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CHANNEL ESTIMATION USING DEEP LEARNING FOR 5G COMMUNICATION 
SYSTEMS 

ABSTRACT 

Users’ starvation for more reliability, high speed and capacity wireless communication 

have caused the invention of 5G NR communication system. As we know the recent 

communication technologies are designed on the basis of conventional communication 

philosophies, which significantly limit additional performance perfections and that is the root of 

daunting limitations. one of the important areas of the mobile communication is the wireless 

channel estimation method which can significantly improve the performance of the whole system, 

and particularly for 4G-systems and 5G-systems. 

In this thesis we examine the baseline channel estimation methods used for orthogonal 

frequency division multiplexing (OFDM) systems, such as the minimum mean square error 

‘MMSE’ estimator and the least square (LS) estimator. We studied the MMSE and LS estimators’ 

architecture an examine their performances. And prove that the MMSE estimator performance is 

better but it is computational complexity is high, in contrary the LS estimator has low complexity 

with low performance. 

Therefore, in this thesis we propose a different and efficient solution for channel estimation 

which is based on machine learning techniques and in particular we used deep learning techniques 

to overcome the performance issues associated with the traditional channel estimation baseline 

methods, we assess the proposed estimator performance on basis of Long Short-Term Memory 

(LSTM) and symbol error rate for 16 QAM systems for a multi-user communication system. We 

also evaluate estimator computational accuracy and feasibility.  

 

Keywords: 5G Communication Systems, Channel Estimation, OFDM, LS Estimator, MMSE 

Estimator, DNN, LSTM, Complexity calculation. 
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5G HABERLEŞME SISTEMLERI IÇIN DERIN ÖĞRENMEYI KULLANARAK KANAL 
KESTIRIMI 

ÖZET 

 
Kullanıcıların daha fazla güvenilirlik, yüksek hız ve kapasiteli kablosuz iletişim ihtiyacı, 

5G NR iletişim sistemlerinin geliştirilmesine neden olmuştur. Bilindiği gibi, son iletişim 

teknolojileri, sınırlı performanslı geleneksel iletişim felsefeleri temelinde tasarlanmıştır. Kanal 

kestirimi mobil iletişimin önemli alanlarından biri olup, özellikle 4G sistemleri ve 5G sistemleri 

için tüm sistemin performansını önemli ölçüde artırabilen bir yöntemidir. 

Bu tezde, minimum ortalama kare hatası (MMSE) kestiricisi ve en küçük kare (LS) 

tahmincisi gibi ortogonal frekans bölmeli çoğullama (OFDM) sistemleri için Temel kanal tahmin 

yöntemleri incelenmektedir. MMSE ve LS tahmin edicilerinin çalışma prensipleri ve 

performansları incelenmektedir. MMSE tahmincisinin performansının daha iyi olduğunu ancak 

hesaplama karmaşıklığının yüksek olduğunu, LS tahmincisinin aksine düşük karmaşıklığa fakat 

düşük performansa sahip olduğu görülmektedir. 

Bu nedenle, bu tezde, makine öğrenme tekniklerine dayanan ve özellikle geleneksel kanal 

tahmin yöntemleriyle ilişkili performans sorunlarının üstesinden gelmek için derin öğrenme 

tekniklerini kullandığımız kanal kestirimi için farklı ve verimli bir çözüm önerilmiştir. Önerilen 

kestirimci performansı, uzun kısa süreli bellek (LSTM) temelli ve çok kullanıcılı 16 QAM bir 

iletişim sistemi için sembol hata oranı uyarınca tahmin edicinin hesaplama doğruluğu ve 

performansıyla değerlendirilmektedir. 

Anahtar Kelimeler: 5G İletişim Sistemleri, Kanal Tahminleme, OFDM, LS Tahmincisi, MMSE 

Tahmincisi, DNN, LSTM, Karmaşıklık hesaplaması.
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1.  INTRODUCTION TO COMMUNICATION SYSTEMS 

1.1  Communication System Block Diagram: 

For overall argument of communication system, the following figure (1.1) illustrates a 

widely used block diagram. Both data and voice transmission systems inevitably include three 

main subsystems, irrespective of the individual application theses subsystems are: (Tx)-

transmitter, (Rx)-receiver and channel (Rodger E & William H, 2015; YRKI, 2016). 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. 1: General Communication System Block Diagram. 

1.1.1  Input Transducer: 

 A transducer is a system or a sensor that has ability to convert energy from one form to 

another which is suitable for the next processing stages (Rodger E & William H, 2015). E.g.: in 

wireless communication systems, end-user voice or data signals are translated to voltage 

differences via a microphone. And such translated signals are called as the message signal.  

1.1.2  Transmitter (Tx): 

The key purpose of the transmitter is to prepare the input signal by using appropriate 

processes such as modulation to be transmitted across long distances over the available 

transmission medium (Freeman, 2005). The primary block in the transmitter section is the 

modulator which perform modulation: modulation is the methodical variation of any of the carrier's 

characteristics, such as amplitude, phase or frequency, in line with the message signal function 
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despite the fact there are many reasons to use and modulate a carrier (Rodger E & William H, 

2015). 

1.1.3  Channel: 

The channel it is also known as the transmission medium; the transmission medium can 

one of two main types Guided mediums such as copper cable, fiber optic cables and Unguided 

mediums such as Radio Waves (Rodger E & William H, 2015; Freeman, 2005). The transmitted 

signal in this channel propagates across the guided or unguided media. 

 Even though there is one thing in common with both channels: that the signal is diminished 

from transmitter to receiver. While this deterioration can occur at any stage in the block diagram 

of the communication structure, the channel itself is typically can cause losses. This loss mostly 

results from noise and other disturbances or unnecessary signals, but can also involve other 

consequences of amplification, and fading signal speeds, multiple propagation paths, and filtering 

disruptions (Sibley, 2018). 

1.1.4  Receiver (Rx): 

The receiver’s function is to extract the desired message from the received signal by the 

channel output and to convert it to a form suitable for the output transducer. The main block in the 

receiver side is the demodulator which demodulate the received signal to baseband version 

(Freeman, 2005).  

1.1.5  Output Transducer: 

The output transducer is the last block in any communication model. At its input, this 

instrument transforms the electrical signal into a form appropriate for end-user specifications, 

where voice or data types are the most typical forms of the output transducer (Freeman, 2005).  

1.2  Cellular Communication Systems History: 

First Generation of cellular comm-systems was designed to use FDMA as the multiple 

access technology. FDMA depends mainly on Frequency Modulation which is analog transmission 

technique that has inherently narrowband and it is used for speech transmission. 

 The 1G has satisfied the basic mobile voice conversation; it was an analog cellular 

technology with limited coverage and limited number of users. The Second Generation of cellular 

systems was primarily digital transmission system (Sibley, 2018).  
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This system uses either TDMA or/and CDMA as multiple access technology. Although, the 2G 

offered higher transmission rate with greater flexibility than the 1G system, they are nevertheless, 

narrowband systems. 2G has introduced decent capacity and coverage. As it provides facilities like 

fast messaging and has lower rapidity data using digital multiple access. The 2G was succeeded 

by upgrading it to third generation (2.5G) which is EDGE for offering higher data rates (Glisic & 

G., 2006).  

The 3G standard is based on CDMA with a transmission rate up to 2 Mbps, that is wideband 

and are expected to support multimedia services. This revolutionized the mobile services with a 

real mobile broadband, in which this laid foundation for the 4-generation. The 4G can offer 

connectivity to a broad spectrum of telecommunications facilities, including advanced broadband 

technologies, enabled by increasingly packet-based mobile and fixed networks, as well as support 

for low to high mobility applications and a wide variety of data rates. 

 In line with market demands in the multi-user world, whereas future system is based on 

user demands as the 4G cellular system applications need high data rates activeness (Sibley, 2018). 

Which it is done by transforming the high-rate serial data sequence into a number of parallel data 

sequences with a lower rate and then modulating each one into a multiplex form, OFDM 

multiplexing orthogonal frequency division is an important way to accomplish this concept 

(PENTTINEN, 2015).  

Due to its critical position in wireless networking technologies, OFDM has attracted a great 

deal of researchers' interest. OFDM is an important technique for wireless communication systems 

because of its advantages such as large spectral efficiency, increased data rate capacity of the 

individual subcarrier according to signal-to-noise ratio (SNR), robustness in frequency selective 

fading paths, overcoming inter-symbol interference and the ability to accommodate very heavy 

multi-path fading (Glisic & G., 2006).  

1.2.1  Summary of Wireless Communication Systems Evolutions: 

Table 1. 1: Summary of Cellular Systems Evolution. 
Parameters 1G 2G 3G 4G 5G 
Tech-type Analog Digital-CS Digital-PS Digital Digital 
Data-rates 9.6 -15 

Kbps 
9.6 Kbps -115 

Kbps 
2 Mbps 20 - 40 Mbps 

0.1-1 Gbps 
1-10Gbps 

Mul-Access FDMA TDMA/CDMA CDMA OFDMA OFDMA/NOMA 
Frequency 800 MHz 800 MHz/1.9 GHz 2GHz 2GHz 4-100GHz 

CH-spacing 30KHz 200KHz 5 MHz 18MHz 18/20MHz 
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1.3  Orthogonal Frequency-Division Multiplexing: 

Orthogonal frequency-division multiplexing (OFDM) communication scheme is a type of 

a multicarrier scheme, which employs multiple orthogonal subcarriers to carry the end-user data 

from source to the destination where bandwidth efficiency is attained by the  process of 

superimposing the bands of orthogonal subcarriers. The FF-transform (FFT) and inverse-FT 

(IFFT) methods are suitable for realizing these ortho-signals (Cho, Kim, Yang, & Kang, 2010). In 

OFDM TRX-scheme an 𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 inverse-FT is used for encoding 𝑋𝑋[𝑘𝑘] Tx-symbol to generate  

𝑥𝑥[𝑛𝑛] sample. So, take into account 𝑦𝑦[𝑛𝑛]  as the received data sample which resembles 𝑥𝑥[𝑛𝑛] 

transmitted symbols plus an additive noise 𝑤𝑤[𝑛𝑛] due to the channel properties (Cho, Kim, Yang, 

& Kang, 2010), Hence: 
 𝑦𝑦[𝑛𝑛] =  𝑥𝑥[𝑛𝑛] + 𝑤𝑤[𝑛𝑛]   (1.1) 

 
Then by considering the reverse process of taking 𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 Fast-FT of the Rx-symbols, 𝑦𝑦[𝑛𝑛], we 

obtain a chattering form of the communicated symbols 𝑌𝑌[𝑘𝑘] at the receiver (Cho, Kim, Yang, & 

Kang, 2010). 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. 2: Outline of OFDM Transmission Scheme. 
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As we know all the orthogonal subcarriers are having a determinate period 𝑇𝑇, thus the OFDM data-

signal spectrum can be considered as the frequency-shifted Sinc functions summations in the 

frequency domain as shown in Figure (1.3) below, where the overlapped adjacent SC-Sinc 

equations are spaced by 1
𝑇𝑇
 (Cho, Kim, Yang, & Kang, 2010). 

 

Figure 1. 3: Spectrum of OFDM Signal (Sinc Functions). 
1.4  Orthogonality: 

If we consider the complex exponential signals that are time-confined, as 𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡 which 

signify the various subcarriers at  𝑓𝑓𝑘𝑘 =  𝑘𝑘
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

 , while 0 ≤ 𝑝𝑝 ≤ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠. such data-signals are 

demarcated as ortho-signals if their integral of the products along their fundamental period is zero 

(Cho, Kim, Yang, & Kang, 2010), which means, 

 
 1

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
�  𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝑘𝑘𝑡𝑡𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡𝑑𝑑𝑝𝑝 = 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0

1
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

�  𝑒𝑒
𝑗𝑗2𝜋𝜋�𝑘𝑘−𝑖𝑖`𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

�
 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0
𝑑𝑑𝑝𝑝   (1.2) 

 
                                                                 
        = �  1,       ∀    𝑘𝑘 = 𝑝𝑝

 0,     𝑂𝑂𝑝𝑝ℎ𝑟𝑟𝑤𝑤𝑝𝑝𝑟𝑟𝑒𝑒 (1.3) 

 
Taking separate samples with instances of sampling at 𝑝𝑝 = 𝑛𝑛𝑇𝑇𝑠𝑠 = 𝑛𝑛 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
 , 𝑛𝑛 = 0,1,2, . . . ,𝑁𝑁 − 1, 

In the discrete time domain, the above equation can be written as: 
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 1

𝑁𝑁
� 𝑒𝑒

𝑗𝑗2𝜋𝜋 𝑘𝑘
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑇𝑇𝑠𝑠𝑒𝑒−𝑗𝑗2𝜋𝜋
𝑖𝑖
𝑇𝑇𝑛𝑛𝑇𝑇𝑠𝑠

𝑁𝑁−1

𝑛𝑛=0

=  
1
𝑁𝑁
� 𝑒𝑒𝑗𝑗2𝜋𝜋(𝑘𝑘−𝑖𝑖𝑁𝑁 )𝑛𝑛
𝑁𝑁−1

𝑛𝑛=0

 (1.4) 

 
 = �  1,       ∀    𝑘𝑘 = 𝑝𝑝

 0,     𝑂𝑂𝑝𝑝ℎ𝑟𝑟𝑤𝑤𝑝𝑝𝑟𝑟𝑒𝑒 (1.5) 

 

The above Equation (1.2) and (1.4) are the essential orthogonality condition for OFDM signals in 

continuous time and discrete time domains. 

1.5  Modulation/Demodulation In OFDM: 

The transmitter portion of the OFDM transforms the bits of the input signal into a series of 

M-PSK/M-QAM packets which that is going to be mapped afterward into 𝑁𝑁-parallel data-streams 

where every 𝑁𝑁- symbols obtained by using the S/P mapping stage which is conducted on numerous 

subcarrier that are available (Cho, Kim, Yang, & Kang, 2010). Thus, let 𝑋𝑋𝑙𝑙[𝑘𝑘] represent the  𝑙𝑙𝑡𝑡ℎ  

transmit symbol at the 𝑘𝑘𝑡𝑡ℎ subcarrier. Where the transmission time length for N-Symbols is 𝑁𝑁𝑇𝑇𝑠𝑠 

forming a single duration of the OFDM packet duration with a period length 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑇𝑇𝑠𝑠 

we get the baseband OFDM transmitted signal in continuous time domain (Cho, Kim, Yang, & 

Kang, 2010). And that is given as: 

 
 

𝑥𝑥𝑙𝑙(𝑝𝑝) =  ��𝑋𝑋𝑙𝑙[𝑘𝑘]𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝑘𝑘(𝑡𝑡−𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
𝑁𝑁−1

𝑘𝑘=0

∞

𝑙𝑙=0

 (1.6) 

 

In the latter equation (1.6) , the continuous-time OFDM baseband signal sampling ca be done at 

𝑝𝑝 = 𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝑇𝑇𝑠𝑠 while 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁

 , 𝑓𝑓𝑘𝑘 = 𝑘𝑘
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

  produce the discrete-time matching baseband OFDM 

character (Syms) as: 
 

𝑥𝑥𝑙𝑙[𝑛𝑛] = �𝑋𝑋𝑙𝑙[𝑘𝑘]𝑒𝑒
𝑗𝑗2𝜋𝜋𝑘𝑘𝑛𝑛
𝑁𝑁      ,𝑓𝑓𝑝𝑝𝑟𝑟 𝑛𝑛 = 0, 1, 2, … ,𝑁𝑁 − 1 

𝑁𝑁−1

𝑘𝑘=0

 (1.7) 

 

Note that the above Equation (1.7) is the 𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 IFFT of Phase shift keying, Quadrature-AM 

data packets  𝑋𝑋𝑙𝑙[𝑘𝑘]. Thus, consider the baseband OFDM character obtained: 
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𝑦𝑦𝑙𝑙(𝑝𝑝) = �𝑋𝑋𝑙𝑙[𝑘𝑘]𝑒𝑒−2𝜋𝜋𝑓𝑓𝑘𝑘�𝑡𝑡−𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠�  

𝑁𝑁−1

𝑘𝑘=0

 (1.8) 

 
𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒−→    𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 < 𝑝𝑝 ≤ 𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝑇𝑇𝑠𝑠 

By using the definition of orthogonality between the subcarriers, the transmitted symbol 𝑋𝑋𝑙𝑙[𝑘𝑘]  

can be reconstructed as follows: 
 

𝑌𝑌𝑙𝑙[𝑘𝑘] = �𝑋𝑋𝑙𝑙[𝑝𝑝]
𝑁𝑁−1

𝑖𝑖=0

�
1

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
�  𝑒𝑒𝑗𝑗2𝜋𝜋(𝑓𝑓𝑖𝑖−𝑓𝑓𝑘𝑘)�𝑡𝑡−𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑𝑝𝑝
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0
� =  𝑋𝑋𝑙𝑙[𝑘𝑘] (1.9) 

 
Channel impacts and noise are not taken into consideration. Let 𝑦𝑦𝑙𝑙[𝑛𝑛]  at 𝑝𝑝 = 𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛𝑇𝑇𝑠𝑠 be the 

sample values of the obtained OFDM symbol 𝑦𝑦𝑙𝑙(𝑝𝑝). Then, the integration of the above equation 

into the modulation phase can be expressed in the discrete time period (Cho, Kim, Yang, & Kang, 

2010).This is illustrated as follows: 

 
 

𝑌𝑌𝑙𝑙[𝑘𝑘] =  
1
𝑁𝑁
� �𝑋𝑋𝑙𝑙[𝑝𝑝]𝑒𝑒

𝑗𝑗2𝜋𝜋(𝑖𝑖−𝑘𝑘)𝑛𝑛
𝑁𝑁 =  𝑋𝑋𝑙𝑙[𝑘𝑘]

𝑁𝑁−1

𝑖𝑖=0

𝑁𝑁−1

𝑛𝑛=0

 

 

(1.10) 

 

Thus, the Equation (1.10) is the 𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 Discrete-FT of 𝑦𝑦𝑙𝑙[𝑛𝑛] which can be easily calculated 

by using the Fast-FT algorithm (Cho, Kim, Yang, & Kang, 2010). 

 

Figure 1. 4: Concept of Subcarriers Orthogonality.  

   𝑓𝑓2 𝑓𝑓0    𝑓𝑓1    𝑓𝑓3    𝑓𝑓𝑁𝑁−1 …. 
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1.5.1 OFDM Modulation and Demodulation Block Diagram: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. 5: OFDM Modulation and Demodulation Block Diagram. 

1.5.2 OFDM Transmitter and Receiver Block Diagram:  

OFDM scheme have an input signal in from of the serial data which is then prearranged 

into parallel set-up to reduce the bit-rate/subcarrier. This parallel signal is transformed using any 

acceptable form of modulation, such as M-QPSK or M-QAM. As an outcome, there can be very 

high values for the amplitude of such a signal. 

This large difference in amplitude is an immense OFDM disadvantage that tends to decrease the 

power amplifier’s efficiency. Since the amplifier for high input amplitudes is typically very non-

linear, it may be necessary to reduce the input impedance to decrease the distortion.  

The reduction of additional power is based on the reduction of the signal deformity based 

on PAPR reduction and other factors. N-overlaps orthogonal sub-carriers in this method, each 

carrying a 1⁄T baud rate and 1⁄T spaced apart, such sub-carrier orthogonality requires that each sub-

carrier has precisely the same integer number of cycles in the interval 𝑇𝑇 (Cho, Kim, Yang, & Kang, 

2010). Therefore, to preserve orthogonality between the sub-carriers, the Inverse Fast-FT block is 

given and used, which is properly decoded with a Fast-FT block on the receiver side. The OFDM 

Transmitter/Receiver system diagram is shown in Figure (1.6) below: 
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Figure 1. 6: Block Diagram for OFDM Transceiver System. 

When looking at the transceiver block diagram above, the input signals are encoded using 

serial/parallel converter block where such signals are translated to parallel signals. Then these 

signals are modulated with the assistance of QPSK Or QAM Modulator. The IFFT block then 

absorbs the modulated signal where the Inverse Fast-FT converts this signal into a time domain 

signal, preserving the orthogonality of the OFDM data transmitted through the channel after that 

CP is inserted. The key reasons for making a CP block in the transmission path are that a Cyclic 

Prefix (CP) or guard interval is applied to the transmitted symbols to minimize the interference 

between the neighboring OFDM symbols and also to preserve the orthogonality between the 

subcarriers. Although the length of this CP is set aside as greater than or equal to the redundancy 

of the channel length. As a consequence, inter-symbol (ISI) interference is absolutely eradicated. 

The resulting symbols are then added to a P/S and sent through the channel (Cho, Kim, Yang, & 

Kang, 2010; Govil, 2018). 

The data is obtained from the wireless channel on the receiver side and received by the receiver, 

then the CP or guard interval is removed from the OFDM symbol. The data is then mapped back 

from serial to parallel. This parallel data is then converted from the time domain to the frequency 

domain signal by using the Fast-FT block. Further demodulation and encoding of the signal are 

performed. Therefore consider  𝑋𝑋 =  (𝑋𝑋[0],𝑋𝑋[1], … ,𝑋𝑋[𝑁𝑁 − 1]) is a modulated data sequence of 

length 𝑁𝑁. Where 𝑋𝑋[𝑘𝑘] is the transmitted symbols, Then the complex envelope of the received and 
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demodulated baseband OFDM signal for 𝑁𝑁 carrier (Cho, Kim, Yang, & Kang, 2010), Which is 

given is given as: 

  
𝑥𝑥(𝑝𝑝) = �𝑋𝑋[𝑘𝑘]𝑒𝑒

𝑗𝑗2𝜋𝜋𝑘𝑘𝑡𝑡
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

  
   

𝑁𝑁−1

𝑘𝑘=0

 

 

(1.11) 

1.6  Fifth Generation wireless Communication Systems: 

5G it refers to the cellular communication 5th generation, it is a novel comprehensive cellular 

norm developed as a successor to the current 4G cellular communication system. 5G networking 

makes a revolutionary form of network that links almost anything that has an IP address and 

interacts together, including individuals and apparatuses. 5G cellular tech is a sophisticated multi-

Gbps topmost data-rates, Very-low delays and better stability are intended to be delivered to more 

devices, plus huge network bandwidth, which improved availability and add more uniform user 

interface (Qualcomm, n.d.).  

1.6.1 Fifth Generation Main Features: 
The important distinct features of the fifth generation of cellular communication system are shown 

in the following chart: 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 1. 7: 5G Important Features. 

1.6.2 Fifth Generation Contributory Technologies: 

5G is based on the concept of Ortho-frequency division-multiplexing schema and other 

important technologies which will be illustrated in the following paragraphs, OFDM is a way of 

modulating a digital signal through many different channels to decrease fifth generation 
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interference (Qualcomm, n.d.). 5G uses 5G-NR interface alongside OFDM principles to support 

the new requirements demanded by this new technology (K, 2018). The new 5G-NR can 

additionally improve OFDM schema and logic to transport a sophisticated grade of scalability plus 

elasticity, as this technology would facilitate access to more customers and facilities with a number 

of diverse use cases (K, 2018). 

By the usage of new spectrum regions, 5G will utilize and use larger bandwidths, which will enable 

the use of spectrum varieties of sub 6 GHz and 4G to 100 GHz (ETSI, 2018). Extreme low latency, 

high bandwidth and multi-Gbps throughput would be transmitted (ETSI, 2018). 

1.7  Motivation: 

The growing number of cellular devices users and the hunger for more data consumption 

has been the main reason to bandwidth exhaustion, and developments of wireless communication 

system. Therefore, in order to handle such extreme demands, researchers purposely increased the 

efficiency and capacity of wireless communication systems through the development of successive 

generations of our cellular communications systems. 

Wireless communication researchers may have developed a lot of wireless channels estimations 

methods. Because a highly accurate channel estimation models are necessity for practical wireless 

system design and simulation. 

Therefore, the motivation of this master thesis is to develop a machine learning-based channel 

estimation models, which are able to extract key channel features and use them for user data 

recovery at the 5G cellular receiver side. 

Hence our aim is to design a more accurate channel estimation model with the assistance of deep 

learning LSTM method for 5G communication system simulations in MATLAB. 

 1.8  Thesis objectives:  

Taking into account the main objectives of this thesis-work listed as below these objectives 

focuses on the implementation of channel estimation generated for 5G cellular comm-systems 

where the orthogonal-FDM as the back bone for the 5G communication arrangement constructed 

by utilization of the new 5G NR plus 3GPP specifications: 

o A comprehensive study of the channel estimation base-line methods.  

o  Design and validation of a deep learning model to estimate 5G using MATLAB and 

Python environments. 
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o Testing and verification of the designed model performance and accuracy.  

1.9  Thesis structure: 

This thesis workload has been divided into six chapters. The first Three chapter illustrate 

the foundation theory and content required for attaining the purpose behind this work. Chapter 

four clarifies the design methodology and the implementation of the thesis objective. Chapter five 

demonstrate the process of testing and validating the designed model. Chapter six shade the lights 

on the obtained results and future scope of this thesis. 

 

 

 

 

 

 

 

 
Figure 1. 8: Thesis Structure. 

1.10  Problem specification and main contribution: 

There are two main key difficulties that we can encounter while designing channel 

estimation model for cellular 5G communication system. The first difficulty is the gathering and 

generation of the correct and sufficient 5G data. The other challenge is the development of a 

channel predictor with equally tolerable intricacy and decent-performance features. Thus, the 

channel estimation model should have a mazing performance and high accuracy. Therefore, this 

thesis answer question: 

How can we design the Deep-Learning channel estimation model that have tow main 

characteristics as: performance with high accuracy through the study and modification of 

previous art being done in this area? 

1.11  Summary of the principal contributions: 

o To design a channel estimation model using deep-learning approach for5G communication 

with good performance and high accuracy. 
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o  Evaluate the channel estimation deigned model computational accuracy. 

o Simulation results of the proposed methods provide comparative study and validate 

proposal. 
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2.  Channel Estimation and the Current State of Art 

2.1  Concept of Communication Channel: 

A channel is defined as a path provided by a transmission medium and the transmission 

mediums can be of two main categories either a guided transmission medium such as copper wires 

and fiber optics cables or unguided transmission mediums such as radio frequencies (Roger & 

Freeman, 2006).  

2.1.2  Radio Channel: 

 A radio channel is known as a radio frequency band or range used for carrying the user 

information between source and destination (Lathi & Ding, 2010).  A radio channels are usually 

allocated for a specified type of a radio communication system depending on the application such 

cellular communication radar communication and so on (Roger & Freeman, 2006). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 1: Concept of Radio Channel.  

 2.2  Literature Review: 

This section of the Thesis-1 introduces a literature survey that we have done in the area of 

5G communication systems plus related method used for channels estimation. The significant of 

this survey lies on providing us with an idea about the accomplished work and the recent situation 
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of research in this field; more less, it exposed us to see how vast this area is and how far it can go 

in the future. This survey backing us to classify our project under the category of Channel 

Estimation Using Deep Learning for 5G Communication Systems, in addition it organize our 

thought to achieve our aim, and perceive the big picture of this area. Only certain papers, based on 

their relevance and influence to our thesis, will be presented in this section. 

According to (Ye, Li, & Juang, 2018), This work presents a DL strategy for orthogonal 

frequency-division multiplexing channel estimation and signal detection. Thus, they use the 

principle of DL “deep learning” in this paper to control wireless O-FDM calculation of channels 

from end to another end approach. 

Unlike current OFDM TRX which directly approximation channel state info (CSI) first 

and then use the appraised CSI to recover/detect the transmitted data-sym, the proposed DL-based 

method here indirectly guesses CSI and recovers the transmitted data directly by designing a DL 

model firstly, train it offline using the data generated from simulation based on channel info and 

then use it for recovering the required online transmitted data directly. 

In (Yuan, Hien Q, & Matthaiou, 2019), considering this research the proposed design of a 

ML “machine-learning” scheme created based on time-division duplex method in which channel 

state data can be attained by manipulating the correlation of the temporal channel to overcome the 

excessive overhead expanse required in ortho-pilot data for conventional CE methods. The 

proposed machine learning predictors include a pattern extraction and CSI-predictor which can be 

applied either by a convolutionary neural network (CNN) and AR predictor or through an 

exogenous inputs recurrent neural network (NARX-RNN) autoregressive network. 

In (Wen C, Wan T, & Jin, 2018),  This work consists of the use of a DL techniques to build 

a “CsiNet”, CsiNet  is a novel channel state info (CSI) sensing/retrieval method which learns to 

use channel structure efficiently from training data points.  

CsiNet learns a conversion from CS-info to an almost optimum number of depictions (code 

data) and an inverse conversion from coded data to CS-info, which aim at reducing the excessive 

feedback overhead used by conventional CSI method for channel estimations and in turn can be 

used for data recovery. 
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According to (Apelfröjd, Björsell, Sternad, & Phan-Huy, 2018), In this research Kalman 

filter is used to obtain smoothed interpolation estimates of the downlink channels of a TDD system, 

based on uplink channel estimates. In order to perform smoothing, future measurements of the 

channel need to be available to the filter. This can be achieved for vehicular user equipment by 

placing an antenna system as, a predictor antenna, in front of a second prime antenna, the main 

antenna, on the roof of a vehicle in the direction of travel. Whereas the predictor antenna will then 

experience the channel before the main antenna and can hence collect (future) measurements of 

the channel for the main antenna. 

Interpolation of the uplink channel needs to be performed over the duration of downlink 

slots, in which no uplink pilots are available. The quality of the interpolation performance 

influences the quality of the channel estimates of the downlink slots on which downlink 

transmission and beamforming is based. A good interpolation scheme will allow a longer downlink 

slot duration to be used for mobile users. 

In (Lyu, Z, J, Q, & Z., 2018), Here three types of neural network designs were proposed 

by the authors: multi-layer perceptron (MLP), convolution-NN (CNN) and recurrent-NN (RNN). 

Through extensive simulation, the performance of these deep neural networks is assessed. Where 

the numerical results show that RNN has the best performance of decoding, but at the price of the 

highest overhead of computation usage. In addition, for each type of neural network, they found 

that a saturation length exists, which is caused by the methods limited learning abilities. 

According to (Motade & Kulkarni, 2018) This research suggests the design of an algorithm 

for finding pilot pattern which significantly improves the results of CE in terms of MS-error 

(MSE), symbol rates of error (SER) and channel detection bit rate of errors. The optimal location 

of the pilot reduces the computational difficulty and maximizes the system's precision. For the 

proposed method, the performance of the channel estimation and multi-user identification was 

good as it produced significant results, which were confirmed by simulations. 

In (Sneha K & Ankit, 2017), according to this work Miss. Sneha Kumari and Mr. Ankit 

Tripathi, have implemented OFDM communication system by using different modulation 

approaches such as QPSK, QAM, 16PSK and BPSK. Then they have evaluated the erroneous rate 

of data bits (BER) to SN-ratio (SNR) of the individual modulation scheme mentioned above. The 
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channel used is Rayleigh fading Channel, for this research. Hence according to this work the lower 

the modulation coding scheme the higher the bit rate free of error efficiency of the scheme. 

According to  (Farzamnia, Ngu, M, & Manas K, 2018), The researchers have investigated, 

The BER output of OFDM beside using M-QAM and Rayleigh/AWGN channels. Thus, they have 

studied and compared the results of  4QAM, 16QAM, and 64QAM modulation techniques when 

utilizing Rayleigh fading channel. They have found that while studying the BER of above 

modulation systems they have found the 4QAM  have the lowest BER  performance in comparison 

to 8QAM and 16QAM. The findings of this paper also show that a modulation scheme with lower 

constellation points has a higher BER accomplishment. Then, they have studied and simulated the 

performance of QPSK modulation system and compared it with the performance of  QAM 

modulation scheme, and the result of QPSK shows a lower BER in comparison to the result of 

QAM modulation scheme. 

In (Abdelhamid, Mohamed, & Moha M’Rabet, 2019), The authors  have performed a CE 

by using least squares “LS”  as a ZF and MMSE predictors for a massive MIMO scheme joint with 

an upper order modulation for OFDM method. Which led to a conclusion as when increasing the 

number of constellation points in a modulation system causes an increase in the method sensitivity 

with respect to noise. Consequently, with a use of large number antenna at the receiver they 

compensated for the noise responsiveness and increased the method capability. 

The literature (Yao, Wang, Zuo, Xu, & Qi, 2019) presented a DL assisted data detection 

approach for OFDM schema with time-varying channels. Thus, they have proposed and designed 

a deep neural network model to perform channel estimation for an OFDM arrangement when the 

system has a time-varying channels. The simulation results show that this suggested method based 

on DL is feasible and has outstanding recital capability. This model can therefore be used with a 

high degree of reliability in practice. 

 2.3  What is Channel Estimation: 

As we know in all communication the transmitter signal travels through a medium often 

called as the channel and the transmitted signal gets deformed by numerous forms of noises and 

clatter gets added to the Tx-data due to the channel characteristics (Kim, 2017). Therefore, to 

properly decode and recover the transmitted signal at the receiver the removing of the distortion 
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and noise by the channel properties this is main goal behind all channel estimations methods 

(sharetechnote;, 2020).  

The first step is to study the properties of the medium into which the signal has passed in 

order to retrieve the original transmitted signal from the receiver. The method/methods used to 

describe the channel is thus referred to as channel-estimation (CE). As seen below this signal 

deformity mechanism in the figure (2.2):  

 

 

 

 

 

 

 
Figure 2. 2: Wireless Channel Estimation Degradation. 

 2.4 Types of Channel Estimation techniques: 

Channel estimation approaches can be classified into three broad categories as follows (Josh 

Patterson, 2018; Fumo, 2017): 

 

 

 

 

 

 

 

 
 

 
 

Figure 2. 3: CE Methods. 

 

 



 
 

19 
 

2.4.1  CE-Baseline Techniques: 

The base line channel estimations methods which all the other approaches consider in the 

process of building or designing a new channel estimation model are: 

o Least Square Error method (LS). 

o Minimum Mean Square Error method (MMSE) 

These base line methods use the concept of training pilots where the training points can be used to 

perform CE, they deliver a reasonable output, but their transmitting effectiveness are diminished 

because of the required overhead of training points that are often referred to as preamble or pilot 

symbols that are transmitted alongside the data symbols in accumulation channel. When the 

training data are available, the least-square (LS) and minimum-mean-square error (MMSE) 

approaches are widely used for CE (Cho, Kim, Yang, & Kang, 2010). 

 These methods as baseline channel estimation methods transmit an established signal typically 

referred to as a reference signal / pilot signal by either inserting such signals into all of the 

subcarriers of orthogonal frequency division multiplexing system symbols at a pre-specific periods 

or by interleaving the reference pilots signal into each orthogonal frequency division multiplexing 

symbol mainly to compensate for input data losses in T-domain or in F-domain or in both domains 

simultaneously  thus, depending on this idea of where and when to insert the training data we have 

three main types of pilot structures illustrated in the next section. 

2.5  Training symbols Insertion Methods: 

Generally training  symbols insertion methods are  classified into three main types which are 

block type of pilots insertion, comb type of insertion and lattice type of pilot symbol insertion 

hence all these three types are explained in details as shown below (Cho, Kim, Yang, & Kang, 

2010). 

2.5.1  Block-Type Pilot Arrangement: 

A block-type of pilot insertion structure which is used in particular cases of signal recovery 

is shown in the following figure (2.4) below: 
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Figure 2. 4: Pilot- Block Type-Structure. 

Considering this block type pilot insertion, the pilot’s tones are implanted at complete orthogonal 

frequency division multiplexing symbols period on whole subcarriers and are regularly broadcast 

for CEs. Through the use of such insertion method, to approximate the channel along the time 

domain axis, a time domain interpolation may be performed. 

Thus consider 𝑆𝑆𝑡𝑡 represent the time cycle of pilot data in time-domain, thus the pilot points must 

then be initiated as often as the coherence time is (Cho, Kim, Yang, & Kang, 2010). If the 

coherence time in the channel is given as the inverse form of the Doppler frequency 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 the pilot-

sym length must then satisfy the following inequality equation (Cho, Kim, Yang, & Kang, 2010): 

 
𝑆𝑆𝑡𝑡 ≤

1
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑

   (2.1) 

Since pilot data-sym are introduced with a time span along whole subcarriers, the block-type pilot 

arrangement is ideal for frequency-selective channels, which helps to monitor the features of the 

t-varying channel.  

2.5.2  Comb-Type Pilot Structure: 

The following figure (2.5) indicates a Comb-type of pilot system used in particular cases 

of signal recovery: 
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Figure 2. 5: Comb-Type Pilot Structure. 

Each orthogonal frequency division multiplexing symbol has pilot tones that are periodically 

placed at whole subcarriers in this comb-pilot insertion system. Thus, this kind of arrangement is 

used to accomplish C-estimation along the frequency axis, to attain freq-domain interpolation. So, 

let 𝑆𝑆𝑓𝑓 be the period of pilot signals in frequency (Cho, Kim, Yang, & Kang, 2010). 

The pilot symbols must also be put as consistently as coherent bandwidth to keep track of the freq-

selective channel features, if an inverse of the maximum delay spread 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚, defines the coherence 

band-width, the pilot points duration must then fulfill the following equation (Cho, Kim, Yang, & 

Kang, 2010): 

 

 
 

𝑆𝑆𝑓𝑓 ≤
1

𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚
 (2.2) 

The comb-pilot type approach is appropriate and targeted at identifying fast-fading channel 

properties, but not appropriate for freq-selective channels, as opposed to the block-pilot type 

arrangement system. 
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2.5.3  Lattice-Pilot Structure: 

The Lattice-pilot insertion  shown in the following figure (2.6) below is another type of 

pilot tone insertion: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 6: Lattice-Type Pilot Structure. 

This lattice type, the pilot bits with unique intervals are introduced along the time and frequency 

axis thus this system is a combination of the previous two types. Therefore, the pilot signals are 

distributed in the t-domain and Freq-domain axes, permitting t-domain and Freq-domain 

interpolations to approximate the  desired channels. Thus, let  𝑆𝑆𝑡𝑡 and  𝑆𝑆𝑓𝑓 designate the cycles of 

pilot data in time and frequency, correspondingly (Cho, Kim, Yang, & Kang, 2010).  Therefore, 

to maintain track of the Freq-selective and t-varying channel features, the pilot bits injection should 

fulfill the following two inequality equations: 

 
 

𝑆𝑆𝑡𝑡 ≤
1
𝑓𝑓𝑑𝑑

      𝑎𝑎𝑛𝑛𝑑𝑑    𝑆𝑆𝑓𝑓 ≤
1

𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚
 (2.3) 

where 𝑓𝑓𝑑𝑑  and  𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚  Indicate the channel's doppler distribution and maximum delay spread 

respectively. 

2.6  Mathematical Model of Training Symbols-Based C-Estimator: 

Consider the training symbols is 𝑋𝑋 = {𝑋𝑋[0], 𝑋𝑋[1], 𝑋𝑋[2], … , 𝑋𝑋[𝑁𝑁 − 1]} for 𝑁𝑁 −

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑟𝑟𝑝𝑝𝑒𝑒𝑟𝑟𝑟𝑟 where 𝑋𝑋[𝑘𝑘]  be 𝑘𝑘𝑡𝑡ℎ subcarrier pilot data-Sym, whereas 𝐸𝐸{𝑋𝑋[𝑘𝑘]} = 0 and 
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𝑣𝑣𝑎𝑎𝑟𝑟{𝑋𝑋[𝑘𝑘]} = 𝜎𝜎𝑚𝑚2  , provided that the received training signal  𝑌𝑌[𝑘𝑘] and channel gain is 𝐻𝐻[𝑘𝑘]for 

each subcarrier 𝑘𝑘, (Cho, Kim, Yang, & Kang, 2010). And can be portrayed as: 

 
 𝑌𝑌[𝑘𝑘] =  𝑋𝑋[𝑘𝑘`] 𝐻𝐻[𝑘𝑘`] + 𝑍𝑍     (2.4) 

 𝑌𝑌 =  𝑋𝑋𝐻𝐻 + 𝑍𝑍 (2.5) 

Where 𝑍𝑍 is the noise vector give as 𝑍𝑍 = {𝑍𝑍[0], 𝑍𝑍[1], 𝑍𝑍[2], … , 𝑍𝑍[𝑁𝑁 − 1]} with 𝑍𝑍{𝑋𝑋[𝑘𝑘]} = 0 and 

𝑣𝑣𝑎𝑎𝑟𝑟{𝑍𝑍[𝑘𝑘]} = 𝜎𝜎𝑧𝑧2,  also let 𝐻𝐻� represent the estimate of the channel 𝐻𝐻. 

2.7  Mathematical Model of LS  C-Estimator: 

In order to find the channel, approximate 𝐻𝐻� the least-square (LS-CE) procedure is used to 

minimize the below cost function (Cho, Kim, Yang, & Kang, 2010) in equation (2.6): 

 
 𝐽𝐽�𝐻𝐻�� =  ||𝑌𝑌� −   𝑋𝑋𝐻𝐻�||2 (2.6) 

 min {𝐽𝐽�𝐻𝐻�� } =  min {�𝑌𝑌� −   𝑋𝑋𝐻𝐻��
𝐻𝐻
�𝑌𝑌� −   𝑋𝑋𝐻𝐻��} (2.7) 

By equating the function derivative with respect to 𝐻𝐻�  to zero, which provides the solution for 

estimating the LS channel [3].  Which is portrayed as: 

 

 𝑯𝑯�𝑳𝑳𝑳𝑳 = (𝑿𝑿𝑯𝑯𝑿𝑿)−𝟏𝟏𝑿𝑿𝑯𝑯𝒀𝒀 = 𝑿𝑿−𝟏𝟏𝒀𝒀   (2.8) 

 
Hence, the LS channel estimate 𝐻𝐻�𝐿𝐿𝐿𝐿  for every subcarrier, can be expressed as follows: 
 
 

𝐻𝐻�𝐿𝐿𝐿𝐿[𝑘𝑘] =  
𝑋𝑋[𝑘𝑘]
𝑌𝑌[𝑘𝑘]

 (2.9) 

while the mean-SE (MSE) of the measurement of the LS channel is measured as: 
 
 

𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝐿𝐿 =
𝜎𝜎𝑧𝑧2

𝜎𝜎𝑚𝑚2
 (2.10) 

2.8  Mathematical model of MMSE Channel Estimator: 

As we know the LSE solution in the above Equation, 𝐻𝐻�𝐿𝐿𝐿𝐿 =  𝑋𝑋−1𝑌𝑌 = 𝐻𝐻�. Thus, by using a 

weight matrix 𝑊𝑊, we can define 𝐻𝐻� = 𝑊𝑊𝐻𝐻�, which corresponds to the MMSE Estimation (Cho, 
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Kim, Yang, & Kang, 2010). Looking at the figure (2.7) below the mean-SE of the c-estimate 𝐻𝐻� 

[3]. Which is represented as: 

 

 
 𝑗𝑗`�𝐻𝐻�� =  𝐸𝐸[||𝑒𝑒||2] = 𝐸𝐸[||𝐻𝐻 − 𝐻𝐻�||2] (2.11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. 7: Block Diagram for MMSE CE. 

Formerly, the MMSE-CE approach is used in discoveries of an improved approximation with a 

linear characteristic in terms of 𝑊𝑊 in such a way that the MSE in Equation (2.11) is diminished. 

Thus, according to the ortho-principle which states that the vector of estimation error 𝑒𝑒 = 𝐻𝐻 −

𝐻𝐻�  is ortho to 𝐻𝐻� (Cho, Kim, Yang, & Kang, 2010), if the equations below are fulfilled: 

 
 𝐸𝐸�𝑒𝑒𝐻𝐻�𝐻𝐻� = 𝐸𝐸��𝐻𝐻 − 𝐻𝐻��𝐻𝐻�𝐻𝐻� (2.12) 

 
 = 𝐸𝐸�𝐻𝐻𝐻𝐻�𝐻𝐻� −𝑊𝑊𝐸𝐸{𝐻𝐻�𝐻𝐻�𝐻𝐻}   (2.13) 

 
 = 𝑅𝑅𝐻𝐻𝐻𝐻� −𝑊𝑊𝑅𝑅 𝐻𝐻�𝐻𝐻� = 0   (2.14) 

  
Where 𝑅𝑅𝐻𝐻𝐻𝐻�  is the matrix of cross-correlation and 𝑅𝑅 𝐻𝐻�𝐻𝐻�  is the auto-correlation so looking back at 

LS channel estimation (Cho, Kim, Yang, & Kang, 2010). which is represented as: 
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𝐻𝐻� = 𝑋𝑋−1𝑌𝑌 = 𝐻𝐻 + 𝑋𝑋−1𝑍𝑍 

(2.15) 

 

And through solving this equation (2.15) for W  we get: 
 
 
 𝑊𝑊 = 𝑅𝑅𝐻𝐻𝐻𝐻� − 𝑅𝑅 𝐻𝐻�𝐻𝐻�

−1 (2.16) 

And, 
 
 𝑅𝑅 𝐻𝐻�𝐻𝐻� = 𝐸𝐸�𝐻𝐻�𝐻𝐻�𝐻𝐻� = 𝐸𝐸{𝐻𝐻𝐻𝐻𝐻𝐻} (2.17) 

Were, 
 

𝑅𝑅 𝐻𝐻�𝐻𝐻� =
𝜎𝜎𝑧𝑧2

𝜎𝜎𝑚𝑚2
𝐼𝐼   (2.18) 

 
Thus, the MMSE channel estimate is stated in following equation (2.19) as: 
 
 
 
 𝐻𝐻� = 𝑊𝑊𝐻𝐻� = 𝑅𝑅𝐻𝐻𝐻𝐻�𝑅𝑅 𝐻𝐻�𝐻𝐻�

−1𝐻𝐻�      (2.19) 

   

2.9  EM Algorithm Based CE: 

The Expectation Maximization (EM) algorithm has been commonly used in a broad 

number of fields, such as biology, signal processing, clinical, econometric, and sociological 

research, which deal with unknown characteristics influencing the outcome (Cho, Kim, Yang, & 

Kang, 2010). The  c-estimation method based on EM is an iterative technique used to find a 

channel's maximum likelihood (ML) estimates. It is thus known as a semi-blind method because 

it can be applied when symbols are not visible or partly available for transmission (Cho, Kim, 

Yang, & Kang, 2010). 
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3.  Machine Learning Channel Estimations Approaches 

 3.1  Introduction to Machine Learning (ML): 

M-learning is an artificial intelligence technology that allows systems the ability to learn 

and develop automatically from experience without being directly programmed (Kim, 2017). M-

learning can also be seen as the artificial intelligence branch that involves techniques or algorithms 

for automatically constructing data models by observation (Osinga, 2018). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. 1: Machine Learning Process. 

According to the above block diagram machine learning process in it is simplest form consist of 

three stages which are, data collection and pre-processing, passing the set of prepared data through 

Input Data 

(T-data) 
Input Data 

(T-data) 

Machine Learning 

(Rules) 

Model 
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a predefined rule called as training process then generating a model from the input data and tunning 

it is performance to be used for future inferences. 

 3.2 M-Learning Types: 

Four foundational methods can be categorized as machine learning (ML) algorithms: 

supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning 

(Josh Patterson, 2018; Osinga, 2018).  

 

 

 

 

 

 

 

 
 

Figure 3. 2: Types of ML.  
3.2.1 Supervised M-Learning: 

In this method of ML, where the M-learning algorithm is fed with labeled t-data and 

validation data, the algorithm's input and output are both established and known to the engineer 

(Bell, 2015; Alpaydın, 2010). 

3.2.2 Unsupervised M-Learning: 

Algorithms that train on unlabeled data are used in this form of unsupervised M-learning. 

As the algorithm searches input data sets to look for any meaningful patterns on which it can 

construct a model for this data. (Bell, 2015; Kim, 2017). 
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3.2.3 Semi-supervised M-Learning: 

This sort of M- learning requires a combination of supervised and unsupervised approaches to 

learning (Alpaydın, 2010). The algorithm is fed limited number training points; However, the 

model is able to analyze the input-data on its own and develop its own interpretation of the data 

collection (Alpaydın, 2010). 

3.2.4 Reinforcement ML: 

Reinforcement-learning is usually used to instruct a computer to finish a multi-step procedure 

for which rules are explicitly specified (Alpaydın, 2010). 

3.2.5 Applications of Supervised Learning:  

Supervised machine learning requires to train the system with labeled inputs beside desired 

outputs, thus supervised learning application are (Bell, 2015): 

• Binary grouping, separating and classifying data into two groups. 

• Multiclass classification, whereas we choose from more than two kinds of responses. 

• Modeling regression, where we forecast continuous values. 

• Ensembling, in which we mix several machine learning models' predictions to generate an 

accurate forecast. 

3.2.6  Applications of Unsupervised Learning: 

The unsupervised learning methodology does not require marking of training data-sets, thus to 

search for similarities that can be used to organize data points into subsets, then they sift through 

unlabeled data (Alpaydın, 2010). Many types of deep learning are unsupervised algorithms, 

including neural networks. For the following tasks, unsupervised ML algorithms are fine to use 

(Bell, 2015): 

o Clustering. Splitting the data set into groups based on similarity. 

o Anomaly detection. Identifying unusual data points in a data set. 

o Association mining. Identifying sets of items in a data set that frequently occur together. 

o Dimensionality Reduction. Reducing the number of variables in a data set. 

3.3  What is Deep Leaning: 

Deep learning (DL) is an approach to M-learning that mimics the functioning of the brain 

structure and operation of the human intelligence, which is also termed as artificial-NN (Andreas 
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C & Guido, 2017). D-learning methods are capable of learning from both unstructured and 

unlabeled data without human oversight (Osinga, 2018). One valuable description specifies that 

deep learning deals with a N-network with higher than one layer, the following are some of the 

surfaces in this development of N- networks: 

• Has more neurons than previous networks. 

• More complex ways of connecting layers/neurons in NNs. 

• Explosion in the amount of computing power available to train. 

• Automatic feature extraction. 

3.3.1  Deep Learning Working Principle: 

 Neural network architectures are used for most deep learning approaches, which is why 

D-learning models are sometimes referred to as deep neural networks (DNNs) (Andreas C & 

Guido, 2017). In general, a N-network consists of a set of units or connected nodes (Osinga, 2018). 

These nodes we call as neurons. The biological neurons in our brain are modelled roughly by these 

artificial neurons. In overall, the expression deep refers to the sum of hidden layers in the N-network 

as shown below in figure (3.3):  

 

 

 

 

 

 

 

 
Figure 3. 3: Structure of Neural Network. 

D-learning methods are programmed by using big sets of labeled data and N-network constructions 

that are able learn features directly from the data without the need for manual feature extraction 

(Gibson & A, 2017; Andreas C & Guido, 2017). Thus, by finding and discovering structures in the 

data they experience, D-learning networks learn a sophisticated model. The networks may generate 
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several levels of abstraction to represent the data by creating conceptual models that consist of 

several processing layers (Kim, 2017; Andreas C & Guido, 2017).                                                                                                                                                                                       

The D-Learning Network architecture consists of the following components in its simplest form: 

• Number of neurons. 

• Number of layers. 

• Types of connections between layers. 

3.3.2  Concept of a Neuron:  

The neuron is the essential computational block of a Deep Learning Network. The neuron has 

a set of input features  𝑥𝑥𝑛𝑛 and each feature   𝑥𝑥𝑛𝑛 is multiplied with a weight   𝑤𝑤𝑛𝑛 (Gibson & A, 

2017). Then the multiplied weights are summed up according to: 

 
𝑦𝑦 = �𝑥𝑥𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝑤𝑤𝑛𝑛 + 𝑠𝑠 (3.1) 

Where  𝑠𝑠 is well-defined as the weight bias, the purpose of the bias weight is to be able to represent 

the output of the neuron in a perhaps broader range compared to the input domain. The output of 

the neuron 𝑧𝑧 is finally given by 𝑧𝑧 = 𝑔𝑔(𝑦𝑦), where 𝑔𝑔(𝑦𝑦) correspond to the activation function.  The 

purpose of the activation is to perform a non-linear mapping of the weighted summation to the 

output so that it can be decided if the neuron was activated or not (Kim, 2017; Josh Patterson, 

2018). 

3.4  Activation Functions: 

Activation Functions used in deep learning can be of many types but considering this thesis 

approach we will be dealing with one or more of the following types of activation functions 

throughout all the design process (Bell, 2015). 

3.4.1  Sigmoid Function: 

There are many available activation functions used for deep learning networks, here three 

classical activation functions are presented. The first activation function is the sigmoid function 

and as we know the sigmoid function has a range between 0 and 1 and is easy to apply (Gibson & 

A, 2017; Bell, 2015): 
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𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒𝑚𝑚
 (3.2) 

 
The following figure (3.4) shows the sigmoid activation function graphically: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3. 4: Sigmoid Function. 

3.4.2 Hyperbolic Tangent Function: 

The second known activation function is the hyperbolic tangent function. Where this 

function is zero centered and it is derivative is not as narrow as the derivative of the sigmoid 

function. but the main drawback of the hyperbolic tangent function it suffers from the problem 

of vanishing gradient (Theobald, 2017). Which is expressed mathematically as: 

 𝑦𝑦(𝑥𝑥) = 𝑝𝑝𝑎𝑎𝑛𝑛ℎ(𝑥𝑥) (3.3) 

  

 

 

 

 

 

 

Figure 3. 5: Hyperbolic Tangent Function. 
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3.4.3 Rectified Linear Unit Function: 

This function is utilized to obtain the output of a neural network as true / false and the 

Rectified linear unit function it does not suffer from the vanishing gradient problem compared 

to the hyperbolic tangent function (Kim, 2017). Thus, this function it is expressed 

mathematically as: 

 

 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑎𝑎𝑥𝑥(0 , 𝑥𝑥) (3.4) 

Or it is expressed as: 
 
 

𝑓𝑓(𝑥𝑥) =  �
𝑥𝑥,     𝑝𝑝𝑓𝑓  𝑥𝑥 > 0

 
   0,    𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑝𝑝𝑟𝑟𝑒𝑒

     (3.5) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. 6: RELU Function. 

3.5  Introduction Machine Learning Approaches for Channel Estimations: 

As we know cellular communication systems encounter different types of noises and 

impairments, thus such behaviors cannot be well estimated by traditional estimation methods like 

training symbol-based approaches such as LS Estimator and MMSE. The main downside of the 

LSE C-estimation is deserting the presence of noise in the estimation process itself. Moreover, 

MMSE channel estimation approach provides better performance compare to LS approach, but at 

high computational complexity plus it is only useful in some situations. Lately, Deep learning-

based approaches are used to find fine types of imperfections in real-world cellular communication 

systems with advantages of low computational complexity, making DL approaches as very capable 

methods, particularly in channel estimation (Aggarwal Charu, 2018).  
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3.6  DL Approaches Used in Channel Estimations Are: 

When it comes to using deep learning approaches for communication systems channel 

estimation there a lot of deep learning approaches that can be used to achieve such task by using 

wide ranges of methods and techniques so in the following few headings, we will list some of the 

deep learning techniques use I channel estimation area.   

3.6.1  Auto Encoder Approach: 

Autoencoders (AEs) are classified as an unsupervised artificial neural network algorithm in 

which the system leverages the neural networks with the aim of representation learning and 

predicting some behaviors. Autoencoder is classically used in the case of dimensionality reduction 

problems. Lately, autoencoders are also used as a tool for denoising of signals. By training the 

autoencoder researchers aim at removing the noise and focus on important parameters of the input 

signal that is called as latent vectors (Ye, Li, & Juang, 2018). 

3.6.2  Generative Adversarial Approach: 

In short, Generative-AN (GANs) are a generative simulation approach utilizing D-learning 

techniques, such as coevolutionary N-networks (CNNs) (Aggarwal Charu, 2018). Generative 

casting is classified as an unsupervised M-learning activity that involves automatically while 

determining and learning the regularities or patterns of an input data in such a way that new 

examples can be created or developed by the model that might have been plausibly taken from the 

original dataset (Aggarwal Charu, 2018). 

3.6.3  Convolutional Neural Network Approach: 

Convo-neural network (CNN) is a type of D-learning algorithm that can take in input data, 

assign significant weights to different aspects of the data, and be able to distinguish between them 

from each other (sorting) (Murphy, 2012). Compared to other classification techniques, the pre-

processing required in a Convo-NN is much lower, while in primitive methods filters are hand-

engineered, with sufficient training, Convo-NN has the ability to learn these filters or features of 

the inputs (Kim, 2017). 

3.6.4  Deep Neural Network Approach: 

Deep learning is a form of ML  that models the patterns of data as complex networks with 

multiple layers (Andreas C & Guido, 2017). Since deep learning is the most common way to model 
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a problem, it has the potential to solve problematic difficulties such as computer vision and 

processing of natural language that have overtaken and outstripped conventional programming and 

other techniques of machine learning (Josh Patterson, 2018; Cho, Kim, Yang, & Kang, 2010). Not 

only can D-learning produce useful outcomes where other techniques straggles, but it can also 

construct more precise models than other techniques, and can reduce the time needed to construct 

a useful model (Aggarwal Charu, 2018) (Andreas C & Guido, 2017). Training D-learning models, 

however, requires a great amount of computing power, the difficulty of interpreting D- learning 

models are another drawback to deep learning (Aggarwal Charu, 2018).  

3.7  Advantages of Machine Learning Approaches: 

The prime advantages of using machine learning models base channel estimator in a cellular 

communication system are: 

• Faster and real time predictions can be attained easily. 

• Continuous improvement can be established rapidly. 

• Supplying accurate results that can be verified. 

• You can use specialized hardware or make use of available hardware efficiently. 

• Abundant resources of input data. 

•  High efficiency. 

3.8  Proposed Model Block Diagram: 

We propose the following block diagram of a deep learning-based algorithm for channel 

estimation which we will explain in details in later chapters as follows: 

 

 

 

 
 
 
 
 

 
Figure 3. 7: Proposed Block Diagram. 
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Figure 3. 8: Proposed Architectural Block Diagram of a Deep-NN Decoder. 

DNN's architecture is seen in figure (3.8). We assume that the length 𝑁𝑁 of information bits (𝑋𝑋). at 

the transmitter side of our 5G-system above, and 𝑋𝑋 is modulated to a binary code-word (C) of 

length L and passed through to the next stage of the process where the codeword 𝐶𝐶 are transformed 

to a symbol vector (𝑉𝑉) through the modulation scheme 16QAM. Then the 16QAM, at the receiver, 

the received data vector 𝑌𝑌 is expressed mathematically as: 

 
 𝑌𝑌 = 𝑉𝑉 + 𝑁𝑁𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒   (3.6) 

Then the received data 𝑋𝑋 is estimated and represented as  𝑿𝑿�  by decoded it from 𝑌𝑌 with the 

assistance of the deep neural network model that we have designed with the consideration that the 

noised added by the channel is assumed to be of zero and variance 𝜎𝜎2. 

3.9  Why Choosing to Use Machine Learning for Channel Estimations: 

Current developments in Machine Learning and especially Deep Learning implementations 

and theories have catalyzed noteworthy research among electronics and communications 

engineering researchers’ community. And that is due to numerous reasons such as: 

o Deep neural network encoders and decoders are more accurate compared to the available 

traditional methods used for channel estimations. 

o CE based on deep learning models have an amazing performance upgradability and 

adjustability. 

o CE based on deep learning models have advanced analysis capabilities and more dynamic. 

o CE based on deep learning models can leverage the available hardware and utilize the 

processing power efficiently. 

o CE based on deep learning models can process huge number of inputs swiftly without any 

performance degradations under many operating conditions. 

 

 

𝑪𝑪 𝑽𝑽 𝒀𝒀 𝑿𝑿�  𝑿𝑿 
Input Data 

Mapper 
(Encoder) 

Channel 
Deep Neural Network 

Model (Decoder) 
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4.  Model Requirements and Design Procedures 

 4.1  Model Specification: 

Our aim is to write a code to implement channel estimation using LSTM method 

efficiently, next validate the proposed method by using the necessary standard means. Where the 

simulation situations enable examination of the proposed channel estimation model performance 

against other traditional CE methods performances (ETSI, 2018). By taking into consideration the 

erroneous bit-rate and SN-ratio as the chief constraints to evaluate the estimators’ effectiveness, 

our simulation layouts are on based the following system parameters listed in the table (4.1) below: 

Table 4. 1: Model Specification. 
Parameters Specifications Comments 

Number of Users >1 Variable 
Number of Subcarriers 64 16, 32, 64, 128 

Number of Pilots 64 16, 32, 64, 128 
Number of Pilots Symbols 1 2, 4 

Length of CP 16 16, 32, 64 
Number of Path 20 Variable 

Number of Data Symbols 1 Variable 
Number of OFDM Symbols 2 - 

Number of Classes 16 Variable 
Modulation Type  16QAM QPSK,16QAM, 64QAM, etc. 

Number of Packets Per Mod-Sam 256x1e1 Variable 
SNR 40 10, 20, 30, 40 

5G-Channel 3GPP Rayleigh can be used 
Number of Antennas 64 Depend on the Application 

Frequency FR1 FR2 can be used 
Data Rates > 1 Gbps Up to 10 Gbps 

4.2  Data Generation: 

 According to the listed above specification and requirements we begin the process of 

designing our channel estimation model by firstly, implementing the foundational system to 

generate the required 5G data and secondly, we used the generated data too train the proposed 

model and recover the user data as accurately as possible. As we know 5G signals can have many 
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types of weave forms but the main type that this thesis considers and use for development is Cyclic 

prefix-OFDM wave form which is given by the following equation as: 

 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀[𝑘𝑘] =  � 𝑑𝑑𝑛𝑛𝑒𝑒
𝑗𝑗2𝜋𝜋𝑘𝑘𝑛𝑛𝑁𝑁

𝑁𝑁+1

𝑛𝑛`=0

    (4.1) 

Where 𝑁𝑁 refers to the total number of sub-carriers, 𝑑𝑑𝑛𝑛 is data symbols carried by each individual 

𝑛𝑛 subcarrier and 𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ OFDM data symbol, the process of 5G data generation is shown in 

the following chart: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 1: 5G-Data Generation Roadmap. 

 4.3  3GPP Specifications for 5G Channel Generation: 

 5G uses multi frequency ranges in different frequency bands which called as freq-range 

one (F-R1) that is underneath 7.125 GHz and freq-range two (F-R2) which expand beyond 24.250, 

These both ranges are termed as 5G-New Radio (ETSI, 2018; Electronics-notes, 2020). 

 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑  

𝑳𝑳𝟑𝟑𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑶𝑶𝑶𝑶 

𝑶𝑶𝑺𝑺𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹𝑹𝑹 𝑭𝑭𝑺𝑺𝑭𝑭𝑺𝑺𝑺𝑺𝑹𝑹 

 𝑪𝑪𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹 

𝑶𝑶𝑭𝑭𝑶𝑶𝑶𝑶 

𝑳𝑳𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 

𝑶𝑶𝑶𝑶𝑺𝑺𝑺𝑺𝑶𝑶 𝑵𝑵𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 

 

𝟓𝟓𝟑𝟑 

𝑪𝑪𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹 𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺 

𝑻𝑻𝑺𝑺 𝑶𝑶𝑵𝑵𝑵𝑵 𝑶𝑶𝑺𝑺𝑭𝑭𝑺𝑺𝑹𝑹 𝑺𝑺𝑺𝑺𝑶𝑶 

 𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑨𝑨𝑺𝑺𝑭𝑭  

𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹𝑺𝑺𝑶𝑶𝑹𝑹 𝑻𝑻𝑺𝑺  𝑺𝑺𝑶𝑶𝑶𝑶𝑺𝑺𝑹𝑹𝑺𝑺𝑶𝑶 𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹𝑺𝑺𝑺𝑺 

 𝑺𝑺𝑺𝑺𝑶𝑶 𝑶𝑶𝑵𝑵𝑶𝑶  

𝟓𝟓𝟑𝟑 𝑪𝑪𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹 𝑺𝑺𝑺𝑺𝑶𝑶𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺 

𝑶𝑶𝑶𝑶 
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Table 4. 2: 5G-NR (FR1 & FR2 Ranges). 

Freq-range Description Freq-range in GHz 
F-R1 4.10 – 7.125 
F-R2 24.250 – 52.600 

 
The following table (4.3) shown below reviews the signal characteristics and utilization of ranges 

inside (FR1) and (FR2) according to their use on each frequency bands (Electronics-notes, 2020): 

Table 1. 2: 5G-NR (FR1 & FR2 Utilizations). 
5G NR Parameters FR1 FR2 

Bandwidth options per 
carrier 

5MHz-10MHz-15MHz-20 MHz-25MHz, 
30MHz-40MHz-50MHz-60MHz, 70MHz, 

80MHz-90MHz-100MHz 

50MHz, 100MHz, 
200MHz, 400MHz 

Sub-Carriers’ separation 15KHz, 30KHz, 60KHz 60KHz, 120KHz, 
240KHz 

Max-Subcarriers number  3300 (FFT 4096)  
Carrier-Collection ≥16 SCs  

Modulation schemes QPSK, 16QAM, 64QAM, 256QAM, 
uplink also allows π/2-BPSK (only for 

DFT-s-OFDM). 

 

Radio frame length 10ms  
Sub-frame Period 1ms  
Type of duplexing  TDD & FDD TDD 

MIMO scheme Max. of 2 codewords mapped to Max 
downlink of 8-layers Max. uplink  of 4-

Layers in. 

 

 
According to 3GPP (“3GPP TS 38.300 version 15.3.1 Release 15”), The conventional-OFDM 

using a cyclic prefix is used to generate the downlink transmission waveform (ETSI, 2018). The 

uplink transmission waveform is a normal OFDM using a cyclic prefix with a DFT spreading 

transform precoding feature that can be disabled or allowed (ETSI, 2018). Where sub-carrier 

spacing  ∆𝑓𝑓 = 2𝜇𝜇𝑥𝑥 15 𝐾𝐾𝐻𝐻𝑧𝑧  where  𝜇𝜇 = 0,1,2,3, …. for some channels (ETSI, 2018). 

Table 4. 3: Supported Transmission Numerologies. 
𝝁𝝁 ∆𝑺𝑺 = 𝟐𝟐𝝁𝝁𝒙𝒙 𝟏𝟏𝟓𝟓 𝑲𝑲𝑯𝑯𝑲𝑲 Cyclic prefix 
0 15 Normal 
1 30 Normal 
2 60 Normal, Extended 
3 120 Normal 
4 240 Normal 
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4.4  Concept of Rayleigh Fading Channel: 

The Rayleigh fading channel is a mathematical model for the condition of non-line sight 

situation as it uses a statistical approach to evaluate electromagnetic wave propagation (Volker, 

2006), The Rayleigh fading channel is perfectly suited for conditions where vast quantities of 

signal paths and reflections occur (Cho, Kim, Yang, & Kang, 2010) (Lathi & Ding, 2010), Typical 

conditions involve wireless networks where a significant amount of building reflections exist 

(Bullock Scott, 2017), and other objects are present which cause the transmitted signal to arrive at 

the receiver from many different paths and such paths can be shown as in figure(4.2) below: 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4. 2: Multi Path Reflection Suitable for Rayleigh Model. 

The ultimate signal is a combination of all the signals that have reached the receiver via the 

multitude of different routes that are available on the transmitting route after the emitted signals 

enter the receiver, while these signals will sum up together, the signal phase being the important 

element controlling the summation of the signals on the side of the receiver (Volker, 2006).  And 

depending on the way these signals sum up; the frequency of the signal can contrast. They would 

all sum up together if they were all in phase with each other. This is not necessarily the case, 

however, since some signals will be in phase and others out of phase, such others will also appear 

to contribute to the total signal, as these others will be subtracted from the total signal (Volker, 

2006). 

As we know, there are L paths between the transmitter and the receiver, so the response of the 

channel g is the sum of signals mathematically over these paths and given through: 
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𝑔𝑔 = ��𝛼𝛼𝑖𝑖   𝑒𝑒

−𝑗𝑗2𝜋𝜋(𝑑𝑑𝑖𝑖−𝑑𝑑⋋ )
𝐿𝐿

𝑖𝑖=1

   (4.2) 

 
Where: 
 

𝛼𝛼𝑖𝑖 → 𝑝𝑝𝑟𝑟 𝑝𝑝ℎ𝑒𝑒 𝑠𝑠ℎ𝑎𝑎𝑛𝑛𝑛𝑛𝑒𝑒𝑙𝑙 𝑔𝑔𝑎𝑎𝑝𝑝𝑛𝑛 𝑝𝑝𝑓𝑓 𝑝𝑝ℎ𝑒𝑒 𝑝𝑝𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑔𝑔𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑎𝑎𝑝𝑝ℎ. 
 

𝑒𝑒−𝑗𝑗2𝜋𝜋(
𝑑𝑑𝑖𝑖−𝑑𝑑
⋋ ) → 𝑝𝑝𝑟𝑟 𝑝𝑝ℎ𝑒𝑒 𝑝𝑝𝑎𝑎ℎ𝑟𝑟𝑒𝑒 𝑟𝑟ℎ𝑝𝑝𝑓𝑓𝑝𝑝 . 

 
When 𝐿𝐿 is large enough it makes good sense to use statistical models for the channel hence the 

channel gains will be random distributed and the phase shift will be evenly distributed between 0 

and 2𝜋𝜋 because the propagation distance is larger than the wavelength, Considering the paths 𝐿𝐿 

are independent and identically distributed random variables so by taking into account the central 

limit theorem for summing lots of random vars and we will have a gaussian distribution channel 

response with identically distributed rand-variables thus the channel response 𝑔𝑔 is expressed as: 

 

 
 𝑔𝑔 ~ 𝑁𝑁𝑐𝑐(0,𝛽𝛽)   (4.3) 

 
Where: 
 

𝑔𝑔 →  𝑝𝑝𝑟𝑟 𝑎𝑎 𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑙𝑙𝑒𝑒𝑥𝑥 𝑔𝑔𝑎𝑎𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑎𝑎𝑛𝑛 channel response. 
 
 

0 →  𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛𝑟𝑟 𝑧𝑧𝑒𝑒𝑟𝑟𝑝𝑝 𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛. 
 

 
𝛽𝛽 →  𝑝𝑝𝑟𝑟 𝑝𝑝ℎ𝑒𝑒 𝑣𝑣𝑎𝑎𝑟𝑟𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠. 

 
The model in equation (4.3) above is called as Rayleigh fading model because the |𝑔𝑔| has a 

Rayleigh distribution where the term fading is used to signify a large variation in the quality of the 

channel. Now for our system consider we have a receiver with an array of antennas which receive 

the signals coming from multi paths due to the reflecting objects in the transmission route as shown 

below in figure (4.3): 
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Figure 4. 3: Rayleigh Model for Practical Multi Path Channels Signals.  

To ensure the received signals are independent and identically distributed where Rayleigh fading 

model can be used to model the above multi paths received at signals by an array of antenna the 

antenna spacing must be   ⋋
2
  and this show why the half wavelength antenna spacing is very 

important in cellular communication systems (PENTTINEN, 2015). 

4.5  Channel Impairments: 

In cellular communication system, the signal is sent over the wireless, where the wireless 

channel tends to deteriorate the quality of the carried signal, and the wireless channel characteristics 

causes signal to degrade (Lathi & Ding, 2010; Roger & Freeman, 2006). Thus, the characteristics of 

the channel degrading the transmitted signal quality is called as an impairment which can be such as 

fading, noise, path loss and so on, here we are concerned with fading phenomena in wireless 

communication systems which can be classified as shown in figure (4.4). 

4.5.1  Large Scale Fading:  

Because of barriers between the transmitter and receiver, large-scale fading refers to the 

attenuation of signal power, which involve attenuation and signal variations as the signal is 

traveling over a long distance-Km and signals are also shielded (Sklar, 2001). Types of Large-scale 

fading are: 
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 Path Loss:  

This Phenomena refers to the weakening when a signal is transmitted over great distances 

(Sklar, 2001), as the radio wave spread out through the channel as the distance increases as such 

signals they propagate, thus the energy per unit region continues to decrease when there is a type 

of fundamental loss that is independent of the transmitter type and medium (K, 2018; Sklar, 2001).  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 4. 4: Types of Wireless Channel Impairments.  

Shadowing:  

Shadowing is used represents to the lack of signal strength due to barriers such as tree, cars 

and other obstacles along the direction of propagation,  while losses due shadowing often depends 

on the frequency of the EM wave (Schiller, 2003). EM Waves will pass through different materials, 

as we know, but at the expense of power loss, which cause an attenuation. The losses are depending 

on the surface type and the signal frequency (K, 2018; Roger & Freeman, 2006; Schiller, 2003).  

Small Scale Fading:  

The variations in signal intensity and phase over a short distance and a small period of time 

are represented by small scale fading, it is also referred to as Rayleigh Fading as well (Sklar, 2001). 

Small Scale Fading impacts and over-affects nearly all modes of wireless networking in order to 
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improve performance and reduce errors we use some known mechanisms (Sklar, 2001). Small-

scale fading are: 

Fast Fading:  

Fast fading happens largely due to surface reflection and transmitter or receiver movement 

(K, 2018; Sklar, 2001). linear-deformities in the shape of the baseband signal and creates inter-

sym Interference (ISI) are caused by F-fading (Sklar, 2001). 

4.5.2 Slow Fading:  

Slow fading is largely due to shadowing, where the sight line of a cellular comm-system is 

obstructed by large buildings or spatial structures, the gradual fading results in a drop in the SN- 

ratio that can be resolved using error correction methods and receiver diversity strategies (K, 

2018). 

4.5.3 Multipath Fading:  

Multi path fading happens as a signal enters the Rx-receiver from different directions, 

indicating that for certain reflective objects and as a function of direct line of sight transmission, 

the received signal is received (Iniewski, 2008). Multipath fading can attack all bands of 

frequencies, from microwave to low frequency and beyond, as it affects both the signal amplitude 

and phase, causing phase distortions and ISI distortions (Rodger E & William H, 2015). Types of 

multi path fading are: 

Flat Fading: 

 Both frequency components are influenced almost evenly by flat fading process whereas 

flat multipath fading produces a fluctuation of the amplitude over a span of time (Goldsmith, 2005) 

(Rodger E & William H, 2015). 

Selective Fading:  

Freq-selective fading is also called as Selective Frequency Fading denotes the process of 

multipath fading occurring for only selected freq-constituent of the transmitted data-signals suffers 

from such effects (Goldsmith, 2005; Schiller, 2003).  By using modulation techniques such as 

OFDM, which stretches the data through the frequency components of the signal to minimize data 
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leakage and hence selec-frequency fading can be resolved (Rodger E & William H, 2015; Lyu, Z, 

J, Q, & Z., 2018). 

4.6  5G - Data Generation System Coding: 

We start the process of implement our proposed system by specifying the OFDM system 

parameters as follows: 

nSC = 64;                                                   % No. of subcarriers 
nPilo = 64;                                                 % No. of pilot subcarriers 
Pilo_Spc = nSC/nPilo;                               % Pilot Spacing 
nPiloSym = 1;                                            % No. of Pilot Symbols 
nDSym = 1;                                                % No. of Data Symbols 
nOFDMAsym = nPiloSym + nDSym;       % No. of OFDMA Symbols 
lenCP = 16;                                                % Length of the cyclic prefix   

For the modulation process we have used 64 subcarriers to carry the user’s data and those 64 

subcarriers are modulated by using 16 modulation constellations symbols, also for the correct data 

recovery we use the pilot symbols and place them at specific predefined intervals throughout the 

transmitted frames. 

%% OFDMA system parameters 
[nSC, nPilo, Pilo_Spc, nPiloSym, nDSym, nOFDMAsym] = OFDMAsys_params (); 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. 5:  OFDM Subcarriers. 

 



 
 

45 
 

Then the design process moves to the next step by defining the modulation scheme as 16-QAM 

the data is loaded into the subcarriers by using 16 classes or constellation symbols, these 

modulating symbols and the subcarriers are shown graphically as in figure (4.6) below: 

%% QPSK, 16QAM, 32QAM, 64QAM, 256QAM modulation 

[M, x, Label, moduSig, Ncls] = OFDMA_modConst (); 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. 6: OFDM Modulating Symbols. 

Next the design procedure progress to the subsequent phase by specifying the target 5G channel 

through the use of Rayleigh fading model which represent the 5G channel model as described by 

the 3GPP documentation (3GPP TR38.901 channel model) as follows (ETSI, 2018): 

%% 5G channel generation 
h = 1/sqrt(2)/sqrt(nPath)*complex(randn(nPath,1), randn(nPath, 1)); 
H = fft(h, nSC, 1);  

Then the proposal procedure progress to the following phase by specifying the noise level and the 
data set size for the proposed system as follows: 

%% Signal to Noise Ratios calculation 
enrgSdB = 40;                              
EsN = 10.^(enrgSdB./10); 
noiSdB = 1./EsN; 
noiVariance = noiSdB./2; 
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%% Size of dataset to be defined 
nPackPerCls = 256*1e1;              % Number of packets per modulation symbol 

The  succeeding stage of generating 5G data end with wrapping up all the above steps together by 

modulating the user data through the use of the constellation symbols and at the mean time the 

constellation symbols are use as the labels for the transmitted data because all the transmitted 

symbols are converted into one out of the 16 constellation symbols, after that we used the 

modulated data to generate the transmitted frames and received frames as follows: 

%% OFDMA Pilot symbol insertion between the Data Symbols 
PiSym = 1/sqrt(2)*complex(sign(rand(nPiloSym, nSC, nPackPerCls)-0.5), sign(rand(nPiloSym, nSC, 
nPackPerCls)-0.5));  
PiSym(1 : Pilo_Spc : end) = PiloPOSAll 
%% OFDM data symbol 
dSym = 1/sqrt(2)*complex(sign(rand(nDSym, nSC, nPackPerCls)-0.5), sign(rand(nDSym, nSC, 
nPackPerCls)-0.5));  
CurrSym = 1/sqrt(2)*moduSig(i)*ones(nDSym,1, nPackPerCls);  
dSym(:, SCid, :) = CurrSym 
%% OFDMA frames transmission and frames Receptions 
TxdFrames = [PiSym;dSym]; 
RxdFrames = trxOFDMAsig(TxdFrames, lenCP, h, noiVariance); 

Then after the process of loading the data into the subcarriers and interleaving the resultant data 

with the pilot symbols at a predefined interval we label the transmitted symbols and extract the 

necessary features vectors form which we collect our 5G training data as follows: 

%% Training data collection 
dLabel = Label(i)*ones(1, nPackPerCls);               % Data label for the current sC  
[Fea, label] = feaLExtraction(real(RxdFrames), imag(RxdFrames), dLabel, i); 
FeaVec = mat2cell(Fea,size(Fea, 1),ones(1, size(Fea, 2)));  
X` = [X FeaVec]; 
Y` = [Y label]; 

Here X`, Y` are the target training data which we will passed to the designed DNN model to train 

it and generate a precise model which can be used for future predictions. 

Finally, the progression of 5G data generation is concluded with dividing the collected data into 

training data and validation data in ratio of  2 10�   where 80% of the data will be used for training 

and the rest 20% will be used for testing process then saving the training ad validation data as 

 𝑝𝑝𝑂𝑂𝑡𝑡𝑇𝑇𝑡𝑡  and  𝑣𝑣𝑂𝑂𝑡𝑡𝑇𝑇𝑡𝑡 as follows: 

%% Save the training data for training the neural network 
Save_tvpData (); 
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4.7  Long-Short Term Memory: 

Before diving into what is LSTM lets gives a gentle overview of DNN from mathematical 

point of view, Mathematically, we can describe the neural-N as a distinct function that maps one 

type of variable to another type of variable, i.e. We map a vector to another vector for 

categorization problems (Gibson & A, 2017). LSTM -“long-short-term memory” networks are one 

type of NN that are selectively encoded to learn and remember or forget specific inputs. Thus, 

LSTM is clever sufficiently to control how long to grip onto old data, and when to recall or forget, 

and how to make connections between old recall with the new input (Aggarwal Charu, 2018). 

4.7.1  LSTM Architecture and Working Principle: 

The basic LSTM Network architecture consist of following three elementary elements 

which are called as gates, The LSTM architecture is shown graphically as follows: Input Gate - 

Forget Gate - Output Gate (Josh Patterson, 2018). 

 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

Figure 4. 7: LSTM Basic Cell Architecture. 

The complete LSTM cell interconnections to achieve the desired goal is shown in the following 
figure (4.8) below: 
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Figure 4. 8: LSTM Network Architecture. 

The Prime reason to choose and used LSTM is to avoid the vanishing and exploding gradients 

problems associated with the classic deep neural networks which cause loss of input information 

when using them, also the second reason to use LSTM is as follow LSTM is suitable for time-

series data (Alpaydın, 2010; Aggarwal Charu, 2018). 

When using LSTM, we replace every hidden unit of a deep neural network by using one LSTM 

cell where each LSTM cell maintain an LSTM cell-vector state-run 𝐶𝐶𝑡𝑡 and the next LSTM cell can 

decide to read from the previous cell state vector, write to it or rest it by using explicit gating 

mechanism called as (Aggarwal Charu, 2018): 

o Input Gate. 

o Forget Gate and. 

o Output Gate. 

The input gate determines whether to change the memory cell “𝑝𝑝(𝑡𝑡) = 𝜎𝜎(𝑤𝑤𝑖𝑖[ℎ(𝑡𝑡−1),𝑥𝑥(𝑡𝑡) + 𝑠𝑠𝑖𝑖)” , 

then the memory cell is reset to zero or not, by the forgotten gate regulate and decide if “𝑓𝑓(𝑡𝑡) =

𝜎𝜎(𝑤𝑤𝑓𝑓[ℎ(𝑡𝑡−1),𝑥𝑥(𝑡𝑡) + 𝑠𝑠𝑓𝑓)”, Therefore the output gate regulates whether the existing cell state 

information is  𝐶𝐶𝑡𝑡  if it is rendered visible or not “𝑝𝑝(𝑡𝑡) = 𝜎𝜎(𝑤𝑤𝑑𝑑[ℎ(𝑡𝑡−1), 𝑥𝑥(𝑡𝑡) + 𝑠𝑠𝑑𝑑)” (Josh Patterson, 

2018; Gibson & A, 2017). 

Every one of gates have a sigmoid activation σ to constitute a smooth curve spanning from 0 to 1 

and also to ensure that the remaining mode is distinguishable, noting that the vector also 𝐶𝐶�̅�𝑡 by 

using tanh activation, can change the vector-cell where “𝐶𝐶�̅�𝑡 = 𝑝𝑝𝑎𝑎𝑛𝑛ℎ(𝑤𝑤𝑐𝑐[ℎ(𝑡𝑡−1),𝑥𝑥(𝑡𝑡) + 𝑠𝑠𝑐𝑐)” to 
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permit the data on the cell-state to flow longer without missing or exploding (Aggarwal Charu, 

2018). 

The secret/hidden state is taken by each of the gates as  “ℎ(𝑡𝑡−1)”  in addition it also takes the current 

input  𝑥𝑥𝑡𝑡 and it concatenate those vectors by applying sigmoid activations and generate 𝐶𝐶�̅�𝑡 where 

a new contender value that can be added to the cell state can be formulated. 

4.8  Implementation and Training Deep Learning Model: 

After deciding which approach to use implementing our proposed deep learning model, we 

start by designing the actual model and then loading the generated validation-points and training-

sets to run the model as follows: 

%% Loading Our Generated Training Data and validation data 
load('tDATA.mat'); 
load('vDATA.mat'); 

Next, we set our training parameters by specifying the input data size to train the model on the 

labels which the model will classify the data based such data to 1 out of 16 classes, quantity of 

Epoch, and the numeral of hidden units as follows: 

%% Setting the DNN training parameters 
InputSize = 2*nOFDMAsym*nSC; 
nSC = length(Label); 
MiniBatchSize = 1000; 
MaxEpochs = 100; 
NumHiddenUnits = 20;  

After that we will input these training parameters to the long-STM model to start the training 

process through the specification of the types of layers to use in our training process as follows: 

%% Specifying DNN layers For Subsequent Processes 
Layers = [ ... 

     sequenceInputLayer(InputSize) 
     lstmLayer(NumHiddenUnits,'OutputMode','last') 
     fullyConnectedLayer(nSC) 
     softmaxLayer 
     classificationLayer 
     ]; 

Subsequently we will postulate training options to the LSTM-“long-short term memory” model 
as follows: 

%% Setting the DNN training options 
Options = trainingOptions('adam',... 

     'InitialLearnRate',0.01,... 
     'ValidationData',{XValid,YValid}, ... 
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     'ExecutionEnvironment','auto', ... 
     'GradientThreshold',1, ... 
     'LearnRateDropFactor',0.1,... 
     'MaxEpochs',MaxEpochs, ... 
     'MiniBatchSize',MiniBatchSize, ... 
     'Shuffle','every-epoch', ... 
     'Verbose',0,... 
     'Plots','training-progress'); 

Finally, we will start the training phase and save trained model which we will use it in later chapter 

for testing and practical use as follows: 

%% Training The DNN 
Trained_dnnModel = trainNetwork(XTrain, YTrain, Layers, Options); 

  
%% Save the TrainedModel 
save('Trained_dnnModel', 'Trained_dnnModel', 'MiniBatchSize'); 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. 9: Training Process Output. 

4.9  Deep Learning Model Tunning: 

Tuning our model will involve the following procedures to obtain the target results as pre stated 

in the design phase: 

o We will change the learning rate and observe the model behavior. 

o We will vary the training and validation data sets sizes and observe the model behavior. 
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o We will increase the noise percentage in the model input and check the model output 

accuracy level. 

o Finally, we will test the model by using another predefined data set and tune its output 

accordingly. 
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5.  Model Implementation Results and Analysis 

5.1 Introduction: 

This subdivision initiates the process of utilizing the designed model in chapter-4 and 

analyzing it is results which can be accomplished when subjecting the model to real world 

scenarios where we supply the model with an input data that are transmitted over long distances. 

Hence, the primary objectives here is divided into two parts as follows, firstly we use the proposed 

LSTM deep learning model to recover the transmitted data from the received data correctly then, 

we use the MMSE and LS for the same purpose. Secondly, we investigate the model performance 

under various noisy environments and measure it is accuracy in comparison to MMSE and LS 

accuracies in terms of BER to SNR. 

5.2 OFDM System Bit Error Rate: 

As we know the “orthogonal frequency division multiplexing (OFDM)” is used as one of 

the main elements in fifth generation cellular system (5G) thus, the OFDM  system BER is  

calculated  when we use different  quadrature amplitude modulation method (QAM) with different 

modulation order (M-QAM). Also, when investigating the OFDM BER we consider various 

channel impairments as being imposed on the received data signal. 

 The bit error rate (BER) is important in digital telecommunication system because it 

illustrate how successfully the receiver is able to decipher communicated data (Bullock Scott, 

2017). And it is defined as the fraction of bits with errors divided by the total amount of received 

bits on the receiver side, usually expressed as ten to a negative power (John W, 2018; Bullock 

Scott, 2017).  

The  prime motive  for  quadrature amplitude modulation method (QAM) scheme  is,  its  

high spectral efficiency which can be attained by overlapping different carrier frequencies and 

therefore permitting the choice of proper constellation point for data transmission which allow the 
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transmission of more data over the same frequency bands, Whereas QAM is used broadly in digital 

communication system (P & Didier Le, 2015; Pu & W, 2013). 

5.3 Simulation Scenarios and Results: 

The simulation and validation process are subdivided into sub-simulation cases or 

scenarios where different parameters are taken into account such as modulation order, amount of 

noise, number of pilot tones and so on. Thus, the simulation cases allow the analysis of different 

channel estimator performance and compare them to the proposed deep learning channel 

estimation model in the sense of bit errors bits rate (BER) to SN-ratio (SNR).  

5.3.1 Testing and Validation Case-1: 

According to the first scenario of testing and validation process in which we have use the 

following simulation parameters listed in the table below: 

Table 5. 1: Case-1 Simulation Parameters. 
Number of Pilots 64 

Type of Modulation  4QAM 
Constellation Points 4 

Channel Estimation Method MMSE, LS & Deep Learning Model 
SNR Value 10 dB  

The key emphasis of this simulation scenario is the type of modulation , modulation order and the 

noise imposed on the system in dB, hence we have used in this first scenario 4QAM digital 

modulation system where in this modulation type the user data signal is converted int digital data 

stream and the  data stream is grouped as 2-bit groups also known as symbols, then these symbols 

are used to encode (modulate) the amplitude and phase of the carrier wave (Deergha, 2015; Rodger 

E & William H, 2015). 
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Therefore, the subcarriers used to carry the user digital input data and the constellation diagram 

which is used to group the digital input data into groups of symbols are shown graphically fig (5.1) 

and figure (5.2) for the 4QAM method, respectively.  

 

 

 

 

 

 

 

 

Figure 5. 1: 4QAM Syst - Subcarrier Spectrum. 

 

 

 

 

 

 

 

 

 

Figure 5. 2: 4QAM Syst - Constellation Diagram. 
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Now we turn our attention to the training process after generating the required 5G data and 

modulate the user data by using 4QAM modulation system, as we can see the training progress is 

monitored and plotted as follows:   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 3: Training Progress of 4QAM / 10 dB-SNR System. 

          The ultimate goal of the training process is to train the proposed deep learning model by 

using training data where the trained model can have ability to recovered user data signals at the 

receiver side through the implementation and utilization of the channel estimation concept. 

As we can see there are three techniques used to perform the channel estimation and signal 

recovery at the receiver which-are: 

o MMS-Error Method. 

o Least-SE Method. 

o LSTM Deep Learning method. 
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The proposed model by this thesis uses LSTM-“long short-term memory” D-learning 

technique to achieve channel estimation and recover the transmitted signal from the received signal 

accurately Compared to the conventional methods of canal approximations for reference, such as 

minimum mean square error and LSE-method. The output of testing process is shown as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 5. 4: Case-1 Testing Output Result of 4QAM / 10 dB-SNR System. 

5.3.2 Testing and Validation Case-1 Observations: 

 Consider the above figure (5.3) which shows the training process we observe that the actual 

training accuracy is shown by the blue curve while the validation accuracy is shown as the black 

dashed curve in which the validation accuracy is approximately 100% while the actual training 

loss is zero. Looking at figure (5.4)  which shows the output result of the testing process we observe 

the following, the proposed LSTM deep learning model has a lower symbol error rate (SER), while 

SER deceases with the ratio of the SN increasing (SNR) on top of that in our implementation we 

have kept the SNR level as 10 dB at the transmitter which is as low as possible to obtain the desired 

result. Hence, we conclude that the efficiency of the suggested model is more accurate as in relation 

to the performance of the MMSE and LS techniques. Correspondingly form the above figure (5.4) 

we realize the performance of minimum mean square error technique is better than the performance 
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of the least square method in term of SER to SNR value. But for the SNR range from 0 to 3 dB 

the MMSE and LS have mostly the same BER values while beyond 5 dB-SNR the MMSE 

outperform the LS technique in estimating the channels. 

5.3.3 Testing and Validation Case-2: 

Considering the second scenario of testing and validation process where we have used the 

following simulation parameters listed in the table below: 

Table 5. 2: Case-2 Simulation Parameters. 
Parameters Specification 

Number of Pilots 64 
Type of Modulation  8QAM 
Constellation Points 8 

Channel Estimation Method MMSE, LS & Deep Learning Model 
SNR Value 20 dB  

This simulation scenario puts an  emphasis on the modulation order and the noise imposed 

on the transmitted signal which is 20 dB, hence we have used in this second scenario an 8QAM 

digital modulation scheme. Therefore, the subcarriers and the constellation diagram are seen in 

figure (5.5) and figure (5.6) respectively for the 8QAM technique.  

 

 

 

 

 

 

 

 

 

Figure 5. 5: 8QAM Syst - Subcarrier Spectrum. 
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Figure 5. 6: 8QAM Syst - Constellation Diagram. 

Now we consider the training process after generating the required 5G data and modulate 

the user data by using an 8QAM modulation system, as we can see the training progress is 

monitored and plotted as follows:   

 

 

 

 

 

 

 

 

 

 
 

Figure 5. 7: Training Progress of an 8QAM / 20 dB-SNR System. 
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The output of testing process  when using an 8QAM modulation scheme with a SNR-“signal to 

noise ratio” at the transmitter side is shown as following figure (5.8): 

 

 

 

 

 

 

 

 

 

 
Figure 5. 8: Case-2 Testing Output Result of an 8QAM / 20 dB-SNR System. 

5.3.4 Testing and Validation Case-2 Observations: 

 Contemplate the above figure (5.7) which shows the training process for the second 

scenario we can see that the training accuracy and the validation accuracy curves are very close to 

each other in term of values. And hence we have achieved a validation accuracy which is 

approximately 99% with a loss less than 1%. Observing figure (5.8)  which shows the output result 

of the testing process when using 8QAM we observe that at the beginning of the testing process 

the proposed LSTM deep learning model, MMSE and LS methods have an identical performance 

regarding the symbol error rate (SER) in comparison to the ratio of signal/noise (SNR). Thus, 

when the SNR value start to exceed 7 dB the proposed deep learning model begin to outperform 

the MMS-error and LSE techniques as we can observe by looking at the output result curves. 

Hence, we conclude the following the effectiveness of the model in question is more accurate as 

in relation to the performance of the MMSE and LS techniques when a certain ratio  of a 

signal/noise is imposed on the input data symbols. 
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5.3.5 Testing and Validation Case-3: 

In view of the third scenario of testing and validation process where we have used the 

following simulation parameters listed in the table below: 

Table 5. 3: Case-3 Simulation Parameters. 
Parameters Specification 

Number of Pilots 64 
Type of Modulation  16QAM 
Constellation Points 16 

Channel Estimation Method MMSE, LS & Deep Learning Model 
SNR Value 20 dB  

In this simulation case the modulation order  used is 4 bits/symbol and the noise enforced 

on the transmitted signal which is 20 dB, hence we have used in this third simulation case a 

16QAM digital modulation system. The subcarriers and the constellation diagram are plotted 

graphically in figure (5.9) and figure (5.10) for this system.  

 

 

 

 

 

 

 

 

 

 

Figure 5. 9: 16QAM Syst - Subcarrier Spectrum. 
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Figure 5. 10: 16QAM Syst - Constellation Diagram. 

When take into account the training process by using a 4 bits/symbol modulation order to 

generate the required 5G data and modulate it, such training progress is monitored and graphed as 

follows:   

 

 

 

 

 

 

 

 

 
 

Figure 5. 11: Training Progress of 16QAM / 20 dB-SNR System. 
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Then after performing the training phase we perform testing phase and yield an output of testing 

process while using a 16QAM modulation scheme with a 20 dB ratio  of SN (SNR) at the 

transmitter section while such an outcome is shown in the below figure (5.12): 

 

 

 

 

 

 

 

 

 

 

Figure 5. 12: Case-3 Testing Output Result of 16QAM / 20 dB-SNR System. 

5.3.6 Testing and Validation Case-3 Observations: 

 Considering the above figure (5.11) which shows the training process for the third scenario 

we can see that the training accuracy and the validation accuracy curves of the proposed deep 

learning model are identical. While we have attained a validation accuracy which is approximately 

83.29% with a loss less than 17%. 

From figure (5.12)  which shows the output result of the testing process when using 

16QAM and 20 dB SNR value at the transmitter we observe that at the proposed LSTM deep 

learning model worse SER compared to MMSE method and have a better SER level compared to 

LS technique. Therefore, we can conclude the following at low SNR value used by the transmitter 

the proposed model does not perform well and it is ability to estimate the channel is hindered by  

the transmitter SNR level hence such model can be useful in some few specific situations. 
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5.3.7 Testing and Validation Case-4: 

According to the fourth testing and validation scenario we have used the following 

simulation parameters listed in the table below: 

Table 5. 4: Case-4 Simulation Parameters. 
Parameters Specification 

Number of Pilots 64 
Type of Modulation  16QAM 
Constellation Points 16 

Channel Estimation Method MMSE, LS & Deep Learning Model 
SNR Value 30 dB  

  

The  training progress  when we use a 16QAM / 30 dB SNR level by the transmitter is 

plotted shown below:   

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 13: Training Progress of 16QAM / 30 dB-SNR System. 

Then after performing the training phase we perform testing phase and yield an output of testing 

process while using a 16QAM modulation scheme with a 30 dB ratio of signal by noise (SNR) at 

the transmitter section where such result is shown in the below figure (5.14): 
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Figure 5. 14: Case-4 Testing Output Result of 16QAM / 30 dB-SNR System. 

5.3.8 Testing and Validation Case-4 Observations: 

 Considering the above figure (5.13) which shows the training process for the third scenario 

we can see that the training accuracy and the validation accuracy curves of the proposed deep 

learning model are identical. While we have attained a validation accuracy which is approximately 

95.80% with a loss less than 5%. 

From figure (5.14)  which shows the output result of the testing process when using 

16QAM we observe that at the beginning of the testing process the proposed LSTM deep learning 

model, MMSE method have an undistinguishable performance regarding the symbol error rate 

(SER) in comparison to the “signal to noise ratio (SNR)”. Then when the SNR value start to exceed 

15 dB SNR the proposed deep learning model begin to beat the performance of the other two 

channel estimation techniques. Despite the low input SNR value, the performance of the proposed 

model still considered as decent. 
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5.3.9 Testing and Validation Case-5: 

According to the fifth simulation situation scenario of testing and validation process where 

we have used the following simulation parameters listed in the table below: 

Table 5. 5: Case-5 Simulation Parameters. 
Parameters Specification 

Number of Pilots 64 
Type of Modulation  16QAM 
Constellation Points 16 

Channel Estimation Method MMSE, LS & Deep Learning Model 
SNR Value 40 dB  

The training process is monitored as shown in the following figure (5.15) where we mainly 

increase the SNR value at the transmitter side which gave an improve in the validation accuracy 

from 95% to 97%:   

 

 
Figure 5. 15: Training Progress of 16QAM / 40 dB-SNR System. 

While using a 16QAM modulation scheme with a 40 dB SN-ratio (SNR) at the transmitter section 

and such an outcome is shown in the below figure (5.16): 
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Figure 5. 16: Case-5 Testing Output Result of 16QAM / 40 dB-SNR System. 

5.3.10 Testing and Validation Case-5 Observations: 

 In Accordance to the above figure (5.15), the training process for the fourth scenario we 

can see that the training accuracy and the validation accuracy curves of the proposed deep learning 

model are more smoothed compared to case-5 when using a 40 dB SNR level. While we have 

attained a validation accuracy which is approximately 97.56% with a loss less than 3%. 

From figure (5.16)  which shows the output result of the testing process when using 

16QAM / 40dB we observe that the testing process of the proposed LSTM deep learning model, 

shows the proposed model have a better SER value compared to the above testing and validation 

cases discussed earlier. 

5.4 Testing and Validation Cases Comparison: 

The following table shows a brief comparing of training and validation accuracies and we 

can draw some few key points: 
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Table 5. 6: Comparison of Training and Validation Accuracies. 
Mod-Order SNR (dB) T- Time (m) T-Accuracy (%) V-Accuracy (%) T-Error (%) V-Error (%) 

4QAM 10 02.40 100 100 0 0 
8QAM 20 05.50 99 99 ~1 ~1 

16QAM 20 11.80 83 83 ~17 ~17 
16QAM 30 12.70 95 95 ~5 ~5 
16QAM 40 11.13 97 97 ~3 ~3 

Considering the above table (5.6), we can express the following key points: 

o For 4QAM and 8QAM system the proposed model has a good channel estimation 

validation accuracy which is approximately 100% accurate. 

o For the 16QAM / 20 dB the proposed model has low validation accuracy and in turn it has 

low channel estimation capability and that due to the high modulation MCS rate with a low 

SNR. 

o For the 16QAM / 30 dB and 16QAM / 40 dB the proposed model produces a satisfactory 

validation accuracy which is above 95%, and the due to minimum fulfilment of the required 

SNR value. 
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6.  Future Scope and Conclusions 

6.1 Conclusions: 

The central goal of this work was to build a deep learning channel estimation and signal 

recovery model for 5G-cellular communication systems and deploying this model over several 

design scenarios and different input circumstances. Thus, in this report, we have studied and 

analyzed baseline channel estimation techniques, then we have designed a deep leaning model to 

estimate 5G channel and recover the user data as accurately as possible. The scenarios considered 

in this thesis were mainly depend on varying the input SNR level plus varying the modulation and 

coding scheme rate while comparing the performance and accuracy of the proposed model with 

two main channel estimation baseline method which are the minimum mean square error technique 

and the least square technique. 

The quadrature amplitude modulation (QAM) system was chosen as the reference 

modulation system for all presented scenarios due to many reasons. The first reason it is QAM is 

a higher-order modulation type thus It is capable of holding more bits of data per symbol, as a 

result, the system rate of data can be improved by selecting a higher order format of QAM. The 

second reason is that the efficient QAM usage of bandwidth which is a result of QAM represent a 

greater number of bits per carrier frequency. 

In chapter-1 offer a general and ephemeral explanation of  cellular communications system, 

history of wireless communication systems, then it explains in details OFDM system, 5G-

communication system, important features of 5G systems,  thesis motivation, thesis objectives, 

and thesis problem statement.  

In chapter-2, we have made a theoretical description on the concept of radio channel, 

literature review of current state of art regarding the thesis topic and scope, concept of channel 

estimation and channel estimation baseline techniques such training symbols-based methods and 

non-training symbol methods, and mathematical modeling of MMSE and LS techniques. 
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According to chapter-3 of this work, we present the definition of M-learning, M-learning 

types, M-learning applications, concepts of D-learning, deep learning working aspects, deep 

learning approaches used for channel estimation, advantages of deep learning, the proposed model 

by this thesis, and the reasons behind choosing deep leering approaches for this work .    

Chapter-4, comprise of description and implementation of the most appropriate and 

important assumptions about the proposed model, and simulating the desired model in MATLAB 

environment. The model has the purpose of providing channel estimation and signal recovery of 

the user data transmitted by the transmitter side. The process of deep learning model generation 

starts with specifying the model parameters, generating 5G data through the use of appropriate 

standard such as 5G-3GPP standards, noise and channel impairment specification, specifying 

16QAM as the main modulation system. 

The important point behind the chapter is to generate the correct and valid 5G data to be 

used for training and validation process of  the model in hand. While focusing on the LSTM as the 

backbone of the deep learning model. 

In chapter-5, The testing and validation process of the proposed model is materialized and 

introduced, therefore here we generated testing data and used it as the transmitted user data while 

we passed the received data through the designed deep learning model in chapter-4 plus using 

MMSE and LS technique to perform channel estimation and recover the transmitted user data from 

the received version and differentiated the precision of the deep learning model in opposition to 

the MMSE and LS approaches. 

In addition to that in this chapter we have divided the concept of testing the model in 

scenarios where we varied the input signal to noise ratio and the modulation coding scheme and 

analyzed the output result of the model with respect to the Sym-error rate, (“SER”) in relation to 

SN-ratio (“SNR”). 

In chapter-6, we have presented conclusion and comment on the working performance of 

the designed model in comparison to other channel estimation method, then we mention a brief 

point about the future utilization and usage of the proposed model. 
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6.2 Future Scope: 

Due to rapid advances in technology the performance  of  the cellular communication  

systems  is unquestionably  will be heightened  in near future  with  the  application  such advanced 

and  modern  practices and technologies.  As we know from recent years the  development  of  

cellular communication systems it is never a steady or slow growth in fact it is surprisingly faster 

than what we can expect. 

In future scope, the proposed channel estimation model by this report can be extended and 

upgrade through the use of the following recommendations:   

o Using another modulation technique other than QAM such as GMSK.  

o Using other channel models and studying the effect of the channel on the SER. 

o Investigating the performance of OFDM system by using other methods than FFT.  

o Reviewing the deep learning model approach and using other deep learning approaches.  
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