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SEGMENTATION OF LUNG COMPUTED TOMOGRAPHY IMAGES 

ABSTRACT 

 

The leading cause of cancer-related fatalities globally is lung cancer. Your 

airways, lung tissues, or blood that flow into and out of your lungs may all be affected 

by lung disorders. Early detection of lung disorders is essential, especially after the wake 

of the COVID19 epidemic. Therefore, the survival rate of patients is significantly 

influenced by early therapy. A system that can help radiologists identify CT scans is 

required to diagnose CT scans more quickly and to minimize human error. In this work, 

we compared three segmentation techniques: K-means clustering, Fuzzy C-means 

(FCM), as baseline methods, and Superpixel-based Fast Fuzzy C-means (SFFCM) as the 

proposed method, using synthetic images and lung CT scan images. Results showed that 

the proposed method (SFFCM) yields better segmentation results and has more 

robustness than the two baseline methods (K-means and FCM). 

Keywords: Image Segmentation, Computed Tomography (CT) Images, Superpixel-based Fast 

Fuzzy C-means, K-means, Fuzzy C-means, Lung Cancer Detection 
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AKCİĞER BİLGİSAYARLI TOMOGRAFİ GÖRÜNTÜLERİNİN 

BÖLÜTLENMESİ 

ÖZET 

Dünyada kansere bağlı ölümlerin önde gelen nedeni akciğer kanseridir. Solunum 

yollarınız, akciğer dokularınız veya akciğerlerinize giren ve çıkan kanın tümü akciğer 

bozukluklarından etkilenebilir. Akciğer rahatsızlıklarının erken tespiti, özellikle 

COVID19 salgınının ardından çok önemlidir. Bu nedenle, hastaların hayatta kalma 

oranı, erken tedaviden önemli ölçüde etkilenir. BT taramalarını daha hızlı teşhis etmek 

ve insan hatasını en aza indirmek için radyologların BT taramalarını tanımlamasına 

yardımcı olabilecek bir sistem gereklidir. Bu çalışmada, üç segmentasyon tekniğini 

karşılaştırdık: K-ortalama kümeleme, temel yöntemler olarak Bulanık C-ortalamalar 

(FCM) ve önerilen yöntem olarak sentetik görüntüler ve akciğer BT kullanarak 

Süperpiksel tabanlı Hızlı Bulanık C-ortalamalar (SFFCM) görüntüleri tarayın. Sonuçlar, 

önerilen yöntemin (SFFCM) daha iyi segmentasyon sonuçları verdiğini ve iki temel 

yöntemden (K-ortalamalar ve FCM) daha fazla sağlamlığa sahip olduğunu göstermiştir. 

Anahtar Kelimeler: Görüntü Bölütleme, Bilgisayar Tomografisi görüntüleri, Super 

piksel tabanlı Hızlı Bulanık C-Ortalar yöntemi, K-Ortalar, Akciğer Kanserinin 

belirlenmesi 
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I. INTRODUCTION 

The leading cause of cancer-related fatalities globally is lung cancer. (Shaziya, 

Shyamala, & Zaheer, 2018). Your airways, lung tissues, or blood flow into and out of 

your lungs may all be affected by lung disorders. In clinics, rapid or early detection of 

lung disorders is essential, particularly in the wake of the COVID19 epidemic. 

Therefore, the eventual survival rate of patients is significantly influenced by early 

therapy (Chunran, Yuanyuan, & Yi, 2018).  

A system that can help radiologists identify CT scans is required in order to 

diagnose CT scans more quickly and to minimize human error (Silvana, Akbar, Gravina, 

& Firdaus, 2020). In such a system, automatic lung segmentation on CT images is often 

needed as a pre-processing step. Effective lung segmentation on CT images is essential 

for computer-aided diagnostic systems of lung disorders since it may influence the 

analysis that comes after.  

To separate human body components from the backdrop and provide an initial 

categorization that clearly separates the right lung from the left lung, lung segmentation 

is performed. It is essential to segment the lungs since this is the first step in more 

quantitative lung analysis in CAD, such as measuring lung volume and analyzing lung 

texture to diagnose a particular condition. 

A. Digital Image Processing 

The definition of an image could be done using the two-dimensional function 

f(x,y); its amplitude at each given pair of coordinates (x,y) corresponds to the image's 

intensity or gray level at that location. A digital picture is made up of a limited number 

of pixels.  

Processing digital images using a digital computer is referred to as the field of 

digital image processing (Rafael & Richard, 2008). The essential elements of an image 
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processing system are shown in Figure 1 below. We will go through each element, 

beginning with the image sensors. There are two parts to it. The first is a physical 

instrument that can detect the energy emitted by the item (Rafael & Richard, 2008). The 

digitizer, the second component, is a device that turns the data gathered from the Sensor 

into a digital format.  

The digitizer we previously stated and other hardware that executes other 

elementary functions, such as an Arithmetic Logic Unit, make up specialized image 

processing hardware (ALU). As an example, consider the use of ALU for image 

averaging during digitization to lower noise. 

 

Figure 1: Components of general-purpose Image Processing System. 
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The computer here can be any computer, ranging from a normal PC to a 

supercomputer. Some applications may need a certain level of performance, and it 

differs from one application to another. Image processing software is a specialized 

modules that performs specific tasks (Rafael & Richard, 2008), a well known example 

of it is Matlab. Mass storage is the space needed for storing the digital image, for 

example: an image of size 1024 x 1024 pixels, with the intesity of each pixel is 8-bit, 

requires 1 megabyte of free storage.  

Three types of digital storage can be used for image processing: short-term 

storage for usage during processing, online storage for quick recall, and archival storage, 

which has infrequent access (Rafael & Richard, 2008). Image displays, nowadays the 

most common are color TV monitors, which are an electronic devices with a screen used 

to display (as of television pictures or computer information).  

Sometimes, the display card that is sold commercially as part of the computer 

system does not meet the requirements of particular image display applications [4]. 

Printers, film cameras, heat-sensing equipment, inject units, and digital equipment are 

examples of hardcopy devices. Any computer system has networking as a standard 

feature, and thankfully, nearly everyone now has access to the internet. 

B. Medical Imaging 

A form of energy is needed for the medical imaging of the human body. In 

radiology for example, the energy must penetrate the tissues in order to aquire the 

image. Since the visible light has a limited ability to penetrate the tissues, it is not used 

in the radiology department, it is used mostly in pathology (light microscopy),obstetrics 

(endoscopy), and dermatology (skin photography).  

In terms of diagnostic radiology, we are referring to the use of electromagnetic 

radiation for medical imaging that is not in the visible light spectrum, such as x-rays in 

mammography and computed tomography (CT), radiofrequency (RF) in magnetic 

resonance imaging (MRI), and gamma rays in nuclear medicine. High-frequency 

soundwaves are the mechanical energy used in ultrasound imaging (Jerrold, J.Anthony, 

Edwin, & John, 2012). All medical imaging needs a form of energy to penetrate the 
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tissues, except for nuclear medicine. The energy needs some sort of interaction like 

absorption or scattering so we can form an image, otherwise if the energy was only to 

pass through, then the energy that we detect would not be of any use for constructing an 

image.  

In nuclear medical imaging, they inject the body with substances called 

Radionuclides, these include forms of the elements thallium, gallium, xenon, ionide, and 

thallium. Those are radioactive substances are injected or ingested and after that a 

radiation will be given off. A radiation detector picks up this radiation, physiological 

interactions will occur, and will give us information in the images. 

C. Imaging Modalities 

1. Radiography 

Wilhelm Konrad Röntgen made the discovery of X-rays in 1895 when he was 

working with cathode tubes (Paul, 2009). By exposing a body to an X-ray phantom, an 

X-ray picture is a 2D projection of a 3D body on a film; these images are 

called projection on planar. In screen-film radiography, the optical density (OD) at a 

given spot on the film is (ideally) defined by the anatomy of the patient's x-ray 

attenuation along a straight line through the patient between the x-ray source and the 

spot on the detector. 
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Figure 2: Examples of X-ray Images. 

2. Computed Tomography 

The imaging technique known as X-ray computed tomography, or CT (Figure 3), 

creates cross-sectional pictures that show the body's X-ray attenuation characteristics. A 

computer reconstructs the organ under investigation in a sequence of cross sections or 

planes, then integrates X-ray images from multiple slices to rebuild 3D structures. Ct 

analyzes the attenuation of X-rays from various angles. 

 

Figure 3: (a) Schematic representation, and (b) photograph of a CT scanner (Paul, 

2009). 
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3. Magnetic Resonance Imaging 

Nuclear Magnetic Resonance is the basis of the modern medical imaging method 

known as MRI, which provides extensive information on the architecture of the soft 

tissues in humans (NMR). The main use for it in medical imaging is to show pathogenic 

or other physiological changes in live tissues. It may be used for both functional and 

anatomical imaging. It may be immediately recorded in any oblique plane and is really 

3D. 
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Figure 4: Examples of MRI images. 

4. Ultrasound Imaging 

Beyond the human auditory range's highest frequency of 20 kHz, ultrasound is a 

kind of acoustic wave. Medical sonography, often known as ultrasound, has a broad 

range of clinical uses as a main modality and as a contribute to other diagnostic 

techniques. It works by sending high frequency sound waves into the body, which are 
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then received, processed, and shown parametrically as they bounce back from various 

organs and tissues. 

 

Figure 5: Example of Ultrasound imaging. 

D. Image Segmentation 

Image segmentation is the division of an image into separate, homogenous 

sections that don't overlap and have certain characteristics. When the application's items 

of interest have been separated, segmentation should come to an end. Attributes like 

gray level, color, texture, and form aid in the identification of areas, and groupings of 

regions with similar properties are created to represent certain meanings.  
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The process of segmenting a picture may be done using a variety of methods, 

including thresholding, clustering, region-based, edge-based, model-based, watershed 

approach, and many more. Combining approaches from different categories, such as 

those that combine edge detection and thresholding, may improve segmentation 

performance. 

 

E. Lung Segmentation 

Since the lung nodule is the early stage of the manifestations of lung cancer , the 

detection of it is very essential to clinical diagnosis of lung cancer , and the 

segmentation of the lung is the way to do that. The accuracy of lung segmentation is of 

great significance and importance because it can provide us with a precise information 

of the disease so we can follow up with the medical diagnosis and treatment. For the 

automated examination of a lung nodule that follows, lung segmentation is necessary for 

the estimation of lung volumes as well as the identification and measurement of lung 

anomalies within the lungs (Shaziya, Shyamala, & Zaheer, 2018).  

Lung segmentation methods may be broadly categorized into distinct groups 

based on region, form, border, edge, threshold, and machine learning methods (Shaziya, 

Shyamala, & Zaheer, 2018). 

F. Motivation 

Despite the fact that the doctors are excellent at understanding the medical 

images to look for diseases, introducing and imroving medical image segmentation will 

assest the medical field and will help the doctors and the lab technicians interpreting 

medical images faster and easier. Moreover, automated systems are being improved to 

make it more reliable, efficient and faster.  

Automated image segmentation is used for the extraction of the boundary 

features of the object, its also vital to understand the image context (Vagelis, 2009). 

However, its difficult to localize normal and abnormal regions in medical images, and it 

is a fundamental thing to do. Developing new segmentation techniques and applying 
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them into the medical field will help and improve the healthcare sector, it will help 

physicians and lab technicians localize and identify tumers faster and easier, and this 

alone will help save lives, because the faster we can detect the tumor, the easier its 

treatment is going to be. In this work, i will be comparing three different segmentation 

techniques, Otsu’s method, K-means, and Superpixel fast fuzzy c-means, in order to find 

the optimum and best method to segment the CT lung images. 
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II. BASELINE METHODS 

A. Segmentation Using K-means 

The K-means approach is an unsupervised clustering method that divides the 

input data points into several groups according to how far apart they naturally are from 

one another (Suman & Avi). The k-means technique uses vector space data 

characteristics to detect grouping in the data. The K-means approach will then allocate 

each observation to one of the clusters once the user has chosen the K-means clustering's 

K number of clusters (Gareth, Daniela, Trevor, & Robert, 2021).  

The results of utilizing various K values to accomplish K-means clustering on a 

synthetic example with 150 observations are shown in the picture below. The procedure 

of  K-means clustering is simple , we will start by introducing some notations , Let C1 , 

... , CK those are the indices of the observation for each cluster , and these sets has the 

following properties: 

1- C1 ∪ C2 … ∪CK = {1,…,n}. Which means, at least one of the K clusters contains at 

least one of the observations. 

2- Ck ∩ Ck’ = ∅ for all k ≠ k’. Which means, there is no overlap among the clusters. 
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Figure 6: K-means clustering using different values of K on a simulated data set 

consisting of 150 observations in two dimensional space. 

The primary principle of K-means clustering is that an effective clustering has as 

little within-cluster variance as feasible. (Gareth, Daniela, Trevor, & Robert, 2021). 

 
Minimize(C1,...,Ck) * ∑  (  ) +

 
    

(1) 

The primary notion behind the K-means clustering is made clear by this formula, 

which divides the findings into K clusters, that the total inside cluster variance, added 

together over all K clusters, is as little as feasible (Gareth, Daniela, Trevor, & Robert, 

2021). 

B. Segmentation Using Fuzzy C-means 

This segmentation technique is usually used in the analysis of data and 

information. Essentially, the algorith of K-means and Fuzzy C-means are somewhat 

similar as both algorithms uses of Euclidean distance for measurement. Instead, Fuzzy 

C-means algorithm works by classified membership to every one of the data points 

based on every cluster center (Iza, Noor, & Siti, 2020). The equation of the degree of 

membership is shown below. 

 

      
 

∑ (       )
(
 
 
  ) 

   

 

(2) 
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Where c denotes the cluster center, k denotes the iteration step, and µij denotes 

the membership of the i
th

 data and j
th

 cluster center. Every piece of data is given 

membership in the algorithm based on its cluster. 

 Firstly, we randomly select c which is the cluster center, then the fuzzy membership is 

computed using the previous equation. Finally Vj , which is the fuzzy centers is updated 

by performing the following equation , where Vj = 1,2,3,..,c : 

 
     (∑ (   )

    
 

   
) (∑ ((   )
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(3) 

One of the advantages of Fuzzy C-means that in contrast to hard segmentation, it 

preserves more information from the original picture. Using the Euclidean distance, 

fuzzy C-means can recognize the roughly shaped object (Iza, Noor, & Siti, 2020). 
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III. SUPERPIXEL-BASED FAST FUZYY C-MEANS 

CLUSTERING 

A. Superpixels region-based segmentation 

Superpixels segmentation increases the important information in comparison 

with signle pixels , thus making this approach more effective. It works by creating 

boundaries on the desired images without losing any quantitative information while 

segmenting (Iza, Noor, & Siti, 2020).  

B. Superpixel-Based Fast Fuzzy C-means Clustering 

1. Introduction 

Fuzzy C-means is a very popular algorithm that often used to segment greysclae 

and color images, but it has two main problems. The repetitive computation of distances 

between clustering centers and pixels inside a local nearby window that results from the 

integration of local spatial information typically results in a high computational cost, and 

this is the first problem (Tao, ve diğerleri, 2019).  

The Second problem is that the real local spatial structure of the images is being 

broken by the regular neighboring window, which leads to a poor segmentation. So 

combining Superpixel with Fuzzy C-means will result in a fast and more robust 

segmentation (Tao, ve diğerleri, 2019).  

Many algorithms solve the problem of missing spatial information by integrating 

local spatial information into the objective function, but on the other hand increases the 

computational complexity and computational cost of the algorithm which may lead to 

increasing the run time for the program.  

There are two advantages in combining Superpixel with Fuzzy C-means. The 

first one is that the capability of superpixel to accomplish segmentation of the 
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images using their local spatial information. The second advantage of superpixel is its 

ability to decrease the number of dissimilar pixels in an image by substituting each pixel 

with the average value of the superpixel region (Tao, ve diğerleri, 2019).  

Unsupervised image segmentation and supervised image segmentation are the two 

groups of image segmentation algorithms. 

 Approaches like watershed transform, fuzzy entropy, clustering, and active 

contour model, are called unsupervised approach, and are good and widely known 

thanks to their uncomplicatedness without reliying on labels and training samples. Image 

segmentation can be accomplished using feature learning methods like fully 

convolutional networks (FCN) and convolutional neural networks (CNN), however 

these methods require a big number of training samples and labeled images. Moreover, 

the outcome of the segmentation has a coarse contour because FCN and CNN effectively 

accomplish image classification. In this section, we will primarily examine unsupervised 

image segmentation (Tao, ve diğerleri, 2019). Due to its suitability and use for both low-

dimensional and high-dimensional data, clustering constitutes one type of significant and 

well-known unsupervised algorithm for segmenting grayscale and color image data. 

 Normally, we can divide clustering algorithms into three categories, attempting 

to minimize the objective function, graph theory, and decomposing a density function. 

Here, we will concentrate on clustering-based image segmentation by attempting 

to minimize the objective function, and FCM and k-means are clustering algorithms that 

uses this technique. Initial clustering centers or membership can affect k-means, due to 

its being a hard clustering algorithm. On the other hand, The soft clustering algorithm 

called FCM enhances k-means' weaknesses at the price of more repetitions. 

Nevertheless, each of FCM and k-means are afflicted by noise for the purpose of image 

segmentation, the local spatial information of pixels is lost.  

Numerous enhanced clustering algorithms that directly reflect spatial information 

into their objective function have been offered in recent years as a solution to this issue 

(Tao, ve diğerleri, 2019), which can be categorized into two groups. The first one 

uses the effect of image segmentation by using neighborhood information of a center 

pixel through a window of constant size.  
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Some of examples of that is FCM_S which is Fuzzy C-means with special 

constraints, FCM_S1, FCM_S2, FLICM which is Fuzzy Local Information C-means 

clustering algorithm, NWFCM which is neighborhood weighted Fuzzy C-means 

clustering algorithm, FGFCM which is Fast generalized Fuzzy C-means algorithm, 

NDFCM, a Fuzzy C-means algorithm based on noise detection, Memon's algorithm, and 

KWFLICM, a FLISM based on kernel metric and weighted fuzzy factor in addition to 

the previously mentioned FLISM.  

The benefit of such algorithms is that it is possible to compute the neighborhood 

information in advance, apart from of course FLICM and FCM_S, in order to decrease 

the computational difficulty. Still, a neighborhood window of a  constant size and 

structure is incapable of fulfilling the demand for reliable image segmentation. Instead 

of using a window with a set size and structure, the second group makes use of adaptive 

neighborhood information, for instance, Liu’s algorithm, adaptive FLICM, and Bai’s 

algorithm.  

The second set of algorithms acquires an increased resilience for noisy pictures 

and an enhanced segmentation effect than the first group because adaptive neighborhood 

information is stable with genuine image structuring information.  

However, the neighborhood information of the matching membership, which is 

beneficial for enhancing classification result, is neglected by enhanced FCM algorithms, 

which only consider the neighborhood information of a picture. HMRF is a well known 

algorithm for solving the problem. Due to the fact that HMRF deems the prior state of 

the present membership, it acquires an improved outcome than FCM for 

image segmentation.  

Additionally, Y. Zhang, G. Liu, and A. Wang in “Incorporating adaptive local 

information into fuzzy clustering for image segmentation” enhanced FCM algorithm by 

incorporating the distance between pixels and the distance between various regions 

collected by mean-shift into its objective function. It is clear that algorithms we talked 

about before enhance the effectiveness of image segmentation at the expense of 

raising computing difficulty and run time. So, the challenge is how can we effectively 

decrease computational complexity while maintaining local spatial information. T. Lei 
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used membership filtering and morphological reconstruction to create the FCM 

algorithm (FRFCM), which is quick and reliable.  

The approach is very speedy and produces an enhanced segmentation result 

compared to modern algorithms removing the need to repeatedly calculate the distance 

between pixels in the neighborhood window and clustering centers. Nonetheless, the 

FRFCM needs long run time for color image segmentation due to the reason that the 

computation of a color image's histogram is challenging.  

We introduce a superpixel-based fast FCM (SFFCM) for color image 

segmentation to address the issue. The newly introduced algorithm can segment colored 

images with a high degree of precision and a very low computing cost. The following 

two contributions are provided: 

1) In order to create superpixel images with precise bounds, we introduce a 

multiscale morphological gradient reconstruction (MMGR) method. This operation is 

useful for incorporating adaptive surrounding information and decreasing the number of 

diverse pixels in a color image. 

2) We recommend a simple color histogram computational technique based on a 

superpixel picture acquired by MMGR that can be utilized to accomplish a quick FCM 

algorithm for color image segmentation. 

2. Methodology 

Mean-shift, simple linear iterative clustering (SLIC), and WT are examples of 

superpixel technologies that are often regarded as presegmentation techniques for 

enhancing segmentation outcomes produced by clustering algorithms. This is because a 

superpixel picture can give greater local spatial information than a nearby window of set 

size and shape. Mean-shift and WT generate more irregular superpixel regions than 

SLIC does, which is preferable to the hexagonal zones that SLIC produces. Because WT 

is noise-sensitive and causes significant oversegmentation in real applications, mean-

shift is much often used. Mean-shift may provide greater superpixel results, although it 

is susceptible to parameter values, such as the spatial bandwidth, range bandwidth, and 

minimum size of final output areas (hs, hr, and hk). 
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Furthermore, mean-shift has a larger computational cost than WT. We must thus 

create a quick superpixel method capable of providing improved presegmentation 

outcomes while running faster than mean-shift. WT seems to have a very low computing 

cost since it solely relies on the area minima of gradient pictures to produce 

presegmentation. To create superpixel pictures in this study, we use an unique WT built 

on the MMGR algorithm (MMGR-WT). When compared to mean-shift, the MMGR-

WT can deliver results for presegmentation that are more suitable. 

Additionally, it is unaffected by parameters. We calculate the superpixel image 

histogram using the superpixel image acquired by MMGR-WT in order to create a fast 

FCM method. Since there are fewer colors in superpixel pictures than there are in the 

original color image, computing the histogram of superpixel pictures is simple. Lastly, in 

order to perform quick color picture segmentation, the histogram is taken into account as 

a variable of the objective function. Figure 7 displays the conceptual structure of the 

algorithm we suggested. 

 

 

Figure 7: Structure of the introduced algorithm (Tao, ve diğerleri, 2019). 

 

a. Superpixel-Based on MMGR-WT  

The quick method WT computes the local minima of a gradient picture and looks 

for the watershed line connecting nearby local minima. Due to its sensitivity to noise, 

the method easily leads to an oversegmentation. Numerous techniques have been 

suggested as solutions to the issue by changing the gradient picture of the original 

image.  

A straightforward and effective approach for combating oversegmentation is 

morphological gradient reconstruction (MGR) (Luc, 1993), which is able to maintain 



 

19 
 

object contour information while reducing noise and pointless gradient details. Firstly, 

the fundamental description of morphological reconstruction is given: 

 

{
  
 ( )    

( )( )

  
 ( )    

( )( )
 

(4) 

Where f is the original picture, also known as the mask image, g is the marker 

image, ε is the erosion operation, and δ is the dilation operation, Rε and Rδ denote 

morphological erosion and dilation reconstruction, respectively.  

Dilation reconstruction needs g ≤ f, 

 ε
(1)

f (g) = ε(g) ∨ f, ε 
(i)

g (f) = ε(ε
(i−1)

(g)) ∨ f, δ
(1)

f (g) = δ(g) ∧ f, and δ
(i)

g (f) = δ(δ
(i−1)

(g)) ∧ 

f. but erosion reconstruction also needs g ≥ f. The pointwise maximum and minimum are 

represented by the symbols ∧ and ∨, respectively.  

As a pair of dual operators, morphological erosion and dilation are always found 

in pairs, such as morphological opening and closing operators. Because they offer a 

better capacity for feature extraction or noise reduction, morphological opening and 

closure are more common than erosion and dilation. As a result, the following is the 

definition of the morphological opening reconstruction represented by R
O
 and closure 

reconstructions defined by R
C
: 

 

{
  ( )    (  )

  ( )    (  )
 

(5) 

Where the marker photo is Typically, g is thought of as g = εB (f) in R
δ
 or g = δB(f) 

in R
ε
. A structural element (SE) is B. To lessen oversegmentation, both R

O
 and R

C
 may 

eliminate area minima in a gradient picture (Tao, ve diğerleri, 2019). 

 

Figure 8: Segmenting a watershed using MGR and several SEs. (a) The original photo 

"12003" (481 x 321) (b) r = 1. (c) r = 3. (d) r = 10 (Tao, ve diğerleri, 2019). 
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Figure 8 illustrates how we utilize R
C
 to reduce oversegmentation. 

The SE is shown as a disk in Figure 8, where r denotes the SE's radius. Figure 8 

demonstrates that when the value of r is increased, the number of segmentation areas 

rapidly decreases. A big SE, on the other hand, is readily followed by 

undersegmentation, while a small SE is easily followed by oversegmentation.  

As a result, it is challenging to produce a superpixel picture using MGR that has 

both fewer areas and a precise contour. An appropriate SE is needed to maintain the 

number of regions in the superpixel picture and the contour accuracy, however selecting 

a appropriate SE for various images may be challenging.  

To address the issue, we attempt to rebuild a gradient picture using several SEs, 

fuse the resulting gradient images, and eliminate the dependence of the segmentation 

result on the SEs. As a result, we suggest an MMGR operation with the symbol R
MC

 

with the following definition. 

 
  
  (       )  ∨ *  

 ( )      
 ( )          

 ( )   + 
(6) 

Where r1 and r2 stand in for the minimum and maximum values of r, 

respectively, and where r1 ≤ r ≤ r2 , r1 , r2 ∈ N
+
, g≤f. As we can see, R

MC
 uses many 

reconstructed pictures to create a gradient image by using multiscale SEs. An excellent 

gradient picture is created by finding the pointwise maximum of these rebuilt gradient 

images. This gradient image eliminates the majority of unnecessary local minima while 

retaining crucial edge information. Two parameters, r1 and r2, which regulate the size of 

the minimum area and the maximum region, respectively, are part of the proposed 

MMGR. The segmentation results will include a lot of little areas if r1 is too small, but if 

r1 is too big, the boundary accuracy will be poor. Figure 9 offers an example. 

 

Figure 9: Results of segmentation using MMGR-WT with various r1 values, when r2 = 

10. (a) r1 = 1. (b) r1 = 3. (c) r1 = 5, (d) r1 = 8 (Tao, ve diğerleri, 2019). 
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The superpixel output may be observed to have a high contour accuracy but 

some tiny areas. When r1 = 1, the superpixel outcome has a high contour accuracy and 

does not include tiny areas. However, while r1 = 2 or r1 = 3, the superpixel outcome has 

a distinctly poor contour precision. So, in this case, we choose 1 ≤ r1 ≤ 3. Because r2 

regulates the maximum region's size, a bigger r2 value produces a better superpixel 

picture, as can be seen in Figure 10. 

 

Figure 10: Watershed segmentation based on MMGR-WT with different sized SEs. (a) 

r1 = 2, r2 = 3. (b) r1 = 2, r2 = 7. (c) r1 = 2, r2 = 11, (d) r1 = 2, r2 = 20 (Tao, ve diğerleri, 

2019). 

Once the value of r2 exceeds a threshold, as in Figure 10 when the threshold is 

11, the superpixel picture remains unaltered. By raising the value of r2, it is evident that 

the superpixel picture is convergent. The convergent outcome is also ideal since it has 

fewer areas while still producing precise contour. As a result, when r2 is greater than a 

threshold, the MMGR is not affected by changes in r2. Comparing the number of 

superpixel areas for WT-MGR and WT-MMGR, respectively, is shown in Table 1. 

 

 

Table1: Comparison of WT's superpixel areas based on MGR and MMGR, respectively 

(Tao, ve diğerleri, 2019). 

Table 1 demonstrates that r2 could be a variation. However, it is challenging to 

establish various r2 values for each picture. If we choose a low error threshold, indicated 

by η  rather than r2, then r2 is not necessary for MMGR in real situations, for example 

(Tao, ve diğerleri, 2019),  
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    *  

  (       )    
  (         )   + 

(7) 

Since r2 should have a distinct value for each picture in a data set, a fixed value 

of η may be used for all the images in the data set instead of r2 in equation (7). The error 

will be big if η is too big, but r2 will be modest. The error will be minor but r2 will be big 

if η is too small, which will place a heavy computational strain on MMGR. Therefore, 

picking a suitable η for a data set is crucial.  

As shown in Table 2, when we apply MMGR to 10 pictures from the Berkeley 

segmentation dataset and benchmark (BSDS), we may get various r2 values based on a 

constant value of η. 

 

Table 2 : R2 values for 10 photos from the BSDS for various η values (Tao, ve diğerleri, 

2019). 

Table 2 demonstrates that as η is decreased, the values of r2 will increase. 

However, when η is less than or equal to 10
-4

, r2 will remain unaltered. Therefore, in this 

study, we set = 10
-4

. 
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Figure 11: Several techniques for producing superpixel pictures. (a) Original photos. (b) 

SLIC-produced superpixel pictures with sk = 500, sm = 50, and ss = 1. (c) Superpixel 

pictures created using mean-shift1 with the parameters hs = 7, hr = 7, and hk = 30. (d) 

Superpixel pictures produced via mean-shift2 with hs, hr, and hk set to 15, 15, and 50, 

respectively. (e) Superpixel pictures from the MMGR-WT algorithm (r1 = 2). (Tao, ve 

diğerleri, 2019). 

Figure 11 exhibits superpixel pictures produced by SLIC, mean-shift, and 

MMGRWT, accordingly, to indicate the efficiency of the MMGR. In which sk is the 

required number of superpixels, sm is the weighting factor among color and spatial 

disparities, and ss is the threshold being used for combining regions.  

As observed in Figure 11, the superpixel pictures produced by SLIC have many 

regions of the same shape and size, but those produced by mean-shift and MMGR-WT 

contain many areas of various sizes and forms.  

It is obvious that the latter two algorithms provide a greater visual impression 

when genuine photos are required. The suggested MMGR has a shorter runtime than 

SLIC, mean-shift, mean-shift1, and mean-shift2, as indicated in Table 3, where SLIC 

relates to Figure 11(b), mean-shift1 relates to Figure 11(c), mean-shift2 relates to Figure 

11(d), and MMGR-WT relates to Figure 11(e). MMGR is a better choice than SLIC and 
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mean-shift for our job requirement since our goal is to provide a quick FCM method for 

color picture segmentation. 

 

Table 3: Comparison of superpixel image generation time (in seconds) for various 

techniques. 

b. Superpixel-Based Fast Fuzzy c-Means 

The combining of MMGR-WT and FCM may enhance picture segmentation 

results since MMGR-WT relies on the local feature of an image whereas FCM relies on 

the global feature. In this part, we provide an SFFCM method that modifies the FCM's 

objective function to take into account the adaptation local spatial information. EnFCM 

is useful and successful for generating rapid picture segmentation since a gray picture 

has just 256 gray levels, that is often significantly less than the number of pixels in a 

picture, but a color image contains way more than 256 distinct colors.  

Typically, quantization is used to minimize the amount of colors in a picture. 

Every channel of a color picture is subjected to a clustering technique in order to 

produce an image with less color levels than beforehand. Nevertheless, standard color 

quantization merely decreases the number of distinct colors, and the quantized picture's 

color distribution remains comparable with that of the main image since local spatial 

information is omitted.  

A superpixel picture is preferable than photos quantized using clustering 

techniques because it retains the spatial information of the picture and minimizes the 

number of distinct colors. We used the clustering approach presented in (Doğan & Lale, 

2002) and the suggested MMGR-WT to quantize a color picture, and then calculated the 

histogram of such quantized picture as demonstrated in Figure 12. 
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Figure 12: An picture in color and its related histogram are quantized. (a) The original 

photo. (b) Quantization of color using the approach suggested in (Doğan & Lale, 2002) 

with c = 10. (c) Figure 3.1's histogram (b). Superpixel picture created using MMGR-WT 

(r1 = 2) in (d). Figure 3.1's histogram (c) (Tao, ve diğerleri, 2019). 

Additionally,we can see in figure 13, which is the color distribution in figure 12, 

that MMGR-WT is much suitable in comparison with the clustering algorithm offered in 

(Doğan & Lale, 2002) for subsequent image segmentation. 

 

 

Figure 13: Distribution of colors in various color pictures. (a) The color distribution in 

Figure 12(a). (b)The color distribution of Figure 12(b). (c) The color distribution of 

Figure 12(d) (Tao, ve diğerleri, 2019). 

It is evident that the histograms in Figure 12(b) and (d) are less complicated 

since there are less colors present in the quantized photos. We can simply expand 

EnFCM to color image segmentation, as shown in Figure 12(c) and (e). Figure 12(e) 

contains even less color levels than Figure 12(c).  

Additionally, it is obvious that Figure 13(C) color 's ranges vary from 

Figure 13(a) and (b), and the former is useful for a later categorization of pixels. Our 
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suggested SFFCM objectives function for color picture segmentation is as follows, 

based on the superpixel photo produced by MMGR-WT: 
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Where Sl is the number of pixels in the lth region Rl, l, q ∈ N
+
, and xp is the color 

pixel inside the l
th

 region of the superpixel picture created by MMGR-WT. l is the color 

level. Comparison to the previous objective function in FCM, the updated objective 

function just adds histogram information.  

The number of color levels is equal to the number of regions in the superpixel 

picture since every color pixel inside the original picture is substituted by the average 

value of color pixels inside the related area of the superpixel picture. Therefore, l << N 

effectively reduces the computation time and complexity. The preceding optimization 

issue may be transformed into an unrestrained optimization problem that reduces the 

subsequent objective function using the Lagrange multiplier approach. 

 

 

   ∑ ∑      
 

 

   
‖  (

 

  
∑   
 ∈  

)    ‖
 

   

 

   (∑      

 

   

) 

(9) 

When the Lagrange multiplier λ  is used. With regard to ukl and vk, we construct the 

partial differential equation of Jm, accordingly. 
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The appropriate answers for ukl and vk are derived by combining (10) and (11) as 

follows. 
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The suggested SFFCM algorithm may be summed up as follows relying on (9)–(13). 
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Setting values for c, m, r1,η,η', and in Step 1, where η' is the SFFCM's 

convergence requirement. Using (6)–(7), create a superpixel picture in step 2 and then 

calculate its histogram. 

1) Use the Sobel operations to calculate the gradient picture. 

2) Put MMGR into practice using (9)–(10) and η. 

3) To acquire the superpixel picture, use WT. 

In Step three, Use the superpixel picture to randomly initialize the membership 

partition matrix U
(O)

. 

Put the loop counter to b = 0 in step four. 

Modify the clustering centers according to (12) in step five. 

Modify the membership 's partition matrix in step six by using (13). 
 

In Step (7), If max{U
(b) 

maxU
(b+1)

}< η’, stop; if not, set b = b + 1 and go to Step 

five (Tao, ve diğerleri, 2019). We utilized the offered method SFFCM to figure 12(a) 

trailing the earlier steps. After that the segmentation outcomes are shown in figure 14. 

 

Figure 14: Results of segmentation on Fig. 6 (a). (a) The quantized picture segmentation 

result using FCM. (a) The results of segmentation utilizing the suggested SFFCM (Tao, 

ve diğerleri, 2019). 

We can observe that the suggested SFFCM outperforms the conventional method 

in terms of segmentation results. We draw the following conclusions about the suggested 

SFFCM based on the preceding analysis: 
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1) Superpixel and the color histogram effectively minimize the amount of 

various colors, making SFFCM quite quick at segmenting color images. 

2) SFFCM is resistant to parameter changes due to the convergent superpixel 

picture produced by MMGR-WT.  

3) SFFCM achieves an outstanding output for color picture segmentation since 

the objective function includes both adaptive local spatial information and a global color 

feature. 
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IV. RESULTS 

After introducing three segmentation techniques (two baseline methods and one 

proposed method), which are K-means clustering, Fuzzy c-means, and Superpixel fast 

fuzzy c-means, we will start to compare between these three algorithms from different 

angles. First, we will work with synthetic images to measure the segmentation accuracy 

and the robustness of each technique. Gaussian and Salt and Pepper noise will be added 

to the image in different magnitudes: 5,10,15, and 20% percent. 

A. Working on Synthetic Images 

We’ve created a synthetic image to help us test the three algorithms, measure the 

optimal segmentation accuracy, and the check the robustness of each algorithm when 

subjected to a noisy images. The synthetic image consists of 5 regions, each one with a 

different grey level, as we can see in the figure below: 
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Figure 15: Synthetic image with 5 different grey levels. 

B. Accuracy measures 

To be able to check the performance for each algorithm and see how well it 

performs, there must be some mathematical measurements in order to help us compare 

between the three algorithms. We will adopt two performance indices, the optimal 

segmentation accuracy (SA), and the degree to which the segmented picture and the 

ground truth are identical; the quantitative score (S). Both are defined as:  
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in which Ck is the set of pixels corresponding to the class in the Ground Truth and Ak is 

the set of pixels corresponding to the k
th

 class that the algorithm has detected. 



 

32 
 

C. Testing on Synthetic Images 

We will test each algorithm with two kinds of noisy images, Gaussian, and salt 

and pepper noise, each with four different levels of noise saturation: 5,10,15, and 20%. 

1. Testing K-means Algorithm 

 

Figure 16: Synthetic image with 5% Gaussian noise before and after segmentation using 

k_means. 

S= 35.6030%, SA= 48.2976%. 
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Figure 17: Synthetic image with 10% Gaussian noise before and after segmentation 

using k_means. 

S= 35.5600%, SA= 47.8971%. 

 

Figure 18: Figure 4.4: Synthetic image with 15% Gaussian noise before and after 

segmentation using k_means. 

S= 34.6780%, SA= 47.6546%. 
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Figure 19: Figure 4.5: Synthetic image with 20% Gaussian noise before and after 

segmentation using k_means. 

S= 33.8191%, SA= 47.2634%. 

 

Figure 20: Synthetic image with 5% Salt and Pepper noise before and after segmentation 

using k_means. 

S= 63.0018%, SA= 76.3422%. 



 

35 
 

 

Figure 21: 4.7: Synthetic image with 10% Salt and Pepper noise before and after 

segmentation using k_means. 

S= 59.5664%, SA= 72.7887%. 

 

Figure 22: Synthetic image with 15% Salt and Pepper noise before and after 

segmentation using k_means. 

S= 56.3224%, SA= 69.3696%. 
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Figure 23: Synthetic image with 20% Salt and Pepper noise before and after 

segmentation using k_means. 

S= 53.0049%, SA= 65.8248%. 

The K-means algorithm performed better with the salt and pepper noise than the 

Gaussian noise, although the robustness of the algorithm wasn’t so good. The algorithm 

made 5 different clusters but couldn’t deal with the noise unfortunately. 
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2. Testing Fuzzy C-means Algorithm 

 

Figure 24: Synthetic image with 5% Gaussian noise before and after segmentation using 

Fuzzy C-means. 

S= 34.9020%, SA= 47.3579%. 

 

 

 

Figure 25: Synthetic image with 10% Gaussian noise before and after segmentation 

using Fuzzy C-means. 
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S= 35.6256%, SA= 47.8884%. 

 

 

 

Figure 26: Synthetic image with 15% Gaussian noise before and after segmentation 

using Fuzzy C-means. 

S= 35.2474%, SA= 47.6284%. 
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Figure 27: Synthetic image with 20% Gaussian noise before and after segmentation 

using Fuzzy C-means. 

S= 33.8254%, SA= 46.9375%. 

 

 

 

Figure 28: Synthetic image with 5% Salt and Pepper noise before and after segmentation 

using Fuzzy C-means. 

S= 92.2767%, SA= 95.9832%. 
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Figure 29: Synthetic image with 10% Salt and Pepper noise before and after 

segmentation using Fuzzy C-means. 

S= 59.5664%, SA= 72.7887%. 
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Figure 30: Synthetic image with 15% Salt and Pepper noise before and after 

segmentation using Fuzzy C-means. 

S= 56.3224%, SA= 69.3696%. 

 

 

 

Figure 31: Synthetic image with 20% Salt and Pepper noise before and after 

segmentation using Fuzzy C-means. 
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S= 53.0049%, SA= 65.8248%. 

Same as K-means, we got a better result from segmenting images with salt and 

pepper noise than with Gaussian noise. Segmenting the synthetic image with 5% salt and 

pepper noise resulted in S and SA equals 92.3 and 96% respectively, which are really 

good results, but continuing in raising the magnitude of the noise showed that the 

robustness isn’t that great, and the algorithm needs more extra steps to perform well. 

3. Testing Superpixel Fast Fuzzy C-means Algorithm 

 

Figure 32: Synthetic image with 5% Gaussian noise before and after segmentation using 

Superpixel Fast Fuzzy C-means. 

S= 90.7349%, SA= 95.1424%. 
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Figure 33: Synthetic image with 10% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means. 

S= 92.1331%, SA= 95.9055%. 

 

 

Figure 34: Synthetic image with 15% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means. 

S= 96.9189%, SA= 98.4353%. 
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Figure 35: Synthetic image with 20% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means. 

S= 86.8063%, SA= 92.9372%. 

 

 

Figure 36: Synthetic image with 5% Salt and Pepper noise before and after segmentation 

using Superpixel Fast Fuzzy C-means. 

 

S= 99.0764%, SA= 99.5361%. 
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Figure 37: Synthetic image with 10% Salt and Pepper noise before and after 

segmentation using Superpixel Fast Fuzzy C-means. 

S= 96.1191%, SA= 98.0212%. 

 

 

Figure 38: Synthetic image with 15% Salt and Pepper noise before and after 

segmentation using Superpixel Fast Fuzzy C-means. 

S= 94.9410%, SA= 97.4049%. 
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Figure 39: Synthetic image with 20% Salt and Pepper noise before and after 

segmentation using Superpixel Fast Fuzzy C-means. 

S= 53.9346%, SA= 67.2477%. 

As we can see from the S and SA results, Superpixel Fast Fuzzy C-means is 

superior to the previous methods (K-means and Fuzzy C-means). The result showed that 

the segmentation optimal accuracy is far exceeds the previous methods, and only 

showed poor performance when dealing with 20% salt and pepper noise. 

D. The Data Set 

The data contains three different varieties of chest cancer, including 

adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, as well as one 

folder for normal cells. The photos are not in dcm format; instead, they are in jpg or png 

to suit the model. The primary folder that houses all the step folders is called the data 

folder. inside Data folder are test , train , valid. 

1- Adenocarcinoma: The most prevalent kind of lung cancer, responsible for 

around 40% of all instances of non-small cell lung cancer and 30% of all cases overall, 

is lung adenocarcinoma. Breast, prostate, and colorectal malignancies all often become 

adenocarcinomas. The glands that release mucus and aid in breathing are located in the 
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outer part of the lung where adenocarcinomas of the lung may be detected. Coughing, 

hoarseness, weakness, and weight loss are among symptoms. 

2- Large-cell undifferentiated carcinoma is a kind of lung cancer that may 

develop anywhere in the lung and spread swiftly. 10 to 15 percent of all NSCLC patients 

often include this particular kind of lung cancer. Large-cell undifferentiated carcinoma 

has a propensity for rapid growth and dispersal. 

3- Squamous cell carcinoma: This kind of lung cancer develops in one of the 

major branches of the airways or in the center of the lung, where the bigger bronchi 

connect the trachea to the lung. Approximately 30% of all non-small cell lung cancers 

are squamous cell lung cancers, and smoking is often a risk factor. 

4- Normal: Those are normal CT lung scans. 

E. Testing with real data, Lung CT Images 

As we explained in the section before, we have four types of CT images, 

Adenocarcinoma, Large cell carcinoma, Squamous cell carcinoma, and Normal images. 

We will test the three algorithms using one normal image, and will add Gaussian noise 

in four different magnitudes, 5,10,15, and 20%. We used Gaussian because usually CT 

images get noisy with this kind of noise. Finally, we will compare the performance using 

the run time, along with eye inspection. 

1. Testing K-means Algorithm 

We did a lot of testing, and to get the best segmentation for the lungs using this 

algorithm, putting the clusters = 3 was the best option. 
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Figure 40: Lung CT image with 0% Gaussian noise before and after segmentation using 

K-means clustering algorithm. 

 

Figure 41: Lung CT image with 5% Gaussian noise before and after segmentation using 

K-means clustering algorithm. 
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Figure 42: Lung CT image with 10% Gaussian noise before and after segmentation 

using K-means clustering algorithm. 

 

Figure 43: Lung CT image with 15% Gaussian noise before and after segmentation 

using K-means clustering algorithm. 
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Figure 44: Lung CT image with 20% Gaussian noise before and after segmentation 

using K-means clustering algorithm. 

The K-means clustering did a fine job with the first image with no noise at all, 

and segmented the lung in a good way, although after the noise addition, as we can see 

that the lung segment is noisy, so the algorithm can withstand a bit of adjustment to 

increase its robustness. 

2. Testing Fuzzy C-means Algorithm 

For this algorithm and the next one (Superpixel Fast Fuzzy C-means), we will 

use the clusters =4. 
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Figure 45: Lung CT image with 0% Gaussian noise before and after segmentation using 

Fuzzy C-means clustering algorithm. 

 

Figure 46: Lung CT image with 5% Gaussian noise before and after segmentation using 

Fuzzy C-means clustering algorithm. 
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Figure 47: Lung CT image with 10% Gaussian noise before and after 

segmentation using Fuzzy C-means clustering algorithm. 

 

Figure 48: Lung CT image with 15% Gaussian noise before and after segmentation 

using Fuzzy C-means clustering algorithm. 
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Figure 49: Lung CT image with 20% Gaussian noise before and after segmentation 

using Fuzzy C-means clustering algorithm. 

As we saw in the previous algorithm (K-means clustering), this algorithm 

showed good lung segmentation without adding the noise to the image, but the more 

noise we added, it showed that this algorithm doesn’t have good robustness, and it also 

needs some modification. 

3. Testing Superpixel Fast Fuzzy C-means Algorithm 

As we mentioned before, we will put the clusters = 4 in this algorithm. 
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Figure 50: Lung CT image with 0% Gaussian noise before and after segmentation using 

Superpixel Fast Fuzzy C-means clustering algorithm. 

 

Figure 51: Lung CT image with 5% Gaussian noise before and after segmentation using 

Superpixel Fast Fuzzy C-means clustering algorithm. 
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Figure 52: Lung CT image with 10% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means clustering algorithm. 

 

Figure 53: Lung CT image with 15% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means clustering algorithm. 
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Figure 54: Lung CT image with 20% Gaussian noise before and after segmentation 

using Superpixel Fast Fuzzy C-means clustering algorithm. 

As we can see from the comparison above, this algorithm has much more 

robustness than the previous two algorithms (K-means and Fuzzy C-means), it showed 

great segmentation results for the lung with the free noisy image and the noisy images, 

and we can clearly say that this is the best algorithm out of the three algorithms. 
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V. CONCLUSION AND FUTURE WORK 

In chapter 4 (Results), we applied the three algorithms (Superpixel Fast Fuzzy C-

means, Fuzzy C-means, and K-means) on two types of images: 

1- The synthetic image (see figure 15) with 5 different grey levels. 

2- The Lung CT image 

We added two types of noise with different magnitudes to the synthetic image, 

which were salt and pepper, and Gaussian noise. However, we only added Gaussian 

noise to the lung CT image, because it’s the most common type of noise that affects CT 

images.  

And from testing on the synthetic image, we were able to calculate the optimal 

segmentation accuracy (SA), and the degree to which the segmented picture and the 

ground truth are identical; the quantitative score (S), for the three algorithms mentioned 

above. Below, Table 4 shows the (S) scores, and Table 5 shows the (SA) scores. 

Noise K-means (%) Fuzzy C-means (%) Superpixel Fast Fuzzy C-

means (%) 

Gaussian 5% 35.6030 34.9020 90.7349 

Gaussian 10% 35.5600 35.6256 92.1331 

Gaussian 15% 34.6780 35.2474 96.9189 

Gaussian 20% 33.8191 33.8254 86.8063 

Salt & Pepper 5% 63.0018 92.2767 99.0764 

Salt & Pepper 10% 59.5664 59.5664 96.1191 

Salt & Pepper 15% 56.3224 56.3224 94.9410 

Salt & Pepper 20% 53.0049 53.0049 53.9346 

Table 4: The quantitative score (S) 
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Noise K-means (%) Fuzzy C-means (%) Superpixel Fast Fuzzy C-

means (%) 

Gaussian 5% 48.2976 47.3579 95.1424 

Gaussian 10% 47.8971 47.8884 95.9055 

Gaussian 15% 47.6546 47.6284 98.4353 

Gaussian 20% 47.2634 46.9375 92.9372 

Salt & Pepper 5% 76.3422 95.9832 99.5361 

Salt & Pepper 10% 72.7887 72.7887 98.0212 

Salt & Pepper 15% 69.3696 69.3696 97.4049 

Salt & Pepper 20% 65.8248 65.8248 67.2477 

Table 5: The optimal segmentation accuracy (SA) 

 

Figure 55: The quantitative score (S) for the three algorithms. 
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Figure 56 : The optimal Segmentation accuracy (SA) for the three algorithms. 

The average (S) score when adding Gaussian noise for each algorithm is: 34.92% 

for K-means, 34.90% for Fuzzy C-means, and 91.65% for Superpixel Fast Fuzzy C-

means. The average (S) score when adding Salt and pepper noise for each algorithm is: 

57.97% for K-means, 65.29% for Fuzzy C-means, and 86.02% for Superpixel Fast 

Fuzzy C-means.  

The average (SA) score when adding Gaussian noise for each algorithms is: 

47.78% for K-means, 47.45% for Fuzzy C-means, and 95.61% for Superpixel Fast 

Fuzzy C-means. The average (SA) score when adding Salt and pepper noise for each 

algorithms is: 71.08% for K-means, 75.99% for Fuzzy C-means, and 90.55% for 

Superpixel Fast Fuzzy C-means.  

Lastly, overall average of (S) for the three algorithms is: 46.44% for K-means, 

50.01% for Fuzzy C-means, and 88.83% for Superpixel Fast Fuzzy C-means. Overall 

average of (SA) for all three algorithms is: 59.43% for K-means, 61.72% for Fuzzy C-
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means, and 93.08% for Superpixel Fast Fuzzy C-means. We conclude that K-means and 

Fuzzy C-means are almost the same when dealing with Gaussian noise, and Fuzzy C-

means is better than K-means when dealing with salt and pepper noise, and Superpixel 

Fast Fuzzy C-means is far superior and has much more robustness in comparison with 

the previous two methods.  

About the run time for the three algorithms when dealing with the lung CT 

image, the fastest is K-means in 0.38 seconds, the second is Superpixel-based Fuzzy C-

means in 1.90 seconds, and the slowest is Fuzzy C-means in 3.37 seconds. 

Concerning the future work, we will develop an algorithm that will locate the nodules 

inside the lungs after the lung segmentation and classify the nodules into categories. 
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RESUME 

 

Ghaith Abdul Mohsen Tayara  

 

  

Objective 

Seeking a challenging position in the biomedical engineering field to enrich my knowledge, skills, and experience, 

and contribute to make a significant change in the field. I’m looking for an organization where I could help by using 

all my knowledge, skills, and experience.  
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Echo medical supplies (EMS)                                                                     February 11th 2018 – September 2019  

.   Medical Sales Representative |   
.   Build strong relationships with internal and external stakeholders and ensure meeting the expectations.  
.  Coordinate meetings with doctors and hospital medical staff, which may include pre-arranged                                          

appointments or regular 'cold' calling.  
.   Demo and present to doctors, practice staff and nurses in surgeries, hospital.  
.   Organize conferences for doctors and other medical staff.  
.   Collect and analyze data about customers to find new leads and opportunities.  
.   Maintain positive working spirit with medical staff and support administrative staff during urgent situations.  
.   Win new customers, as well as develop long-term relationships with existing ones.  
.   Monitor competitor activity and competitors' products.  
.   Stay informed about the activities of health services in a particular area.  
Brands: Ultrasound systems (Alpinion), Patient monitors (Bionics), Surgical Instruments (ASC & MAHE).   

First National Medical Services-Siemens Health Care Partner      February 5th - April 5th, 2017 

 Field Service Engineer (Trainee):  

 ·       Installation and verification for new devices.   
 ·  Perform the preventive maintenance.  
 ·  Provide technical customer support.  

  

Medical Imaging Devices: The First National Medical Services Training Sessions from Feb 5th to Feb 14th, 2017 (Certified) with the 

following course contents:   
 -X Ray & Cathlab Basics   -Ultrasound Basics   
 -Cyclotron Basics   -MRI Basics   
 -Radiotherapy Basics   -Sales and Management Basics   

-Computed Tomography Basics   
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Husam Nimer Drugstore at Abbott Devices                              April 5th 2017 –June 5th 2017  

Field Service Engineer (Trainee):  
· I helped install, make the required maintenance, and do the preventive maintenance to the Immunoassay analyzers, 

Chemistry analyzers and CBC devices.  
· Made the regular meetings with lab technicians.  

   

Education 

Master Of Engineering | 2019 - 2022 | Istanbul Aydin University (Turkey)  

· Major: Electrical and Electronics Engineering ·   
· Accumulative Average:  3.31/4   
· Thesis topic: Segmentation of Lung Computed Tomography Images.  

  

Bachelor Of Engineering | 2017 | Yarmouk University (Jordan)        
  · Major: Biomedical Engineering.  Accumulative Average: 72.3% ·   Rating: good.    

  

  

Volunteering 

Mentor At IEEE EMBS| Yarmouk University Student Chapter   
· November 24th, 2016 - 2019  

Chairman and Founder at IEEE EMBS | Yarmouk University Student Chapter    
· May 29th, 2015 – November 23rd 2016   

IEEE Jordan Conference on Applied Electric Engineering And Computing Technologies (AEECT)  
· November 3rd -5th, 2015   

  

Technical Skills 

· MATLAB (Professional)  · Circuit maker and Proteus   

· Python (Beginner)  · C++ and C# Programming   

· Arduino (Programming and Design).  · Microsoft Office  

Personal Skills 

· Time Management                                                                                                     · Problem solving    

· Work under pressure                                                                                             · Teamwork   

· leadership                · Sense of responsibility   

 

Languages 

· Arabic: Native.   

· English: Fluent.  

  

 


