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1. Introduction

The inventory optimization process is a 
sophisticated problem that is characterized by many 
attributes. Accordingly, an inventory optimization 
problem can be solved using an inventory model 
with multiple parameters. An inventory model 
can have many objective functions, decision 
variables and constraints. Some examples of 
objective functions are optimizing profit, service 
rate, costs and warehouse occupancy. Meanwhile, 
warehouse capacity, ordering budget and shortage 
costs are examples of constraints. Order amount 
and selling price are among the most popular 
decision variables. The inventory models can also 
have parameters like procurement costs, demand 
type, number of products and product shelf life. 
Moreover, the inventory problem may interact 
with other areas of operational research. Investing 
in raw materials, production rate, service and 
maintenance activities, warehouse specifications, 
transportation, and choosing the supplier is among 
these areas. This makes inventory optimization an 
even more significant problem (Silver, 2008). This 
raises a need for developing general algorithms 
that can be applied to as many inventory 
models as possible. These algorithms are called 
metaheuristic algorithms. Metaheuristics known 
as Pareto-based evolutionary algorithms have 
garnered attention from the research community 
in particular. In some of these studies, the Pareto-
based algorithms were enhanced with an addition 
of local search operators (Azuma et al., 2011) or 
reference systems (Khishtandar & Zandieh, 2017; 

Sadeghi et al., 2014). In some of these studies, the 
original algorithms were used (Chołodowicz & 
Orłowski, 2017; Huseyinov & Bayrakdar, 2019) 
and in some of them, the original algorithms were 
compared with swarm-based algorithms (Sanchez 
et al., 2010). In the studies in which the original 
algorithms were used (Chołodowicz & Orłowski, 
2017; Huseyinov & Bayrakdar, 2019) and the 
studies in which the original algorithms were 
compared to swarm-based algorithms (Sanchez 
et al., 2010), they have been proved to be effective 
in solving the inventory problem. However, it was 
observed that their convergence is weak compared 
to their diversity (Coello Coello et al., 2002; 
Emmerich & Deutz, 2018).

This paper aims to improve the convergence of the 
most popular Pareto-based evolutionary algorithms 
– the non-dominated search genetic algorithm-II 
(NSGA-II) and the strength Pareto evolutionary 
algorithm2 (SPEA2), by introducing novel 
operators (Deb et al., 2000; Zitzler et al., 2001). 
The novelty is threefold: Firstly, a time-based 
fitness assignment that favours solutions from 
previous generations is employed. Secondly, before 
the crossover process, the mating pool is updated 
with a positive bias towards better solutions. 
Finally, a more disruptive mutation scheme is 
used to prevent premature convergence. The novel 
algorithms are tested on a benchmark problem and 
on two inventory models that have a wide area 
of application in real life as presented in multiple 
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studies. Similar models with products with finite 
shelf lives (Sharma, 2004; Zhang, 2010), objectives 
concerning general inventory management costs 
(Hnaien et al., 2016; Zhang, 2010) and general 
multi-objective models (Huseyinov & Bayrakdar, 
2019; Khishtandar & Zandieh, 2017) are used in 
these studies. The performance of the algorithms 
is measured using hypervolume, generational 
distance and spacing metrics. The results illustrated 
by graphics indicate that the novel algorithms can 
obtain better convergence without increasing the 
time complexity.

The rest of the paper is organized as follows. 
Section 2 offers a general survey of the previous 
studies that addressed the problem of these 
algorithms. Section 3 presents preliminary 
concepts and the proposed algorithms. Definitions 
concerning Pareto optimization are given here. 
Also, the pseudocode and the explanation of 
the novel algorithms are presented. The three 
novelties proposed and their particular integration 
into the original algorithms are explained in detail. 
Section 4 describes the experiments through which 
the proposed algorithms are implemented. First, 
the problem-independent parameters of the novel 
algorithms are fine-tuned. Then the algorithms are 
applied to a test suite and two inventory problems. 
The results of the conducted experiments are 
discussed in Section 5. Here, it is proven that the 
novel algorithms improve convergence. Finally, in 
Section 6, the conclusion is presented.

2. Literature Review

Reviews of studies about the application of 
metaheuristic algorithms to different inventory 
models are as follows: The dynamical 
programming approach is applied by Minner 
(1997). In the study (Andersson & Melchiors, 
2001), a heuristic algorithm was proposed to solve 
an inventory problem. However, the obtained 
solution is 40% better than the optimal solution. 
Sharma (2004) applied an analytical approach. The 
work of Chan et al. (2005) applied a differential 
evolution algorithm. Although the differential 
evolution algorithm performs better on single-
objective problems, it still performed well in this 
study. The differential evolution algorithm was 
proven to be better than the MATLAB optimizer. 

The study (Panda et al., 2008) presented a reduced 
gradient method for an inventory problem with 

imperfect products. However, it was not compared 
with any other algorithms. In the study of Huang 
& Lin (2010), a modified ant colony optimization 
algorithm was proposed. It outperformed the 
original ant colony algorithm and obtained a 
smaller total cost. The research (Shiguemoto & 
Armentano, 2010) presented a variant of tabu 
search with an enhanced ability for local search. 
The algorithm obtained optimal solutions within 
a short time frame. 

Sanchez et al. (2010) compared the performance 
of SPEA2 and its modified version. Also, the well-
known NSGA-II and particle swarm optimization 
(PSO) algorithms were used for an additional 
comparison. The modified SPEA2 obtained 
better quality solutions than the other algorithms. 
Zhang (2010) applied Lagrange multipliers to find 
Lagrange solutions. Then the author suggested a 
heuristic algorithm to construct solutions based on 
Lagrange solutions. 

The study conducted by Azuma et al. (2011) 
applied a SPEA2 algorithm with local search 
and various standard genetic operations to 
an inventory problem with deterministic 
demands. The algorithm performed well but 
its performance for solving a problem with 
stochastic demand was not explored. Mousavi 
& Pasandideh (2011) employed the genetic 
algorithm to solve five numerical examples. 
The genetic algorithm proved to be accurate 
in solving these problems. Zhao et al. (2012) 
presented a local search algorithm that obtained 
optimally and near-optimal solutions. They used 
a technique that calculates an optimal solution 
from a group of neighbouring solutions. As the 
number of neighbouring solutions increases, the 
quality of the optimal solutions increases as well. 
However, this led to higher time complexity. 

Sadeghi et al. (2014) carried out a performance 
comparison of four algorithms: NSGA-II, 
a hybrid NSGA-II with local search, a non-
dominated ranking genetic algorithm (NRGA) 
and a hybrid NRGA with local search. The 
hybrid NSGA-II performed better than the other 
algorithms. However, the authors indicate a need 
for parameter tuning. 

In the study (Hnaien et al., 2016), a branch-and-
bound algorithm performed better than a heuristic 
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algorithm. In the study (Lagos et al., 2016), an 
inventory model with objectives of minimizing 
warehouse location and general inventory 
management costs was solved by Pareto local 
search. It was concluded that Pareto local search 
is effective for such a problem. Khishtandar & 
Zandieh (2017), carried out a comparison between 
constrained reference-based non-dominated 
sorting genetic algorithm-II (C-R-NSGA-II) 
and constrained non-dominated sorting genetic 
algorithm-II (C-NSGA-II). C-R-NSGA-II proved 
to be better than C-NSGA-II. However, it was 
observed that the selection of reference points has 
a big impact on the quality of solutions. 

Chołodowicz & Orłowski (2017) compared 
NSGA-II and SPEA2 for solving a bi-objective 
inventory problem. SPEA2 displayed a higher 
hypervolume than NSGA-II. A modified version of 
PSO and a simulated annealing algorithm (SAA) 
were compared by Pasandideh et al. (2017). The 
used PSO is a parameter-tuned variation of the 
original PSO. The modified PSO performed better 
than SAA. 

In the study of Huseyinov & Bayrakdar (2019), 
a multi-objective inventory problem was solved 
with non-dominated sorting genetic algorithm-III 
(NSGA-III) and SPEA2. SPEA2 was found to 
perform better than NSGA-III. 

Simić et al. (2019) divided the inventory problem 
into two parts. The first part of the problem was 
solved using the PSO algorithm and the second 
part was solved using pure adaptive search. The 
authors concluded that the optimization algorithms 
by themselves are insufficient, hence, there is a 
need for a decision-maker.

3. Preliminaries

3.1 Basic Concepts

A constrained multi-objective problem is 
concerned with minimizing objective functions 
by finding the right decision variable values 
under constraints. It is defined as minimizing 
( ) ( ) ( ) ( )( )1 2, ,..., mF x f x f x f x=  w h i l e 

being subject to ( ) 0ih x = , }1,.{ ..,i n=  
a n d  ( ) { } 0, 1,..., ,jg x j z≤ =  w h e r e  

( )1 ,..., T
kx x x=  is a k -dimensional vector 

from decision variable space Ω . The number of 
objectives is m .

For , ;x y x∈Ω  Pareto dominates y , if 
and only if { } ( )1,..., , )( n nn m f x f y∀ ∈ ≤
and { } ( ) ( )1,..., , n nn m f x f y∃ ∈ < . Pareto 
dominance is symbolized by 



. Therefore x y .  
For *x ∈Ω , if and only if  x x x x��, ,

* *
  

is a Pareto optimal solution. All Pareto optimal 
solutions are the Pareto optimal set ( )POS . 
The objective vectors yielded by mapping every 
member of the Pareto optimal set to the objective 
space through the objective functions are called 
the Pareto front ( )PF . The Pareto front is defined 
as ( ){ | } PF F x x POS= ∈ .

3.2 Evolutionary Algorithms

Currently, evolutionary algorithms are among the 
most popular methods used for solving inventory 
problems because they have some advantages 
over other metaheuristic algorithms (Emmerich 
& Deutz, 2018).

These advantages are:

	- They are population-based;

	- They find solutions in a single run;

	- They allow greater parameter optimization.

Particularly, Pareto-based evolutionary 
algorithms like NSGA-II and SPEA2 are popular 
(Deb et al., 2000; Zitzler et al., 2001). Several 
studies (Khishtandar & Zandieh, 2017; Sadeghi 
et al., 2014; Sanchez et al., 2010) presented 
evidence in favour of evolutionary algorithms 
over other types of metaheuristic algorithms. 
In general NSGA-II and SPEA2 are performant 
when there are two objectives and few 
parameters. Also, they have diversity-preserving 
mechanisms that generate diverse Pareto fronts. 
However, they have poor convergence due to 
poor local search abilities. On the other hand, 
local search algorithms are prone to falling into 
local optima (Emmerich & Deutz, 2018).

Pareto-based evolutionary algorithms have 
two ranking mechanisms. Firstly, the solutions 
are ranked following their Pareto dominance. 
Dominant solutions are deemed better. Secondly, 
the solutions are ranked following their relative 
positions to other solutions. Solutions that map 
to the less crowded parts of the solution space are 
considered to be better alternatives. This is known 
as diversity preservation. Diversity preservation 
is used when comparing two solutions that have 
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the same Pareto dominance level (Emmerich & 
Deutz, 2018). NSGA-II and SPEA2 are the most 
popular evolutionary algorithms which use this 
two-level ranking mechanism. They are dated and 
have been subject to many studies. However, they 
still stand as the golden standard for bi-objective 
evolutionary optimization.

3.3 Proposed Algorithms

In the proposed algorithms, in addition to the 
dominance rank and diversity preservation 
measures, a generation count is implemented. 
Every solution has a generation count which 
increases as the solution survives more 
generations. The generation count is used during 
binary tournament selection. If the two solutions 
being compared have the same dominance rank, 
the one with the higher generation count is 
selected. If their generation rank is also equal, 
then the solution mapping to the less crowded 
region of the objective space is selected. Newly 
discovered solutions have a generation count 
equal to zero. After a solution undergoes crossover 
the generation count is reset. In Figure 1, two 
objective functions are to be minimized. 

Figure 1. Comparison of old and new solutions

The new solutions in the figure are assumed to 
have a generation count equal to zero, while the 
old solutions have a generation count greater 
than zero. During the binary selection phase, if 
solutions A and B are compared, solution A is 
selected because it dominates solution B. On the 
other hand solution, A and solution C are both 
non-dominated solutions. Since solution C has a 
greater generation count, it will be selected over 
solution A. Solution A and solution D are both 

non-dominated solutions and they have the same 
generation count values. However, solution D 
rests on a less crowded part of the objective 
space, causing it to be selected over solution A. 
Fundamentally, this operation is a constrained 
application of the hill-climbing algorithm. The 
hill climbing algorithm is a local search method 
that directs the search towards the position of 
solutions discovered in previous iterations. It is 
very effective for local search, hence, it is used 
in this study. However, it is prone to fall into 
local optima (Whitley, 1994). Therefore, only a 
limited implementation is used: the generation 
counts come after the dominance rank in 
importance and it is reset after the associated 
solution undergoes crossover.

After the mating pool is filled, a tunable amount 
of fitter solutions is duplicated. Then, these 
duplicated solutions replace the same amount of 
random solutions in the mating pool. The random 
replacement enables the duplicated solutions to 
be replaced too. Therefore, the process is more 
likely to preserve diversity than just replacing 
the worst solutions with the best ones. A similar 
method is successfully used in the original (μ+λ)-
ES algorithm. In the (μ+λ)-ES algorithm, after 
the offspring is created, the best solutions among 
both the parent and offspring population form 
the new parent population (Bäck et al. 1991). 
Implementing it directly in a multi-objective 
evolutionary algorithm would be detrimental 
because it can decrease diversity to the point of 
premature convergence. Therefore, only a tunable 
amount is replaced in the novel algorithms.

Following the mating process, the solutions which 
underwent crossover have their generation rank 
reset to zero. Then, after the standard mutation 
operator is completed, a polynomial mutation 
operator is applied to the same set of solutions. 
This is a different implementation of the Cross-
generational, elitist selection, cataclysmic 
mutation (CHC) algorithm’s mutation scheme. 
In the CHC algorithm, the solutions undergo 
heavy mutation to prevent premature convergence 
(Eshelman, 1991). In this study, two different 
mutation operators are used to further increase 
the effect of the mutation. Since the experiment 
is done with real-coded variables, the polynomial 
mutation is implemented along with the standard 
mutation operator.
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3.3.1 Novel NSGA-II

In the proposed method, solutions yielded 
iteratively by the novel NSGA-II have a 
generation count value along with crowding 
distance and non-dominance rank values as 
explained earlier. Every solution has a generation 
count equal to zero when it is discovered by the 
algorithm. Then, during the fitness assignment 
of the solutions, their generation counter 
is increased by one. Therefore, the more 
generations the solution survives, the higher 
its generation count will be. When the solution 
undergoes crossover, the generation count is 
reset to zero. During the binary tournament 
selection, a new crowded comparison operator is 
used Firstly, the new crowded operator compares 
the non-domination ranks. In the case of a tie, the 
novel operator compares the generation counts. 
Then, the solution with the higher generation 
count is selected for the mating pool. If the 
generation counts of the compared individuals 
are the same, the novel operator compares the 
crowding distances and performs selection 
accordingly. After the selection process, the 
r P×  number of the best individuals in the 
mating pool is duplicated and it replaces the 
r P×  number of random individuals in the 
mating pool. P  is the size of the mating pool 
and r  is an adjustable parameter [ ] 0,1r∈ .  
The result r P×  is rounded to the nearest 
whole number. When a solution undergoes 
crossover, both its generation count and one of 
its children become equal to zero. Finally, after 
the solutions undergo mutation, a polynomial 
mutation operator is invoked on the obtained 
pool of solutions. It is also worth noting that, 
while building the new population from the 
combination of parent and offspring population, 
the standard crowded comparison operator is 
used. Therefore, the sorting process has the 
same time complexity. The time complexity of 
assigning the generation count is ( )O N  with 
N  population size. The duplication process has 
time complexity  ( )O P . The time complexity 
of the algorithm is dominated by the non-
dominating sorting process. Therefore, the novel 
algorithm has time complexity ( )2O MN . The 
pseudocode for the novel algorithm is presented 
in Algorithm 1.

Algorithm 1: Novel NSGA-II
Procedure: Novel NSGA-II
Input: Y
     //Y is the generation number according to which 
     //the algorithm is going to be terminated
Initialize Z0
     //Z0 is the population
Set W0 = Ø, e = 0
     //W0 is the offspring pool
Calculate the fitness of Z0
While (e < Y)  do

Perform selection, 
Update the mating pool concerning the r parameter;
Perform crossover on Ze and reset the generation count;
Perform standard and polynomial mutation on Ze to 
generate We ;
Perform sorting and fitness assignment with generation 
count on Ze ∪ We ;
Generate Ze+1 by using the crowded comparison 
operator;
Set e = e+1;

End While
Return Ze        

3.3.2 Novel SPEA2

The changes introduced in the novel SPEA2 are 
similar to the ones introduced in the novel NSGA-
II. The individuals discovered by the novel SPEA2 
have a generation count. The solutions have a 
generation count equal to zero when they are first 
yielded. During the fitness assignment phase of 
the population and the archive, the generation 
count of every solution is increased by one. Then 
the archive is filled using the standard methods 
used in the original SPEA2. During the binary 
tournament selection phase, in the case of two 
competing solutions having the same fitness value, 
the solution with the higher generation count 
value between the two is selected. If the fitness 
and generation values of these two solutions are 
the same, the one with the best density value is 
selected. Afterwards, the best r P×  individuals 
in the mating pool are duplicated and they replace 
random r P×  individuals in the mating pool. P  is 
the size of the mating pool and r  is an adjustable 
parameter. The product r P×  is rounded to the 
nearest whole number and [ ] 0,1r∈ . When 
the solutions undergo crossover, they and their 
offspring will have a generation count equal to 
zero. Then, the mutation operator is applied in a 
standard way. Following this mutation process, 
a polynomial mutation operator is applied to 
the new pool of solutions. The assigning of the 
generation count has a time complexity of ( )O N  
where N  is the population size. The duplication 
process has time complexity ( )O P . Therefore, 
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the time complexity of the new algorithm is 
the time complexity of density estimation: 
( )2O N logN . The pseudocode for the novel 

algorithm is presented in Algorithm 2.

Algorithm 2: Novel SPEA2
Procedure: Novel SPEA2
Input: Y
    //Y is the generation number according to which the 
algorithm is going to be terminated
Initialize Z0
     //Z0 is the population
Set W0 = Ø,T = Ø, u = 0, nds = 0
     //W0 is the archive, T is the archive size
While (u < Y) do

Calculate the fitness of Zu and Wu with generation count;
nds = non-dominated solutions from Zu ∪ Wu;
If (nds) > T  Then
Use truncation operator;
Else If  (nds)  < T;
Fill the remaining spots in Wu with the best-dominated 
solutions;
Else
Fill Wu with non-dominated points;
End If
Create the mating pool and update it concerning 
parameter r.
Perform recombination and reset the generation count 
of new solutions.
Perform mutation followed by polynomial mutation
Set u = u+1

End While
Return Wy

4. Experiment

4.1 Experimental Settings  
and Parameters

The experiment was conducted on a laptop 
computer with an Intel i7-7500u processor, 16 
GB RAM and Windows 10 operating system. 
MOEA framework was used for the experiment 
(GitHub, 2020a). The coding was done with 
Java 9 programming language in Eclipse IDE. 
The graphs were plotted with the Plotly Python 
library (GitHub, 2020b). The parameters for the 
algorithms are given in Table 1. 

Table 1. Parameter values

Pa
ra

m
et

er

N
SG

A
-I

I

SP
EA

2

N
ov

el
 

N
SG

A
-I

I

N
ov

el
 

SP
EA

2

pc 0.9 0.9 0.9 0.9
pm 0.2 0.2 0.2 0.2
T 250 250 250 250
Z - 125 - 125

Crossover probability is represented by cp . 
Mutation probability is represented by mp . T  
is the population size and Z  is the archive size.

4.2 Performance Metrics

The performance of an evolutionary algorithm 
is evaluated with performance metrics which are 
used to measure the convergence and diversity of 
the Pareto front. A metric can be used to measure 
convergence, diversity or both. Convergence 
metrics are used for measuring how close the 
solutions are to the Pareto front. On the other hand, 
diversity metrics are used for measuring how 
well the solutions are spread across the solution 
space. There is no consensus about which metric 
is the best. However, for a better evaluation, it is 
recommended to measure both the diversity and 
convergence (Laumanns et al., 2002). It is also 
worth noting that achieving good diversity and 
good convergence are usually conflicting goals. 
In this study, hypervolume, generational distance 
and spacing metrics are used.

Hypervolume measures both the convergence and 
diversity of the obtained solutions. It calculates 
the volume in the solution space which is covered 
by the solution set N. The cumulative volume of 
hypercubes constructed with each solution and 
a reference point gives the hypervolume value. 
A larger hypervolume value is then sought 
(Zitzler & Thiele, 1998). Generational distance 
is a convergence metric. It measures the average 
distance of the solution set from the Pareto front 
or another set of reference points. A smaller 
generational distance indicates better convergence 
(Coello Coello et al., 2002). Spacing is a diversity 
metric that measures how similar the relative 
distances between the non-dominated solutions 
are. A smaller spacing value indicates better 
diversity (Schott, 1995).

4.3 Validation

Two benchmark problems, Schaffer and Schaffer 
2 have been solved with the two novel algorithms 
for finding the best value of the parameter r   
(Schaffer, 1985). The problems have been solved 
for r  values within the range of  0.1 to 0.9 with 
a 0.1 step size. The algorithms have been run 10 
times for each r  value. The obtained average 
hypervolume values are presented in Figures 2 
and 3.
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Figure 2. Hypervolume obtained for Schaffer

Figure 3. Hypervolume obtained for Schaffer2

The novel algorithms have the highest 
hypervolume value for the Schaffer problem in 
the 0.2-0.3 range. For Schaffer 2 problem, the 
novel algorithms have the lowest hypervolume 
value within the range 0.4 – 0.6. Novel NSGA-
II has the highest hypervolume measurement for 
an r -value of 0.3. Novel SPEA2 has the highest 
hypervolume measurement for an r -value of 0.7. 
For these reasons, the r  parameter is equal to 0.3 
for the following experiments.

After setting the r -value, the novel algorithms 
have been compared with NSGA-II and SPEA2 
for solving the well-known ZDT problems 
(Zitzler, Deb & Thiele, 2000). ZDT1, ZDT2, 
ZDT3, ZDT4 and ZDT6 problems have been 
used for the experiment. ZDT5 uses binary-
coded variables, hence, it is not used in studies 
conducted with real-coded variables. 

The average, as well as the best generational 
distance and spacing values obtained, are given in 
Table 2 and Table 3, respectively. The results show 
that Novel NSGA-II has the best generational 
distance while Novel SPEA2 has the second best. 
However, NSGA-II has the best spacing value and 
SPEA2 has the second best.

Table 2. Spacing values

N
ov

el
 

N
SG

A
-I

I

N
ov

el
 

SP
EA

2

N
SG

A
-I

I

SP
EA

2

ZD
T1

Best 0.0613 0.0051 0.0475 0.0313

Mean 0.1811 0.1476 0.1249 0.1153

ZD
T2

Best 0.0037 0.0052 0.0029 0.0027

Mean 0.1792 0.1705 0.1146 0.1375

ZD
T3

Best 0.0045 0.0039 0.0032 0.0029

Mean 0.1365 0.1278 0.0903 0.0925

ZD
T4

Best 0.5341 0.0977 0.0035 0.0043

Mean 2.9457 3.0192 2.5246 2.8486

ZD
T6 Best 0.0309 0.0322 0.0215 0.0253

Mean 0.2948 0.2805 0.2197 0.1651

Table 3. Generational distance values

N
ov

el
 

N
SG

A
-

II

N
ov

el
 

SP
EA

2

N
SG

A
-

II

SP
EA

2

ZD
T1

Best 0.2325 0.1859 0.2941 0.2475

Mean 0.3773 0.3703 0.4219 0.3904

ZD
T2

Best 0.5458 0.5722 0.5919 0.5936

Mean 0.7282 0.7901 0.8464 0.8473

ZD
T3

Best 0.1322 0.1408 0.1642 0.1571

Mean 0.1953 0.1929 0.2188 0.2025

ZD
T4

Best 3.0863 3.5971 4.1273 3.8952

Mean 5.0995 5.6174 7.6564 6.2106

ZD
T6

Best 1.4334 1.5662 1.6426 1.6799

Mean 1.8753 2.1317 2.2367 2.8275

Therefore, the novel algorithms have a better 
convergence than the one of the standard 
algorithms. For solving a real-world problem, a 
decision-maker chooses the most suitable solutions 
from the Pareto front obtained by the optimization 
algorithms. If the decision-maker needs solutions 
closer to the optimal solutions, rather than a 
more diverse set of choices, the novel algorithms 
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are a better choice. Optimization algorithms 
perform differently for different problems but the 
improvements in the algorithms usually carry on to 
real-world problems. The ZDT suite contains Pareto 
fronts with various shapes so it is a good indicator 
of real-world performance. The effectiveness of the 
novel algorithms for solving real-world problems 
is proven in the following subsection. 

4.4 Inventory Problems

The novel algorithms, along with the original 
algorithms, are applied to two different inventory 
models. In the first model, the objective is to 
maximize both the profit and the service rate. 
There is a constraint on warehouse capacity. 
The decision variable is the order amount. In the 
second model, the objectives are to maximize the 
profit while minimizing the holding cost. There is 
again a constraint on warehouse capacity. Demand 
has uniform distribution for the two models. The 
parameters used in both models are as follows: 

For product number  1,..,i n=

P : Expected profit

R : Average service rate

W : Warehouse capacity

L : Expected income

H : Expected holding cost

S : Expected shortage cost

O : Expected order cost

ih : Percentage of holding cost of the ith product 
compared to iZ  

is : Percentage of shortage cost of the ith product 
compared to iZ

io : Percentage of order cost of the ith product 
compared to iZ

N : Product number

iZ : The selling price of the ith product

iY : Order amount of the ith product

iD : Stochastic demand for the ith product

( ).i iF x : Demand probability mass function

iθ : Minimum expected demand for the ith product

iϕ : Maximum expected demand for the ith product

The income is calculated with equation (1). 
Holding cost, shortage cost and order cost 
are calculated with equations (2), (3) and (4) 
respectively. Then, the total income is calculated 
with equation (5). The service rate is calculated 
with equation (6).
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The first inventory model is given in equation 
(7) and the second inventory model is given in 
equation (8).
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The dataset for the first inventory model is given 
in Table 4 and the dataset for the second inventory 
model is given in Table 5. It is assumed that every 
item takes one unit of space in the warehouse and 
the warehouse capacity is given as the total units it 
can hold. Each model is solved with novel NSGA-
II, novel SPEA2, NSGA-II and SPEA2 for ten 
runs. The average, as well as the best generational 
distance and spacing values, are recorded.
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Table 4. Dataset for the first inventory model

Product Number 1 2 3 4 5

Θ 11 23 24 30 17

Φ 200 292 168 251 209

Z 15 16 20 18 12

H 0.5 0.5 0.5 0.5 0.5

S 0.2 0.3 0.3 0.2 0.3

O 0.7 0.7 0.7 0.7 0.7

Warehouse Capacity: 900

Table 5. Dataset for the second inventory model

Product Number 1 2 3 4 5

Θ 16 19 23 28 19

Φ 210 254 279 256 210

Z 15 16 20 18 12

H 0.6 0.6 0.6 0.6 0.6

S 0.3 0.3 0.3 0.3 0.3

O 0.7 0.7 0.7 0.7 0.7

Warehouse Capacity: 900

5. Results and Discussions

The generational distance values and the spacing 
values for each algorithm are given in Tables 6 and 
7 respectively. First, the ANOVA test is applied to 
these values. Then Tuckey’s HSD is applied as a 
post-doc test. Results that are statistically better 
are bolded in the tables.

The average computational time for each 
algorithm is recorded. ANOVA and Tuckey’s HSD 

tests are applied to the yielded values. The results 
reveal that there is not any statistically difference 
between the four algorithms. The computational 
times of the four algorithms are displayed in 
Figure 4. 

Figure 4. Computational times for solving the 
inventory models

The results reveal that the novel NSGA-II 
algorithm has a better convergence than one of 
the other three algorithms and the novel SPEA2 
algorithm has the second-best convergence. 

However, NSGA-II has a better diversity than one 
of the other three algorithms and SPEA2 has the 
second-best diversity. Between the novel NSGA-
II algorithm and the novel SPEA2 algorithm, the 
novel SPEA2 algorithm has better diversity. The 
novel NSGA-II algorithm and the novel SPEA2 
algorithm have a higher computational time than 
one of the original algorithms. However, the 
difference is statistically insignificant.

The solutions obtained by any of the original or 
novel algorithms are evaluated by a decision-
maker, and the most suitable ones are chosen. 
The novel algorithms are better for use cases in 

Table 6. Generational distance values

Novel NSGA-II Novel SPEA2 NSGA-II SPEA2

First Inventory Problem
Best 0.2371 0.4212 0.9343 0.7453
Mean 0.3075 0.6345 1.2123 0.8345

Second Inventory Problem
Best 0.1523 0.4219 0.6207 0.6123
Mean 0.2363 0.6242 0.9935 0.8513

Table 7. Spacing values

Novel NSGA-II Novel SPEA2 NSGA-II SPEA2

First Inventory Problem
Best 0.6429 0.5317 0.1528 0.3382
Mean 0.7347 0.6966 0.1773 0.4314

Second Inventory Problem
Best 0.6199 0.5128 0.2247 0.3782
Mean 0.6753 0.6766 0.2864 0.4978
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which the decision-maker needs more precision 
by having solutions close to the true Pareto 
front. On the other hand, original algorithms 
are better for use cases in which the decision-
maker needs a more diverse set of alternatives. 
Moreover, the novel algorithms are still 
evolutionary algorithms. Thus, they still retain all 
the advantages the evolutionary algorithms have 
over other algorithms while having improved 
convergence, which is a common weak spot of 
evolutionary algorithms.

6. Conclusion

Evolutionary algorithms are widely used to solve 
complex optimization problems such as the 
inventory problem. Pareto-based evolutionary 
algorithms are the most popular evolutionary 
algorithms. NSGA-II and SPEA2 are the most 
established and reliable algorithms among 
Pareto-based evolutionary algorithms. However, 
NSGA-II and SPEA2 have relatively poor 
convergence like most Pareto-based algorithms. 
To improve the convergence of these two 
algorithms, time-based fitness assignment and 
selection strategies are employed. Also, a novel 
mutation scheme is used to prevent premature 
convergence. The novel algorithms are validated 

with the well-known ZDT test problem suite. 
The results indicate that the novel algorithms 
have better convergence but worse diversity 
than the ones of the original algorithms. Then 
two inventory models with two objectives each 
are formulated. The novel algorithms are shown 
to have better convergence and worse diversity 
than the ones of the original algorithms for 
optimizing these two models. The models are 
bi-objective models and models with more than 
two objectives can be subject to future research. 
The original algorithms are mostly used in bi-
objective optimization and they are known to 
perform poorly in problems with three or more 
objectives. Therefore, the novel algorithms can 
experiment on problems with three or more 
objectives to observe whether or not they have 
any improvements over the original algorithms. 

In general, optimization algorithms display 
different performances for solving different 
optimization problems. This is mostly due to 
the shape of the true Pareto in front of the given 
problem. Therefore, there is a lot of room for 
future research on different inventory models. 
Additionally, different test problems can be used 
to test novel algorithms. Moreover, different 
performance metrics can be employed.
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