) = 𝐹𝑖(𝛼B1 ,⋯ , 𝛼B
𝑁
, log(Λ∕𝜇)) ,

from which we get

𝛿𝛼𝑖(𝜇) =
𝜕𝐹𝑖

𝜕 logΛ
𝛿Λ
Λ

= −
𝜕𝐹𝑖

𝜕 log𝜇
𝛿Λ
Λ

= −𝛽𝑖(𝛼1(𝜇),⋯ , 𝛼𝑁 (𝜇)) 𝛿Λ
Λ

. (3)

Note that the variation of the couplings at the scale 𝜇 is local in that 
it depends only on the beta function values at the same scale, obliv-

ious of the evolution history of the couplings. In deriving Eq. (3) we 
assumed there was no threshold between the cutoff and 𝜇. In case there 
is one Eq. (3) can be used to compute the variation of the coupling at 
just above the matching scale, then using the matching function obtain 
the coupling just below it, and run the coupling down to obtain the 
variation at 𝜇.

What causes the cutoff to vary? We cannot answer it but there have 
been speculations that the spacetime may be discrete and lattice-like at 
a short distance. If this is the case then the lattice spacing would be the 
cutoff, and it may not be inconceivable that the lattice varies as well, 
as the universe expands, causing the cutoff to vary. Whatever the cause 
may be we assume that the cutoff varies in the expanding universe, 
and the variation depends on the scale factor of the Robertson-Walker 
metric. As a simple ansatz we shall assume a power-law variation,

Λ∝ 𝑎(𝑡)−𝜅 , (4)

where 𝜅 is a constant and 𝑎(𝑡) is the scale factor. Since 𝜅 determines 
the strength of the time-dependence of the cutoff, we may think of it as 
a measure of the rigidity of the field theory in the expanding universe.

With the ansatz we have

Λ̇∕Λ = −𝜅𝐻 , (5)

where 𝐻 is the Hubble parameter. Then with (3) we get

𝑑𝛼𝑖(𝜇)
𝑑𝑡

= 𝜅𝛽𝑖(𝛼1(𝜇),⋯ , 𝛼𝑁 (𝜇))𝐻 , (6)

which shows the sign of variation of a coupling constant is dependent 
on its beta function. Thus the fine structure constant and the strong 
coupling constant of QCD evolve in the opposite direction as their beta 
functions have opposite signs. With Eq. (6) the variation of the coupling 
from the epoch of red shift 𝑧 to now is given by

Δ𝛼𝑖 ≡ 𝛼𝑧
𝑖
(𝜇) − 𝛼0

𝑖
(𝜇) = −𝜅𝛽𝑖(𝛼01(𝜇),⋯ , 𝛼0

𝑁
(𝜇)) log(1 + 𝑧) +(𝜅2) , (7)

where 𝛼0
𝑖

are the couplings at present. So the couplings vary logarithmi-

cally in time as 𝜅 is expected to be very small, and for a large 𝑧, 1 + 𝑧 is 
proportional to 𝑡−2∕3 and 𝑡−1∕2 for the matter dominated and radiation 
dominated epochs, respectively.

In the following we investigate the implication of the result on the 
2

standard model couplings, using the leading-order beta functions. An 
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immediate consequence of our scenario is that the renormalized cou-

plings have time-variations that are all related, as the variations arise 
from a single cutoff.

The fine structure constant: The standard model couplings 𝛼𝑖 (𝑖 =
1, 2, 3) run at one-loop order by

𝜇
𝑑𝛼𝑖

𝑑𝜇
= 𝑏𝑖𝛼

2
𝑖
, (8)

where 𝑏𝑖 = (41∕6, −19∕6, −7)∕2𝜋 for 𝜇 > 𝑀𝑍 , and 𝛼𝑖 = 𝑔2
𝑖
∕4𝜋, 𝑔𝑖 the 

gauge couplings of the 𝑈 (1)𝑌 × SU(2)L × SU(3)𝐶 . At the leading order 
the threshold effects in the running coupling below the electroweak 
symmetry breaking scale can be ignored, and the variation of the fine 
structure constant 𝛼 can be written in terms of those of the electroweak 
couplings at 𝜇 =𝑀𝑍 . Then we get

𝛿(1∕𝛼) = 𝛿(1∕𝛼1(𝑀𝑍 )) + 𝛿(1∕𝛼2(𝑀𝑍 )) =
11
6𝜋

𝛿Λ
Λ

,

and

�̇�∕𝛼 = 11𝜅
6𝜋

𝛼𝐻 , Δ𝛼∕𝛼 = −11𝜅
6𝜋

𝛼 log(1 + 𝑧) . (9)

The parameter 𝜅 can be constrained by astronomical observations 
as well as laboratory experiments. The only observation of variation of 
the fine structure constant that is significantly different from zero is by 
Webb et al. from the quasar absorption spectra [7,8], with weighted 
mean:

Δ𝛼∕𝛼 = (−0.57 ± 0.11) × 10−5 , for 0.2 < 𝑧 < 4.2 ,

which gives

0.66 × 10−3 < 𝜅 < 0.88 × 10−2 . (10)

There are many other studies that do not confirm the time-variation of 
𝛼 [3], and it would be safe to assume that

|𝜅| ≲ 10−2 .

A laboratory experiment using atomic clocks can also give a strin-

gent limit. The experiment on the variation of the frequency ratio of 
Al+ and Hg+ single ion optical clocks yields a bound [9],

�̇�∕𝛼 = (−1.6 ± 2.3) × 10−17∕year ,

which gives

𝜅 = (−5.4 ± 7.8) × 10−5 , (11)

and the latest experiment on the frequency ratio of the electro-octupole 
and electro-quadrupole transitions in Yb+ yields [10]

�̇�∕𝛼 = (1.8 ± 2.5) × 10−19∕year ,

which gives

𝜅 = (6.1 ± 8.5) × 10−7 . (12)

The strong coupling constant and the nucleon mass: A similar 
calculation for the strong coupling constant gives

𝛿(1∕𝛼3(𝜇)) = − 7
2𝜋

𝛿Λ∕Λ , �̇�3∕𝛼3 = −7𝜅
2𝜋

𝛼3𝐻 , (13)

where 𝜇 is of the nucleon mass scale. In the chiral limit the nucleon 
mass 𝑚𝑛 is proportional to ΛQCD given by

1∕𝛼3(𝜇) = 𝛽0 log(𝜇∕ΛQCD) , (14)

where 𝛽0 = 9∕2𝜋 for three light-quark flavors. Therefore,

𝛿𝑚𝑛
𝛿ΛQCD 7 𝛿Λ
𝑚𝑛

=
ΛQCD

=
9 Λ

, (15)
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which shows the variation of the nucleon mass mirrors that of the cutoff 
and gives

�̇�𝑛

𝑚𝑛

= −7
9
𝜅𝐻 , 𝑚𝑧

𝑛
=𝑚0

𝑛

[
1 + 7

9
𝜅 log(1 + 𝑧)

]
, (16)

where 𝑚𝑧
𝑛

is the nucleon mass at redshift 𝑧. The ratio of the nucleon 
mass variation to that of the fine structure constant, which has a strong 
model dependence, is given by

𝑅 =
(
�̇�𝑛

𝑚𝑛

)/(
�̇�

𝛼

)
= −14𝜋

33𝛼
= −183 ,

which compares to the SU(5) GUT model value 𝑅 = 36 [5,6].

The lepton, quark, and Higgs masses: The running mass for these 
particles is given in the form

𝑚(𝜇) = 𝜉(𝜇)𝑣(𝜇) , (17)

where 𝑣 denotes the Higgs vacuum expectation value, 𝜉 the Yukawa 
coupling for the lepton and quark mass, and 𝜉 =

√
𝜆 for the Higgs mass, 

where 𝜆 is the Higgs quartic coupling. The RG equation for 𝑚 is given 
by

𝜇
𝑑𝑚(𝜇)
𝑑𝜇

= 𝛾𝑚(𝜇)𝑚(𝜇) , (18)

where 𝛾𝑚(𝜇) = 𝛾𝜉(𝜇) + 𝛾𝑣(𝜇) with

𝜇
𝑑𝜉(𝜇)
𝑑𝜇

= 𝜉(𝜇)𝛾𝜉(𝜇) , 𝜇
𝑑𝑣(𝜇)
𝑑𝜇

= 𝑣(𝜇)𝛾𝑣(𝜇) .

Similarly to the variation of the couplings in (3) the mass variation is 
given by

𝛿𝑚(𝜇)
𝑚(𝜇)

= −𝛾𝑚(𝜇)
𝛿Λ
Λ

,
�̇�

𝑚
= 𝜅𝛾𝑚𝐻 . (19)

The anomalous dimension for 𝑣 can be written as

𝛾𝑣 = (𝛾
𝑚2
𝐻

− 𝛽𝜆∕𝜆)∕2 , (20)

where 𝛾
𝑚2
𝐻

is the anomalous dimension of the Higgs mass squared and 
𝛽𝜆 is the beta function for 𝜆.

For the electron mass 𝑚𝑒 the anomalous dimension is given by

𝛾𝑚𝑒
= − 3

16𝜋2

[
𝜆+ 𝑔21 +

1
8𝜆

(𝑔41 + 2𝑔21𝑔
2
2 + 3𝑔42 − 16𝑌 4

𝑡
)
]
, (21)

where 𝑌𝑡 is the top quark Yukawa coupling [11]. Evaluating it at 𝜇 =
𝑀𝑍 with 𝑔1 = 0.350, 𝑔2 = 0.653, 𝑌𝑡 = 0.935, and 𝜆 = 0.265 we have

𝛿𝑚𝑒

𝑚𝑒

= −0.096 𝛿Λ
Λ

, (22)

which is about 1/8th of the nucleon mass variation of the opposite sign.

The variation of the proton-to-electron mass ratio, 𝜁 = 𝑚𝑝∕𝑚𝑒, is 
given by

�̇�∕𝜁 = −0.874𝜅𝐻 , Δ𝜁∕𝜁 = 0.874𝜅 log(1 + 𝑧) .

The variation for 𝜁 can be constrained by molecular transition lines, and 
Reinhold et al. observed a non-vanishing value Δ𝜁∕𝜁 = (2.4 ±0.6) ×10−5
from a weighted fit of H2 spectral lines from two quasars at redshift 
𝑧 = 3.02 and 𝑧 = 2.59 [12], which yields 𝜅 = (2.4 ± 0.6) × 10−5. How-

ever, the inversion spectrum of ammonia yields a tighter constraint of |Δ𝜁∕𝜁 | < 1.8 × 10−6 from the absorption lines of quasars at redshift 
𝑧 = 0.685, which gives 𝜅 < 4 × 10−6 [13]. The laboratory experiments 
probing frequency drift of atomic clocks also give stringent constraints 
on the differential variation: �̇�∕𝜁 = (−5.3 ± 6.5) × 10−17∕yr [14], yield-

ing 𝜅 = (0.9 ± 1.1) × 10−6.

The gravitational constant 𝑮: The Planck scale 𝑀pl = 1∕
√
𝐺 may 

be a natural candidate for the UV cutoff. If it is the case then the gravi-

tational constant varies as

�̇�∕𝐺 = −2Λ̇∕Λ = 2𝜅𝐻 , Δ𝐺∕𝐺 = −2𝜅 log(1 + 𝑧) , (23)

with 𝐺 varying in power law, for example, 𝐺(𝑡) ∝ 𝑡
4
3 𝜅 in the matter 

dominated epoch. A constraint on the power law variation of 𝐺 has 
been placed from helioseismology of the sun that probes its evolution 
under varying 𝐺 [15], from which we get |𝜅| ≲ 0.1. The big bang nucle-

arsynthesis also provides a constraint on the power law variation [16], 
which corresponds to |𝜅| ≲ 0.008.

In summary we proposed a model for time varying coupling con-

stants in a renormalizable field theory, assuming the UV cutoff is vary-

ing in the expanding universe while the bare couplings remain fixed. 
This renders the renormalized couplings to vary in time per the renor-

malization group equations. The evolution of the couplings is propor-

tional to the Hubble parameter and the beta functions of the couplings. 
The time rates of the couplings are not independent but related by the 
beta functions, as they arise from a single UV cutoff. Of the standard 
model constants the most sensitive to the cutoff evolution is the nu-

cleon mass, which evolution mirrors the cutoff.
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