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In recent years, exergy analysis has been widely used in the
design, operation, and performance assessment of various thermal
systems, among which drying, which is an energy intensive oper-
ation, is of a great importance. In the ceramic industry, it is aimed
at utilizing a minimum amount of energy in order to remove the
maximum moisture for the desired final conditions of the product
to be dried. In this study, energy and exergy analyses of a ceramic
plant, located in Izmir, Turkey, with a yearly production capacity of
24 million m* were performed using the actual operational data over
a period of 12 months. The drying system at the three stages was
analyzed and the values for exergy destruction and efficiency for
each component of the system and the whole system at a reference
(dead state) temperature of 22°C were calculated. For the month of
January, energy and exergy efficiencies for the spray dryer (SD)
were determined to be 65.50 and 53.7%, respectively. Energy and
exergy efficiency values of the vertical dryer (VD) were 45.12 and
43.3%, respectively, and those of the furnace (F) were 35.08 and
16%, respectively. Based on this one-year assessment, the energy
efficiency values for the SD, VD, and F varied between 58.48 and
65.50%, 42.44 and 50.87%, and 30.44 and 36.99%, and the exergy
efficiency values were in the range of 44.85-65.16%, 34.92-45.42%,
and 12.73-16.41%, respectively.

Keywords Ceramic sector; Drying; Efficiency; Energy analysis;
Thermodynamic analysis

INTRODUCTION

Drying can be regarded as one of the most important
and most frequently applied unit operation in all sectors
producing solid products. Removal of the liquid by evapor-
ation from a system is called drying, which is an
energy-intensivel' > and essential stage of many industrial
processes. The term drying generally refers to the removal
of moisture or liquid from a wet solid by bringing this
moisture into a gaseous state. In most drying operations,
water is the liquid evaporated and air is the drying gas

Correspondence: Zafer Utlu, Mechanical Engineering Depart-
ment, Faculty of Engineeering and Architecture, Istanbul Aydin
University, Istanbul, Turkey; E-mail: zafer_utlu@yahoo.com

normally employed.l'*! However, drying in ceramic pro-
cesses, removal of water in clays, and consumption of
water through hydration of cementitous materials are
involve liquid transport processes in porous media.l' ™

In many practical applications, drying is a process that
requires high energy input because of the high latent heat
of water evaporation and relatively low energy efficiency
of industrial dryers. Industrial dryers consume on average
about 12% of the total energy used in manufacturing pro-
cesses. In manufacturing processes where drying is
required, the cost of drying can approach 60-70% of the
total cost.'” Thus, one of the most important challenges
of the drying industry is to reduce the cost of energy
sources for good quality dried products.®!

Due to the high prices of energy and decreasing fossil
fuel resourses, the optimum application of energy and
energy consumption management methods have become
very important. This, in fact, requires accurate thermodyn-
amic analysis of thermal systems for design and optimiza-
tion purposes. Therefore, collection and evaluation of
periodical data concerning industry and other final
energy-consuming sectors is a primary condition in the
determination of targets for the studies of energy savings
and regular canalization of applications. In this regard,
there are two essential tools available; that is, energy analy-
sis and exergy analysis.

Exergy analysis is the modern thermodynamic method
used as an advanced tool for engineering process evalu-
ation.”) Whereas energy analysis is based on the first law
of thermodynamics, exergy analysis is based on both the
first and second laws of thermodynamics. The main pur-
pose of exergy analysis is to discover the causes and quan-
titatively estimate the magnitude of the imperfection of a
thermal or chemical process. Exergy analysis leads to a bet-
ter understanding of the influence of thermodynamic
phenomena on the process effectiveness, comparison of
the importance of different thermodynamic factors, and
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determination of the most effective ways to improve the
process under consideration.!!%!]

It is important to highlight that the exergy of an energy
form or a substance is a measure of its usefulness or quality
or potential to cause change.'2" A thorough under-
standing of exergy and the insights it can provide into
the efficiency and environmental impact of drying systems
is required for engineers or researchers working in the area
of drying technology.”"! Although many experimental and
theoretical investigations of heat and moisture transfer
analyses of drying of wet materials have been made, energy
and exergy analyses of drying systems and processes of wet
materials have been studied by few researchers.l’:16-2?]

A large amount of energy is consumed in the ceramic
industry. A significant number of studies have been published
in this field as well.®?? 2% Among these, there are very impor-
tant and deductive papers that show not only energy approach
to the ceramic industry but the potentials and means of
improvement in energy consumption of ceramic industry.

The main objective of this contribution is to determine
energy and exergy efficiencies of a ceramic drying process
(CDP) during drying of moist particles. This analysis was
undertaken based on the actual operational data for a per-
iod of 12 months. The structure of the article is as follows:
The following section provides a theoretical analysis using
mass, elemental, energy, and exegy balance equations. A
description of the ceramic production process and the
energy utilization in the ceramic drying process is then pro-
vided. Mass, elemental, energy, and exergy analysis meth-
ods are applied to the plant studied and the results
obtained are discussed next, followed by our conclusions.

THEORETICAL ANALYSIS

For a general steady-state, steady-flow process, the fol-
lowing balance equations are applied to determine the
work and heat interactions, the rate of exergy decrease,
the rate of irreversibility, and the energy and exergy effi-
ciencies.!-11+12:2%]

The mass balance equation can be expressed in the rate
form as

Zmin == Zmout (1)
where m is the mass flow rate, and the subscripts iz and out

stand for inlet and outlet, respectively.
The general energy balance can be expressed as

Z Ein = Z Eour (2)
O+ Minhin =W+ ttouliou (3)

where E;, is the rate of net energy transfer in; E,, is the
rate of net energy transfer out by heat, work, and mass;

0= Qm,m =0, —0,, is the rate of net heat input;
W = W,,e,,(,u, = W, — W, is the rate of net work output;
and / is the specific enthalpy.

Assuming no changes in kinetic and potential energies
with any heat or work transfers, the energy balance given
in Eq. (3) can be simplified to flow enthalpies only:

Z T’hmhm - Z moulhout (4)

The general exergy balance can be expressed in the rate
form as

ZExin - ZExout = ZExdest or
Z (1 - %) Qk - W + me‘/jm - Zmoutwout (5)

= Exdesr

with
Y = (h—ho) — To(s — s0) (6)

where Qk is the heat transfer rate through the boundary at
temperature T}, at location k, W is the work rate, i is the
flow exergy, s is the specific entropy, and the subscript 0
indicates properties at the dead state of Py and Ty,

The exergy destroyed or the irreversibility may be
expressed as follows:

j - Exde‘\'t - TOSgen (7)

where Sgen is the rate of entropy, and the subscript 0
denotes conditions of the reference environment.

The amount of thermal exergy transfer associated with
heat transfer Q, across a system boundary r at constant
temperature 7, is®*!*

ex=[1—(Ty/T,)]0; (8)

The exergy of an incompressible substance may be written
as follows:
T
eXjo = C(T- T() — Toh’l— (9)
Ty
where C is the specific heat.
Different ways of formulating exergetic efficiency pro-
posed in the literature have been given in detail else-
where.?®! The exergy efficiency expresses all exergy input

as used exergy and all exergy output as utilized exergy.
Therefore, the exergy efficiency &, becomes

B EXou
EX,‘”

& (10)
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Often, there is a part of the output exergy that is unused,
that is, an exergy wasted, Ex, .y, to the environment. In
this case, exergy efficiency may be written as follows:*®!

o Exoul - Exwm‘te

; 11
Exin ( )

&

Rational efficiency was defined by Kotas®?”! and Cornelis-

sen'® as the ratio of the desired exergy output to the
exergy used; namely,

& = Exdf.fsired,output (12)
Exused

where Exdesiredﬁoutpm is the total exergy transfer rate from

the system, which must be regarded as constituting the

desired output plus any by-products produced by the sys-

tem and Ex,g is the required exergy input rate to the pro-

cess to be performed. The exergy efficiency given in Eq. (13)

may be also expressed as follows:*”!

Desired exergetic effect Product
& = - =
3 Exergy used to drive the process Fuel

(13)

To define the exergetic efficiency, both a product and a fuel
for the system being analyzed are identified. The product
represents the desired result of the system (power, steam,
a combination of power and steam, etc.). Accordingly,
the definition of the product must be consistent with the
purpose of purchasing and using the system. The fuel
represents the resources expended to generate the product
and is not necessarily restricted to being an actual fuel such
as a natural gas, oil, or coal. Both the product and the fuel
are expressed in terms of exergy.l*”

Van Gool®! reported that maximum improvement in
the exergy efficiency for a process or system is obviously
achieved when the exergy loss or irreversibility (Ex;,—
Ex,,;) is minimized. Consequently, he suggested that it is
useful to employ the concept of an exergetic improvement
potential when analyzing different processes or sectors of
the economy, as given in the rate form as follows:*”

IP = (1 — &)(Exjy — Exou) (14)

DESCRIPTION OF INDUSTRIAL DRYER AND ENERGY
UTILIZATION IN THE CERAMIC INDUSTRY
Description of the Ceramic Process

Ceramics are defined as inorganic, nonmetallic materials
that are consolidated and acquire their desired properties
under the application of heat. This application of heat in
practice takes place inside high-temperature kilns, usually
for long periods of time. Therefore, the ceramics industry
is by definition an energy-intensive one. All ceramics

production industries are characterized by the lengthy
operation of high-temperatures kilns and furnaces; not
only is a high amount of energy consumed during the pro-
duction process, but the energy cost is a significant percent-
age of the total production cost.®?22%

The industries of the ceramic sector are usually divided
into two broad categories: traditional ceramics such as wall
and floor tiles, tableware, sanitary ware, and brick and
heavy clay and so-called advanced ceramics (electrical
and electronic ceramics, technical ceramics, bioceramics,
ceramic coatings). Traditional ceramics are the bulk of
the overall production of the ceramic sector.®

The generalized production scheme for the ceramic
industries consists of four basic stages: preparation of
raw materials, shaping, drying, and firing. The differences
between each particular sector—especially with respect to
the shaping process but also with respect to the raw materi-
als used and the drying and firing temperatures
employed—depend on the specific requirements of the
particular products.!' >

Ceramic drying and firing process are highly energy
intensive and involve the slow and gentle expulsion of
water from the green products before the final firing, so
that no damage is caused within the body. Temperatures
encountered at this stage can vary from 60 to 1200°C. Vari-
ous types of energy sources are used for heating purposes,
including fuel oil, diesel fuel, liquid petroleum gas (LPG),
methane or natural gas, coal, and electricity. The main
steps in the ceramic drying process studied are illustrated
in Fig. 1, which mainly include spray drying (SD), vertical
drying (VD), and furnace (F) drying.

Depending on the specific product description in the fac-
tory, dusted raw materials are turned into mud and the
inter raw material masse emerges as they enter the spray
dryer. Masse compound is later formed in the forming
presses according to the size of the formworks. Moisture
content is reduced while it is in the VD. After this process,
it is subjected to the process of tile glazing. This represents
the glass that covers the surface as a thin layer of ceramic
glaze. Glaze consists of a mixture of water-soluble sub-
stances and dissolved substances. Because the water-
soluble substances cause various uncontrollable problems
when performed on the ceramic layer, the glaze is made
as a solution dissolved in water. The baking process starts
after the glazing process. The process is put into effect in
furnaces with lengths of 85-100 m. Following quality con-
trol at the exit of the factory, the products are packed in the
packaging section.*”

The General Structure of the Spray Dryer

SDsused in ceramic factories as a means of drying the tiles
are used for converting the wet mud combination into masse.
The type of the SD used in this ceramic production process is
based on the principle of direct heat transfer. This type of
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FIG. 1. Flow diagram of the ceramic drying process studied.

spray dryer operates by making the combustion gases
counter-currently contact the damp raw material causing
heat transfer directly from the hot effluent gas to the water
in the raw material resulting in effective evaporation. The
schematic perspective of the SD are indicated in Figs. la
and 2.3

General Structure of the Vertical Dryer

Dryers used in the ceramic industry for drying of tile are
called vertical and horizontal dryers. In VDs, the wet tile’s
moisture (5-6%) is reduced to values below 1%. The
reduced moisture value is determined by R&D units
according to the ceramic raw material recipe.

In a verticle dryer, the file is moved vertically and
shaped by the press while it is placed into beds in dryers.
The VD system consists of loading—unloading baskets,
the system drive, combustion section, and hot air circu-
lation and pneumatic and electric units. The VD system
is shown in Fig. 1b.

The General Structure of the Furnace

Baking is one of the most important steps in the pro-
duction process because it uses a large amount of energy
in the drying system. The glazed tile is turned into ceramics
in the furnace. Glazed tile in the furnace becomes a crystal-
line structure when it passes through the hell fire region
with temperatures as high as 1200°C and at the exit it takes
the form of a ceramic. The schematic perspective of the fur-
nace is indicated in Fig. lc.

The average length of the furnace is 85-100 m. Baking
and internal temperature steps take place in the sections
as follows:

e 10% for pre-entrance (0 and 500°C)

e 30% for pre-baking (500 and 1000°C)

e 20% for baking (1000 and 1200°C)

e 6% for fast cooling (1250 and 600°C)

e 20% for slow cooling (600 and 450°C), and
e 14% for final cooling (450 and 65°C)

as the total length of the furnace parts. The objective of
this percentage dispersion is a proper cooking temperature

FIG. 2. Spray drying flowchart. 1, Stock pools; 2, sludge feed pumps; 3, mud filters; 4, distributor ring; 5, drying tower; 6, gas-masse dust suction pipe;
7, masse outlet valve; 8, cyclone separator; 9, fuel feed system and burner; 10, combustion air vent; 11, heat transmission channel; 12, hot air distributor;

13, suction air vent; 14, chimney; 15, wet dust holder.
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for ceramicswhile regulating heat distribution and tempera-
ture changes with the speed of cooking to control the inter-
nal stress.*¥

Energy Utilization in the Ceramic Industry

The ceramic industry is an energy-intensive industry. In
Turkey, the industry accounted for 12.3% of the total natu-
ral gas consumption in the manufacturing sector in 2007.1*
In terms of the primary energy utilization, about 54% of the
input energy was natural gas, 38% was LPG, and the remain-
der was electricity.!** The specific energy consumption was
about92.93kJ/ m? for the process. The higher specific energy
consumption in Turkey is partly due to the harder raw
material and the poor quality of the fuel. Waste heat recov-
ery from the hot gases in the system has been recognized as a
potential option to improve energy efficiency.**) However,
there are few detailed thermodynamic analyses of operating
ceramic drying process that evaluate the option of waste heat
recovery.**3* Specific energy consumption values of the
SD, VD, and F are indicated in Table 1.

The values used in the analysis of the system are based
on the actual operating data, which we obtained by visiting
the plant many times as well as by collecting the measured
and recorded properties.

RESULTS AND DISCUSSION

Here, the energy and exergy modeling technique dis-
cussed in the previous section is applied to the ceramic dry-
ing process studied using the actual operational data.

Mass Balance and Elemental Analysis in the Ceramic
Drying Process

The mass balance and chemical composition analysis of the
ceramic drying process (COP) were determined on the basis of
the chemical reactions between the input and output elements
throughout the overall process, as shown in Tables 2-4. The
mass balance in the CDP is conceived ased on the law of con-
servation using Egs. (1), (15), and (16) as follows:

Zmin :m‘vdy‘km‘wm +mfg +mca+mal+"’+ (15)

Z mout = mm + mmm + lefg + ”i'!fgc + mjgo +--+ (16)

Mass Balance and Elemental Analysis in the Spray Dryer
Input materials to the SD are sludge dry matter (Al,O3,
Si0,, Na,O, Fe,05;, CaO, MgO, and others), sludge wet
matter, natural gas, and combustion air, while output
materials are masse and flue gas as shown in Fig. 1 and
Tables 2-4. Sludge consisting of 35% moisture is altered
to masse with 5% moisture in the spray dryer. For calcu-
lation of the mass balance, the ratio of dry and wet materi-
als was investigated in different ways; furthermore, flame

gases were examined in three parts as evaporation of sludge
exhaust gas, and air leakage. Mass balance and elemental
analysis of input and output materials in the SD are illu-
strated in Table 2.

Mass Balance and Elemental Analysis in the Vertical
Dryer

Input materials to the VD are as follows: tile (Al,O3,
Si0,, Na,0, Fe,03, CaO, MgO, and other), natural gas,
combustion air, and air leakage while output materials
are tile, and flammable gas. The tile consisting of moisture
5% turns into a heated tile which has 0.3% moisture in the
VD. In the calculation of mass balance, the ratio of dry and
wet materials was examined in different ways; furthermore,
flame gases were studied in three parts as evaporation of
sludge, exhaust gas, and air leakage. Mass balance and
elemental analysis of input and output materials in the
VD are shown in Table 3.

Mass Balance and Elemental Analysis in the Furnace

Input materials to the furnace are as follows: glazed tile
(A1,03, SiO,, Na»O, Fe,O3, CaO, MgO, and other), air
leakage, cooler air, and combustion air, and output materi-
als are ceramics and flammable gas. The glazed tile consist-
ing of 5% moisture is purified of moisture in the furnace
and becomes ceramic. In the calculation of mass balance,
flame gases were examined in three parts as evaporation
of tile, exhaust gas, and air leakage. Mass balance and
element analysis of input and output materials to the fur-
nace are indicated in Table 4.

Energy Analyses of the Ceramic Drying Process
In order to analyze the CDP thermodynamically, the
following assumptions were made:

1. The system is assumed as a steady-state, steady-flow process.

2. Kinetic and potential energy changes of input and out-
put materials are ignored.

3. No heat is transferred to the system from the outside.

4. Electrical energy produces the shaft work in the CDP.

5. The change in the ambient temperature is neglected.

Under the above-mentioned conditions and using the
actual operating data of the plant, an energy balance is
applied to the CDP. Calculation of the energy balance of
the SD, VD, and F is made using Egs. (2) and (4). The refer-
ences, enthalpy, mass flow rate, entropy, and input energy
are considered in the calculations. The reference value for
the enthalpy is considered to be 0°C for calculations. The
complete energy balance for the system CDP is shown in
Table 5a. It is clear from this table that the main heat source
in the process is the gas, and the electrical energy is con-
verted into heat energy flow of the CDP, as illustrated in
Fig. 3. The results of these energy analyses in the form of
a Sankey diagram of the CDP are shown in Fig. 4.
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ANALYSIS OF CERAMIC PRODUCTION

1801

TABLE 5
Energy analyses of input and output materials to the ceramic dryer process
m

Item Material T (K) C,(kJ/kgK) (kg/h) QO (kJ/h)
(a) Spray dryer  Input 1 Sludge (dry material) 303 0.749 50,141 11,379,350
2 Sludge (wet material) 303 4.18 26,992 34,186,448
3 Heating of natural gas combustion 23,074,048
4 Natural gas heating 298 2.22 441 291,748
5 Combustion air 298 1.005 9,986 2,990,707
6 Air leakage 298 1.005 67,960 20,353,340
7 Electrical energy is converted into heat 4,392,000
Total 96,667,641
Output 1 Masse 327 0.76 50,141 12,461,041
2 Moisture of masse 327 4.183 2,638 3,608,365
3 Flue gas (mud water vapor) 375 1.903 24,354 17,379,623
4 Flue gas (combustion) 375 1.05 10,427 4,105,631
5 Flue gas (other) 375 1.011 67,960 25,765,335
6 Heat loss 33,347,646
Total 96,667,641
(b) Vertical dryer Input 1 Tile 303 0.749 57,677 13,089,622
2 Moisture of tile 303 4.18 3,035 3,843,949
3 Heating of natural gas combustion 37,211,962
4 Natural gas heating 298 2.22 711 470,369
5 Combustion air 298 1.005 13,457 4,030,237
6 Air leakage 298 1.005 6,756 2,023,354
7 The electrical energy is converted into heat 5,688,000
Total 66,357,494
Output 1 Tile 368 0.771 57,677 16,364,580
2 Moisture of tile 368 4.19 193 297,591
3 Flue gas (tile water vapor) 343 1.885 2,842 1,837,509
4 Flue gas (combustion) 343 1.05 14,168 5,102,605
S Flue gas (other) 343 1.011 6,756 2,342,798
6 Heat loss 40,412,411
Total 66,357,494
(c) Furnace Input 1 Glazed tile 298 0.749 42,678 9,525,815
2 Heating of natural gas combustion 95,337,990
3 Natural gas heating 298 2.22 1,821 1,204,701
4 Combustion air 385 1.005 43,704 16,910,170
S Cooler air 298 1.005 41,543 12,441,713
6 Air leakage 298 1.005 11,847 3,548,058
7 Electrical energy is converted into heat 13,662,000
Total 152,630,447
Output 1 Ceramics 343 0.771 40,544 10,721,982
2 Flue gas (mud water vapor) 403 1.916 2,134 1,647,764
3 Flue gas (combustion) 403 1.055 45,525 19,355,637
4 Flue gas (other) 403 1.014 53,390 21,817,396
5 Heat loss 99,087,668
Total 152,630,447
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FIG. 3. Energy flow diagram of the ceramic drying process studied.

Energy Analyses of the Spray Dryer

The unit energy input rate to the SD is 96,667,641 kJ /h.
The main heat source in the process is natural gas and the
unit input heat rate is 23,074,048 kJ /h. Figure 3a illustrates

SPRAY DRYER

VERTICAL DRYER

2,500,000,000 W Total energy rate (kl/h)

2,000,000,000 m Total heat loss rate (kJ/h)

1,500,000,000

1,000,000,000 -

500,000,000 -

0

Spray dryer

Vertical dryer Furnace

FIG. 5. Comparative values for total energy and heat loss rates of each
unit.

the energy flow of the SD. According to the results of the
analysis, the amount of heat loss in the SD was 35.8%.
One of the reasons for this loss is that it does not reach
the intended temperature values in the preheating process,
which causes extra fuel costs. Another problem in this unit
is that heat leaks in the surface due to the insufficient iso-
lation. Failures in the mud feeding system eventually cause
fluctuations in the dry substance/water ratio. This
increases the demand for energy to remove the extra water.
This extra energy consumed in order to achieve the
intended moisture of the masse results in extra energy
costs. The energy balance of the SD is given in Table 5a.

Energy Analyses of the Vertical Dryer

The unit energy input rate to the VD is 66,357,494 kJ /h.
The main heat source in the process is gas and the electrical
energy is converted into heat. The total input heat rate is
37,780,762kJ/h. Figure 3b illustrates the energy flow in
the VD unit in which the share of the heat loss is 58.6%.
The main reason for the heat loss from the VD is insuf-
ficient insulation, which is similar to the spray dryer. How-
ever, another possible source of heat loss is any defect in
the lifting system which carries dried pieces through the
dryer at various times. The energy balance in the VD is
given in Table 5b.

Flue gu
FURNACE 11437 kW

Hatand g
BELTEW

Heat loss
N2 kW

Heat boss
I W

FIG. 4. Sankey (energy flow) diagram of the ceramic drying process studied (color figure available online).
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Exergy lossrate
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Exergylossrate
Exergy loss rate
13083 %W 152113 kW
Exergy inletrate Exergyinlet rate
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Exergy outletrate Exergy ouflet rate

Exergy outlet rate
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SPRAY DRYER

136144 kW

VERTICAL DRYER

122511 kW

FURNACE

FIG. 6. Grassmann (exergy loss and flow) diagram of the ceramic drying process studied.

Energy Analyses of the Furnace

The unit energy input rate to the furnace is
152,630,447 kJ/h. The main heat source in the process is
gas and the electrical energy is converted into heat. The
total input heat rate is 108,999,990 kJ/h. Figure 3c illus-
trates the energy flow in the furnace. The furnace has a heat
loss share of 67.8%. The furnace, which consumes the most
fuel, operates under a higher temperature process com-
pared to the other systems. One of the fundamental prob-
lems associated with the furnace is that the burner isolation
is not good. In addition, unstable combustion frequently
occurs because of insufficient input air, which causes an
increase in natural gas consumption due to insufficient
air/fuel ratio. The isolation problem is inadequate in the
furnace as well. The inadequacy of the isolation in the hell
fire area where the heat is the greatest constitutes the main
part of this loss. The energy balance in the furnace is given
in Table Sc.

Energy Efficiencies of the Ceramic Drying Process

For all units, the total amount of energy and losses
obtained from the energy analysis, which was performed
using the first law of thermodynamics, is given in
Table 5 and comparisons of these values are provide
in Fig. 5.

Energy efficiency of the CDP is calculated from the fol-
lowing relation:

Z mouthout Qin - Qloss
L = == 22
1 Z nllinhin or Z Qin ( )

Using energy analysis values and Eq. (22), the energy effi-
ciencies of the SD, VD, and F were calculated for January

as follows:
63319995
5D = gee67641 030
28852238
Nyp = m = 043487 and
53542779
= 152630447~ 0308

Exergy Analysis of the Ceramic Drying Process

The irreversibility of each component is calculated from
the exergy consideration and may also be found using the
entropy balance equations. Using the assumptions, the
exergy analysis was made using Eqgs. (5)-(13) and the
exergy efficiencies were calculated for the CDP. These cal-
culations are provided in Tables . shows the results of these
exergy analyses as a Grassmann diagram. The following
assumptions were made in the calculations:

1. The system is assumed to be a steady-state, steady-flow
process.

3,500,000,000

W Total exergy rate (kJ/h)

3,000,000,000 W Total exergy loss rate (kJ/h)

2,500,000,000

2,000,000,000

1,500,000,000

1,000,000,000 -

500,000,000 -

0 -

Spray dryer Vertical dryer Furnace

FIG. 7. Comparative values for total exergy and total exergy loss rates
of each unit.
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Energy and exergy efficiencies of the ceramic dryer process
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. N T — \ = /| e« VD Energy

X \/{- — [ -_— -T

— - o | I — [ et = VD E;

5 =T xergy

El LT L e

g .......................... F Energy

= -y oy - bl bkt i o == - FEXH@,
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FIG. 8. Variation of energy and exergy efficiencies of the ceramic dryer
process over time.

2. Chemical exergies of the substances are neglected.

. Kinetic and potential exergies of materials are ignored.

4. The reference value for the ambient temperature, and
pressure are considered to be 7°=295K and "= 1 bar
for calculations.

W

Total exergy values of the input and output materials
were calculated to be 7,864.73 and 1,981.40 MJ, respect-
ively.

For all units, a comparison of these values is also given
in Fig. 7 using the second law of thermodynamics.

Exergy Analysis of the Spray-Drying Process

Table 6 lists exergy analysis values of the input materials
to the SD process and those of the output materials from
the SD process are indicated in Table 7. Total exergy values
of the input and output materials were calculated to be
74,517,995 and 40,089,117 kJ /h, respectively.

Exergy Analysis of the Vertical Drying Process

Exergy analysis values of the input materials to the VD
process are presented in Table 8§ and those of the output
materials from the VD process are listed in Table 9. Total
exergy rate values of the input and output materials were
calculated to be 101,275,804 and 39,689,987kJ/h,
respectively.

Exergy Analysis of the Furnace Process

Exergy analysis values for the input materials to the fur-
nace are listed in Table 10 and those of the output materi-
als from the furnace are indicated in Table 11. Total energy
rate values of the input and output materials were calcu-
lated to be 179,439,129 and 28,856,831 kJ/h, respectively.

Exergy Efficiency of the Ceramic Drying Process
The exergy efficiency of the CDP is calculated from

_ > Mout - Your
Z Mip, - l//in

Using exergy analysis values and Eq. (23), the exergy effi-
ciencies of the SD, VD, and F were calculated for January

o EXou

e =
EX,'n

or ¢ (23)

as follows:
40089117 3968998
&ESp = m = 05377 Eyp = m = 0391,
28856831
and EF = m =0.16

Exergy Analysis of the Whole Process

Mass, energy, and exergy input and output values of the
dryer process investigated are shown in Table 12. A graphi-
cal representation of the energy and exergy efficiencies of
the SD, VD, and F is presented in Fig. 8.

Apak®¥ reported that energy and exergy efficiencies in a
ceramic drying sector were 65.3 and 29.9% for the SD, §87.3
and 64.1% for the VD, and 43.4 and 11% for the F, respect-
ively. In the present study, for the month of January, the
energy and exergy efficiency values for the SD, VD, and
F were 65.50 and 53.7%, 45.12 and 43.3%, and 35.08 and
16%, respectively. The differences between the efficiency
values are due to the operating conditions of the two fac-
tories.

CONCLUSIONS

In the present study, we determined energy and exergy
utilization efficiencies of a ceramic drying process. Mass,
elemental analysis and heat losses, and energy and exergy
utilization efficiencies of the CDP were analyzed using
the actual plant operating data. The main conclusions
drawn from the results of the present study may be sum-
marized as follows:

1. For the month of January, the energy efficiency values
for the SD, VD, and F were 65.50, 45.12, and 35.08%
and the exergy efficiency values were 53.7, 43.3, and
16%, respectively.

2. For the month of January, heat loss rates by conduc-
tion, convection, and radiation from the surface of the
SD, VD, and F were about 33,348, 40,421, and
99,087 MJ/h, respectively. Hence, the energy saving
potential for the those systems was estimated to be
nearly 33,348, 40,421, and 99,087 MJ/h, respectively,
which indicates an energy recovery of 34.52, 60.91,
and 64.67% of the total input energy into the SD, VD,
and F, respectively.

3. Over one year, the energy efficiency values for the SD,
VD, and F varied between 58.48 and 65.50%, 42.44
and 50.87%, and 30.44 and 36.99%, respectively, and
the exergy efficiency values were in the range of
44.85-65.16%, 34.92-45.42%, and 12.73-16.41%,
respectively.

4. This study indicated that exergy utilization in the SD,
VD, and F was even worse than energy utilization. In
other words, those processes had a great potential for
increasing the exergy efficiency.
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5. Heat losses especially at the second and third stage of

the process shows the problem with the efficiency of
the system. Heat losses will decrease if necessary precau-
tions are taken in the CDP, which will result in fuel sav-
ings in the furnace.

6. A conscious and planned effort toward building an

energy management structure within the plant studied
is needed to improve exergy utilization in the CDP.
Considering the existence of energy-efficient technolo-
gies in similar sectors, the major problem is delivering
these technologies; in other words, using effective
energy-efficiency delivery mechanisms.

UTLU ET AL.

NOMENCLATURE

C Specific heat (kJ/kgK)

D Diameter (mm)

E Energy (kJ)

E Energy rate (kW)

Ex Exergy (kJ)

Ex Exergy rate (kW)

ex Specific exergy (kJ/kg)

h Specific enthalpy (kJ/kg) or heat convection
coefficient (W/m?K)

I Irreversibility, exergy consumption (kJ)

I Irreversibility rate, exergy consumption rate
(kW)

IP Improvement potential rate for exergy (kW)

k Thermal conductivity (W/mK)

/ Length (m)

m Mass (kg)

m Mass flow rate (kg/s)

P Pressure (Pa)

0 Heat transfer (kJ)

0 Heat transfer rate (kW)

S Entropy rate (kW)

s Specific entropy (kJ/kgK)

T Temperature (K)

w Work (kJ)

/4 Work rate or power (kW)

Greek

Letters

¢ Exergy (second law) efficiency (%)

" Energy (first law) efficiency (%)

v Flow exergy (kJ/kg)

Indices

a Air

ave Average

¢ Combustion

cr Ceramics

dest Destroyed

dr Drying room

fg Flue gas

fr Furnace

g Gas

gd Gas dust

gen Generation

gt Glazed tile

h Heating

in Input

la Air leakage

m Moisture

mix Mixture

ns Natural gas

out Outlet, existing

sdm Sludge (dry material)
sf Surface

swm Sludge (wet material)
t Tile

v Vapor

0 Dead state or reference environment
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