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Abstract: Formal design optimisation techniques are commonly used for designing new radio frequency devices. The search for
globally optimum designs turns out to be exhaustive primarily since full-wave electromagnetic (EM) simulation tools used in the
repetitive analysis process during the design cycle consume plenty of time and resources. In this study, a new technique is
introduced in order to reduce the number of analysis calls in a frequency-dependent EM optimisation cycle by providing a
robust interpolation of the EM frequency response. The proposed technique makes use of Bayes’ theorem incorporated with
both rational interpolations and an adaptive sampling technique. The technique is tested on approximating the return loss
curves of ten design candidates of a microstrip patch antenna. Results are compared with linear interpolation scheme
demonstrating the technique’s capability of accurately predicting poles and approximating resonance-based behaviour such as
bandwidth with improved accuracy.
1 Introduction

Electromagnetic (EM) designs resulting from global design
optimisation studies that allow for full design space
exploration such as antenna shape, size, feed location and
material distribution are expected to lead to novel
configurations with enhanced performance such as in
topology optimisation examples presented earlier [1, 2].
However, global synthesis via heuristic search techniques
relies on considerable number of reanalysis calls which
becomes a bottleneck in large-scale EM search studies
where the objective function is a function of frequency and
requires a new analysis per frequency. Hence, the
computational time of analysis calls of the EM response,
such as return loss curve, is proportional to the number of
frequency points needed for predicting the EM response
over the desired working frequency range. To address this
issue, an approximation scheme suitable for approximating
the frequency response of EM systems that will allow for
fewer number and accurate reanalysis calls is developed in
this paper. The interpolation problem becomes more
challenging when the EM frequency response involves
multiple resonances, as shown in Fig. 1, in the working
range of interest, as typically encountered in concurrent
conductor and material design studies of novel antennas
[3, 4]. This in turn requires a robust adaptive sampling
technique that ensures catching resonances while still
keeping minimum number of frequency sampling points
(support points).
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Surrogate modelling techniques [5] are approximation
schemes typically used for efficient EM reanalysis and
serve a common central purpose by providing a ‘virtual’
objective function which can be called by the optimisation
solver within a design cycle. Variations in the surrogate
models are owing to training and/or tuning parameters.
However, training a model of increased topological
complexity leads to an excessive computational effort and
most of the time results in a model that is problem
dependent and the objective function in an optimisation
process is only valid in a constrained sub-domain which is
likely to contain the optimum.

Basis functions employed within the interpolation models
have great influence on the quality of the surface
approximation. Among alternatives, rational functions offer
an attractive solution for providing approximate resonances
because of their inherent pole predicting behaviour. Hence,
their use has resulted in various representations of
resonance-type responses with reasonable number of
support points [6].

The rational-based approximation scheme proposed in this
paper employs a simple and easy-to-train decision-making
classifier based on Bayes’ theorem to predict multi-
resonance return loss curves of EM devices with complex
topologies. Bayes’ theorem has been extensively utilised for
interpolation in signal processing problems [7, 8]. Similarly,
the Bayesian classifier was used for predicting antenna
frequency responses by determining a parameter of the
interpolator basis function based on statistical assumptions
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[9]. This parameter, determined by the classifier ‘coef’
introduced in Section 2, controls the shape of the resulting
resonances associated with a rational interpolator of
quadratic numerator and denominator. The remaining
rational function parameters are determined by known
conditions of the interval of interest which are calculated
using a finite-element-based analysis tool [10].

Selection of support points adaptively is known to affect
the interpolation quality. Nevertheless, most adaptive
sampling schemes available are suitable for global curve
fittings that, unlike the proposed piecewise rational
function, interpolate the whole range with a single
interpolator [11, 12]. In this paper, the Bayesian-based
rational interpolation (BRI) scheme proposed in [4, 9] is
improved by employing the Bayesian classifier for
adaptively sampling the frequency range via bisecting and
hence refining the interval under consideration. The
Bayesian trained rational function proves to have a powerful
yet, unlike other standard approaches such as Neural
Networks, simple approximation capability based on
statistics and just a single controlling parameter. An in-
depth analysis of the proposed Bayesian-based rational
interpolation with adaptive sampling (BRIA) scheme is
given in the next section and is followed by applying the
proposed scheme to a large-scale design example where
both the dielectric and conductor topologies are sought for
a miniaturised novel antenna with broadband behaviour.
Finally, the efficiency and reliability of the proposed
scheme is discussed in the last section.

2 Interpolation method: Bayesian trained
quadratic rational functions

In this section, the theoretical background of the rational
function interpolation scheme based on the Bayesian
classifier is presented. The numerator and denominator of
the selected rational function are polynomials of second
order. The order of the denominator is chosen to closely
follow the behaviour of the return loss curve by allowing
for a pole existence that emulates a resonance for each
interval. To ensure smooth interpolations of successive
intervals for a multi-resonance response curve, function

Fig. 1 Return loss response of a microstrip patch antenna with
multiple sharp resonances in a [1 2] GHz working frequency
range linearly interpolated with 1001 and 11 uniform samplings
(solid and dashed lines, respectively)
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values and first-order derivatives are imposed as constraints
at the interval endpoints. The general form of the rational
function is given as

y = b1 + b2x + b3x2

1 + b4x + b5x2
(1)

where the coefficients b1 . . . b5 are solved in order to satisfy
four conditions at the endpoints of the interval of interest.
Here, instead of following the standard approach to
determine the remaining fifth coefficient, a heuristic-based
approach is followed by employing Bayes’ theorem such
that the control of a possible existence of a pole inside the
interval is possible. For mathematical convenience, the
parameter b5 is linked to the parameter b4 by the following
relation

b5 = coef

4
b2

4 (2)

The denominator of (1) now reads 1 + b4x + (coef/4)b4
2x2

and the roots are r1,2 = b4((−1 +
����������
1 − coef

√
)/2). This

relation yields a new parameter coef, which essentially
replaces b5, and can be tuned such that the rational function
possesses a pole (a resonance) by enforcing the real part of
the denominator root to lie inside the interval of interest. In
addition, it is responsible for creating an imaginary part of
the pole (when coef ≻ 1) that in turn determines the
sharpness of the resonance as will be discussed later. In a
normalised interval with endpoints x0 ¼ 0 and x1 ¼ 1, the
conditions to be satisfied are given by y(0) ¼ y0, y′(0) = y′0,
y(1) ¼ y1, y′(1) = y′1.

Satisfying these conditions using (1) and (2), the
coefficients b1 . . . b4 are analytically determined as

b1 = y0

b4 = −b +
����������
b2 − 4ac

√

2a

b2 = y′0 + y0b4

b3 = y1 1 + b4 +
coef

4
b2

4

( )
− b1 − b2

(3)

where

a = − coef

4
y′1

b = y1 − y0 − y′1
c = 2(y1 − y0) − (y′1 + y′0)

⎧⎪⎪⎨
⎪⎪⎩

Complex value solutions for these coefficients are allowed as
they still yield real values for function and derivatives at
endpoints and hence do satisfy the imposed endpoints
conditions. The poles of the rational function are
determined by the roots of the denominator, and therefore
result in singularities in the form of sharp resonances.
Moreover, certain function characteristics can be easily
deferred based on the characteristics of the root r of the
denominator. If the real part of r attains a value between 0
and 1, that is, falls inside the normalised interval, then the
rational function naturally possesses a pole inside the
interval of interest. Whenever the function variable x equals
the real part of the complex pole r, the denominator
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& The Institution of Engineering and Technology 2011



www.ietdl.org
approaches a minimum value without changing sign. Hence,
the rational function is highly likely to attain a resonance
since this x value with a zero imaginary part is the closest
to the complex root. If the interval contains a resonance,
complex roots are desired since they prevent the
denominator from changing sign and consequently enforce
occurrence of single-peak poles as opposed to double-peak
poles observed in the case of real-valued roots. Although a
possible remedy to the sign change problem of the real root
is to take the negative of the norm (in the case of return
loss curves), these poles are still associated with
singularities which physically correspond to the existence of
very sharp resonances attaining infinite values and are not
common in EM responses of practical devices. Therefore
the selection of the parameter coef plays a significant role
in determining three important behaviour characteristics:

1. the existence of the root inside the normalised interval;
2. the data type of the root (complex against real);
3. the imaginary to real part ratio of the complex root that
controls the sharpness of the resonance.

The effect of the parameter coef on the resulting
interpolation response function is depicted in Fig. 2. It is
observed that as the value of coef changes, the behaviour of
the resulting fitted curve represented by the dashed lines
changes significantly from one with two sharp resonances
near the interval endpoints (dashed line) to other
approaching the original response (dash-dotted line).

Using the rational function in (2) and the b coefficient
descriptions in (3), the roots of the denominator of the
rational function given by (1) can be represented in terms
of coef, y′1, b and c as shown in (4). Since the objective is
to solve the inverse problem, that is, assign the root a
certain value, (4) is solved for coef which is a non-linear
relation and hence requires suitable iterative solvers such
as Newton–Raphson, Levenberg–Marquardt etc. The
parameters sgn1 and sgn2 can be either positive or negative
and hence their sign combinations give rise to four different
root possibilities given by (4). The roots r1,2 are assigned to
each endpoint of the scaled interval [0 1] and the resulting
coefficients coef1 and coef2 refer to the left and right
endpoints with r ¼ 0 and r ¼ 1, respectively. These are
responsible for attaining real roots at the endpoints. Among
possible solutions for coef1s and coef2s, the chosen solution
set is the one within the range (coef1 coef2) that does not

Fig. 2 Effect of parameter coef on the interpolation response
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allow for a coef solution at the endpoints and hence a real
root inside the interval is not allowed. Moreover, complex
root findings are ensured by satisfying the condition
coef ≻ 1 as can be easily shown using (4).

r1,2 = b

c coef
− sgn1 sgn2

����������
1 − coef

√ ���������������
b2 + coef y′c2

√
c coef

+ sgn1

���������������
b2 + coef y′c2

√
c coef

b sgn2

����������
1 − coef

√

c coef
(4)

If the original data between the support points are not
available (which is the case for a typical real interpolation
process), tuning the parameter coef to closely follow the
response is not possible. This problem can be overcome by
heuristically determining the optimum value for the
parameter coef using the Bayesian classifier [13]. For this, a
training set with optimum coef values is prepared to train
the classifier. The curves of the training set are finely
sampled so as to obtain curves that can be considered exact/
original and the optimum coef values are found using brute-
force calculations by sweeping intervals (coef1 coef2) with
small increments in order to minimise the root mean square
error between the approximate interpolation and original
response. A brute-force search instead of a more formal
technique such as Golden Search or Fibonacci is followed
since the function evaluations are considerably fast; search
space is one-dimensional and bounded by (coef1 coef2); and
the objective function to be minimised is not explicitly
available in terms of the design variables making gradient-
based techniques difficult to implement.

In d-dimensions the generate multivariate normal
probability density function can be written as

p(x) = 1

(2p)d/2|S|1/2
exp − 1

2
(x − m)TS−1(x − m)

( )
(5)

where x is the attribute’s variable vector and corresponds in
this problem to the boundary conditions, m and S are the
mean vector and covariance matrix of the training set,
respectively, and d refers to the dimension of the problem.
The coef parameter to be assigned to the interval is
appointed to the class with maximum likelihood.

Since adaptive selection of support points is known to
affect the interpolation quality, an adaptive procedure is
employed here that allows for selecting support points by
bisecting the interval of interest. This, although restricted to
only bisecting the interval under consideration, allows for
non-uniform sampling and hence creation of uneven
interval lengths. Therefore another classifier ‘bisect’,
utilising the same attributes used in the ‘coef’ classifier as
described above is defined for producing an adaptive
scheme. The bisect classifier is trained using the same
training set used for training the ‘coef’ classifier and the
data are obtained by giving the decision bisect or do not
bisect according to the root mean square between the
original and the approximate curves associated with the best
coef found earlier for that interval.

Since only conditions at the interval endpoints are available
to predict the response behaviour inside the interval, the
attribute likelihoods are highly overlapping which results in
a more difficult classification problem. The overlapping
problem can be observed by investigating the likelihood
distribution of both classes of the ‘bisect’ classifier against
one attribute. Several improvements are performed on the
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 5, pp. 576–582
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attributes in order to separate their likelihoods and enhance
the classification results. First, the training data of each
attribute for the coef Bayesian classifier are scaled with
respect to the mean value. In addition to the conditions at
the interval endpoints, attributes such as interval length or a
combination of attributes are also considered in order to
enhance the training process. Finally, the occurrence of
positive and negative slopes at the boundaries is taken into
account by considering the norm of the attributes leading to
a better training performance. This improvement is linked
to the symmetry characteristics of an interval containing a
resonance, and hence, it inspires the use of a new attribute
in the form of the product of the maximum of slope norms
at the interval endpoints and the length of the interval, that
is, |y′max|Dx. The maximum slope at the interval endpoints
and the length of the interval are proportional to the
likelihood of this interval containing a resonance.

It is finally noted that the conductor and material topologies
are random by nature within topology optimisation studies;
and parameters coef and bisect for such design efforts are
trained based on such random antenna structures. Hence,
this training parameter pair has the capacity to represent a
very wide class of antenna structures (such as any probe fed
radiating printed conductor topology (E-shaped, spiral,
patch etc.) as long as the finite element analysis (FEA)
discretisation allows. Same applies to the supporting
dielectric material substrate. It can be homogeneous, multi-
layered, layered with inclusions etc. and the already trained
set can be used for a wide range of antenna structures. On
an additional note, the training effort is truly simple and
quick enough and demands very little computational time
so that new trainings can be conducted easily for each new
design problem.

3 Design example

In this section, the proposed BRIA scheme is applied to
approximate the return loss curves of microstrip antennas
with complex topological structures. The complex topology
is a result of aiming to design both the supporting dielectric
material substrate and the radiating patch from scratch for
optimal performance. More specifically, novel antenna
structures are designed from scratch by distributing various
shades of off-the-shelf ceramics with different permittivities
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 5, pp. 576–582
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into the discrete design cells of the volume that the
dielectric substrate will occupy and by assigning discrete
surface design cells with void or solid conductors as shown
in Fig. 3. This complex antenna topology is expected to
result in a complex return loss response curve with multi-
resonances as shown by the solid line in Fig. 1. More
specifically, within topology optimisation problems where
one essentially searches for the optimum among random
conductor and material topologies (constrained by FEA
surface discretisation), it is highly likely that many of them
are irregular conductors and material substrates, and hence
are indeed multi-resonance cases unless restricted
intentionally. Hence, the approximation that will result via
the proposed scheme can be used in a large-scale heuristic/
global-based optimisation process such as topology
optimisation in order to find the optimum conductor patch
and material distribution of the substrate that maximises
antenna bandwidth subject to given size requirements. More
specifically, the objective in the chosen design example is
to maximise bandwidth, and therefore the interpolation
scheme has to predict the bandwidth of the antennas with
complex topologies. Similar challenging design problems
were presented earlier [1].

Part of the design domain comprises the volumetric space
that the dielectric material of the antenna substrate occupies.
It is 0.3715 cm thick and covers a surface area of
2.5 cm × 2.5 cm. Remaining design domain belongs to the
printed surface conductor and comprises the entire top
surface of the substrate. The substrate is discretised into
2 × 20 × 20 ¼ 800 triangular-prism-shaped finite elements.
A design cell is considered to be a square prism composed
of two adjacent triangular finite-element prisms and
therefore reduces to a total of 400 design cells. The
permittivity of each volumetric design cell is taken as a
material design variable. The design domain for the
conductor is similarly discretised into 2 × 20 × 20 ¼ 800
triangular finite-element cells corresponding to a total of
400 square conductor design cells. Each design cell is
essentially a design variable of on/off type representing the
presence or absence of conductor material in that specified
design cell.

The training data set of the classifier belongs to return loss
responses of microstrip antennas as depicted schematically in
Fig. 3 with random topologies obtained during the evolution
Fig. 3 Patch antenna on left is supported by homogeneous substrate where the antenna on right has arbitrary patch (grey) and material
distribution (colour)
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of a topology optimisation problem. In a possible
optimisation scenario of the large-scale design problem, the
optimiser will call for multiple reanalysis of the full-wave
bandwidth response in a frequency range of [1 2] GHz. In
order to accurately predict the return loss response used for
calculating the fitness function represented by the
bandwidth, normally a frequency sampling with 10 MHz
intervals is needed. The return loss curve of a representative
microstrip antenna with complex conductor coating and
multi-material substrate topology is depicted in Fig. 1. The
dashed line response is clearly a wrong prediction of the
return loss curve that would lead to an intolerably wrong
fitness value of the candidate individual’s bandwidth
because of insufficient frequency sampling. Moreover, a
small error of around 5% which may be acceptable for
practical purposes could cause divergence within design
studies of complex antenna designs. More specifically,
miscalculated responses such as in Fig. 1 will mislead the
optimiser during the search since optimisation methods
whether heuristic or gradient based locate the optimum by
using information from previous iterations or generations
and their convergence performance depends heavily on
regions/individuals with promising design candidates. This
effect becomes more pronounced as small variations in the
topology of the device may cause drastic changes in the
response while searching within an extremely large design
domain of topology optimisation methods. Therefore
reliable predictions with as much accuracy as possible is
needed from the interpolation scheme within antenna design
search studies where the topology can vary significantly and
the performance is highly likely to be a multi-resonate one
with possible sharp multiple resonances.

The analysis tool used in generating simulated bandwidth
response data is a finite-element boundary integral model
based on a fast spectral domain algorithm [1, 14]. Topology
optimisation is a design approach that relies on optimisation
techniques while searching for the optimal material
distribution of a device. The computational time to reach
convergence for the design algorithm where each design
cell is treated as a design variable and the antenna
performance is reanalysed at each iteration for multiple
frequencies would correspond to impractical timespans. The
reason why topology optimisation even if linked to
gradient-based optimisers (which despite the derivative
580

& The Institution of Engineering and Technology 2011
information could be very efficiently calculated through the
use of the adjoint variable method) is time consuming is
again because of the bottleneck being computational cost of
the full-wave analysis of complex antennas and the need to
sample highly over the desired frequency range.

The proposed Bayesian-based rational fitting scheme is
integrated to the full-wave simulator in order to interpolate
the return loss response over a 1–2 GHz frequency range
with a frequency sweep according to the proposed adaptive
scheme using the ‘bisect’ classifier. The results of the
interpolation scheme are presented in the next section.

4 Results

The resulting rational interpolation response relies on the use
of first-order derivative values at sampled support points.
These are computed numerically with 1% variable
perturbation via forward finite differences. To isolate the
effect of gradient calculations on the computational savings
via interpolations, Bayesian-based interpolation results are
compared with both naı̈ve linear interpolation (LI) and LI
using double number of support points (LIDS). The latter is
representative for the case of forward difference-based
rational interpolation. The error norm for comparing
resulting interpolations in terms of accuracy is chosen as
the bandwidth error calculated at 25 dB between
interpolated and original return loss values. Original curves
are LIs with 1 MHz frequency samplings, that is, 1001
support points exist between 1–2 GHz. A total of 200 sub-
intervals associated with known boundary conditions
(support point values and their first derivatives) and known-
interval lengths belong to return loss curves of ten different
design candidates with different material and conductor
topologies similar to that in Fig. 2. It is noted that all of
these design curves have multi-resonances with nine out of
these ten designs exhibiting at least two resonances below
25 dB. These sub-intervals were used in training the
Bayesian classifier to predict the optimum parameter coef
and to adaptively sample at informative support points.
Fig. 4 depicts a comparative interpolation study for one of
the ten return loss curves. Specifically, results are shown for
interpolations obtained using the proposed BRIA scheme,
BRI scheme using uniform sampling, LI using uniform
sampling with the same number of support points obtained
Fig. 4 Return loss curve interpolations of a microstrip patch antenna design (see Fig. 3) using naı̈ve LIs with regular uniformly distributed
support points (LI) and LIDS, BRI with uniform sampling and (BRIA)
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 5, pp. 576–582
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Fig. 5 Interpolation error (bandwidth difference) of LIs, LIDS, BRIA and BRI for ten different designs and the total number of support points
used in all schemes
in BRIA, and LIDS with uniform sampled double number of
support points. The latter interpolation is presented in order to
account for the extra computational effort used in calculating
the derivatives of the proposed BRIA and BRI schemes. As
the results show, treating resonances with s11 values
,25 dB as significant, the bandwidths of all four major
resonances are more accurately predicted by the BRIA than
any other interpolation scheme. It is noted that ‘glitches’
such as the one around 1.94 GHz in the BRI curve result
from the nature of rational functions. More specifically,
owing to the presence of a denominator of a second order,
if the pole happens to be inside the interval then a very
narrow dip/glitch can occur in the interpolation. Care was
taken while preparing the training set in order to minimise
this undesired behaviour. Nevertheless, a small
classification error can still result in producing these
glitches. As a possible extension of the proposed method, a
remedy could be to restrict the classification from attaining
these undesired glitches by characterising the resulting coef
value and restricting it from producing a real root in the
denominator. This strategy, however, would increase the
complexity of the interpolation process.

Fig. 5 compares the bandwidth error of the approximated
responses belonging to the ten antenna designs with respect
to all four interpolation schemes with equal number of
support points as used in the BRIA scheme. Based on these
results, the BRIA strategy shows an improvement via use of
the ‘coef’ and ‘bisect’ classifiers by decreasing the average
bandwidth (BW) error (of the ten design cases) by 74.12,
60.59 and 44.11% when compared with the LI, LIDS and
BRI schemes, respectively. Despite the existence of rare
cases where BRIA is very close to the accuracy
performance of the LIDS (such as in designs 4, 5 and 8),
overall error of the BRIA method consistently remains
below an error threshold that is half of that in LIDS and
one-fifth of that in LI. Additionally, there is another
robustness aspect of BRIA where it outperforms standard
schemes including LIDS and needs to be considered in
addition to its overall accuracy advantage. Design cases
with relatively closer Bayesian-based interpolation errors to
LIDS are re-examined and a representative interval of a
single resonance out of the many possible is displayed in
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 5, pp. 576–582
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Fig. 6. Although the centre plot (Fig. 6b) is in favour of the
double sampled LI, perturbation of support points to the left
or to the right (Figs. 6a and c, respectively) reveals that LI
(with double number of support points in this case) is more
viable to the location of support points than the Bayesian-
based rational fitting that consistently predicts the pole and
approximates the bandwidth with better accuracy. This
behaviour is consistently observed for all other design cases
and is a clear indication of the latter being more robust to
uniformly distributed support points than naı̈ve LI.

Fig. 5 also depicts the total number of support points used
in each design case that is determined by the adaptive scheme

Fig. 6 Effect of frequency sampling perturbation on rational
interpolation LI, and LI using double-support points

a Perturbed to the left interval [1.220 1.245]
b Initial interval [1.224 1.249]
c Perturbed to the right [1.300 1.325]
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of BRIA. However, the computational time is not cited in
terms of absolute time but rather the number of sample
points is given since the major contribution to the total
computational time of the interpolation within the reanalysis
amounts to repetitive calls to the full-wave analysis and is
directly proportional to the number of samples over the
frequency range which is the same for the Bayesian-based
and LI technique. More specifically, the total computational
cost for either interpolation technique in its most general
case has four components:

1. time required for the full-wave analysis simulations to
compute y0 and y1 values;
2. time required for the full-wave analysis simulations to
compute y′0 and y′1 derivative values using the finite-
difference method;
3. training time to train parameters coef and/or bisect;
4. time required to compute interpolation parameters such as
the coefficients and p(x) function in (3) and (5), respectively.

Second and third components are specific to the Bayesian
method whereas first and final components are common in
both interpolations with the fourth component depending on
the interpolation method.

The computational cost of training the Bayesian classifier
for the example chosen is 0.112 s and is performed only
once; the parameter calculation time amounts to about
3e26s against 3e27s for Bayesian and LI, respectively,
whereas a full-wave analysis for one frequency sample
takes 1.5 min (and two sample calculations are needed for
evaluating each derivative y′0 and y′1 using the finite-
difference method). Consequently, the computational time
of a real design process is predominantly controlled by the
number of frequency points or support points. Therefore it
is fair to say that in addition to the advantages of accuracy
as shown in Fig. 5 and robustness characteristics as shown
in Fig. 6, the BRIA method demands the training of only
two parameters (coef and bisect) and quick evaluation of
interpolation coefficients to arrive at the interpolation
function within sub-seconds proving the method’s power.

It is also noted that the BW error has an overall reverse
trend to that of the number of support points. In average, 23
support points were required for approximating the response
of an antenna with a complex topology.

5 Conclusion

This paper presented an interpolation scheme based on
Bayesian trained quadratic rational functions with adaptive
sampling, BRIA, for approximating frequency-based EM
return loss responses. The scheme was proposed to be used
within challenging design search studies where the search is
time consuming and the designs are non-intuitive with
random conductor and material topologies. Results indicate
that this scheme is an efficient tool in predicting poles and
characterising resonance-based behaviour such as
bandwidth of RF devices. The application of the proposed
strategy with adaptive sampling outperforms the same
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scheme without adaptive sampling (BRI), LI and LIDS as
the error consistently remains below an error threshold that
is half of that in LIDS and one-fifth of that in LI. In
addition to the advantages of accuracy and robustness, the
BRIA method demands the training of only two parameters
and quick evaluation of interpolation coefficients. Hence, it
is a powerful tool in providing efficient and simple
reanalysis in large-scale design optimisation studies of
novel EM devices such as the design of conductor and
material topologies from scratch for novel antennas with
enhanced performance.
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