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A brain tumor is an abnormal mass or growth of a cell that leads to certain death, and this is still a challenging task in clinical
practice. Early and correct diagnosis of this type of cancer is very important for the treatment process. For this reason, this study
aimed to develop computer-aided systems for the diagnosis of brain tumors. In this research, we proposed three different end-to-
end deep learning approaches for analyzing effects of local and deep features for brain MRI images anomaly detection. -e first
proposed system is Directional Bit-Planes Deep Autoencoder (DBP-DAE) which extracts and learns local and direction features.
-e DBP-DAE by decomposition of a local binary pattern (LBP) into eight bit-planes extracts are directional and inherent local-
structure features from the input image and learns robust feature for classification purposes.-e second one is a Dilated Separable
Residual Convolutional Network (DSRCN) which extracts high (deep) and low-level features. -e main advantage of this
approach is that it is robust and shows stable results regardless to size of image database and to solve overfitting problems. To
explore the effects of mixture of local and deep extracted feature on accuracy of classification of brain anomaly, a multibranch
convolutional neural network approach is proposed. -is approach is designed according to combination of DBP-DAE and
DSRCN in an end-to-end manner. Extensive experiments conducted based on brain tumor in MRI image public access databases
and achieves significant results compared to state-of-the-art algorithms. In addition, we discussed the effectiveness and ap-
plicability of CNNs with a variety of different features and architectures for brain abnormalities such as Alzheimer’s.

1. Introduction

Computer diagnostic systems (CADs) [1] have grown sig-
nificantly in recent years to accurately diagnose diseases [2].
Furthermore, modern artificial intelligence techniques, such
as deep learning algorithms using computer vision-based
diagnostic tools, are key components of these advances [3].
One of the fundamental challenges of CAD systems is ac-
curate brain disease detection. Accurate and early detection
of brain diseases can improve the healing process and
control the condition of patients [4]. Currently, the most
successful technique of diagnosis is medical imaging [5].
Magnetic resonance imaging (MRI) is more effective in
diagnosing brain diseases than other imaging techniques
such as CT scans and X-rays because of its better resolution
in soft tissue [6]. Different physicians may present

conflicting diagnostic results due to environmental factors
and manual interpretation, which lead to the loss of large
amounts of information in MRI data. -erefore, due to the
fast development of CAD systems in the field of computer
vision and deep learning, it can be an effective tool to help
physicians to increase diagnostic accuracy [7]. Nowadays,
scientists are presenting different types of brain MRI clas-
sification methods. -e problem of diagnosing brain ab-
normalities is essentially a challenge of MRI image
classification. In general, these types of research are cate-
gorized into two main groups, multiple and single label
classification algorithms. -e multilabel classification
studies are focused on detection of types of brain diseases.
For example, in the field of multilabel classification, we can
refer to the diagnosis of Alzheimer’s disease (AD) by MRI
images.-e research dataset for this field of study consists of
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MRI images with Mild Demented, Moderate Demented,
Non-Demented, and Very Mild Demented classes. For in-
stance, in, [8], the authors present Alzheimer’s disease de-
tection builds on the deep learning algorithms. -e research
utilized a weakly supervised learning (WSL) technique with
name of ADGNETmodel. Results of these studies show that
these proposed systems achieved significant results with
99.61% accuracy rate in detection of types of Alzheimer’s
disease. Furthermore, in the binary classification scenario,
morphometrics and deformation-based approaches are
studied to draw a pattern of structural changes in the brain.
In addition, they focused on binary classification, which
distinguishes an abnormal brain pattern from a healthy one
based on MRI or CT images. Due to a variety of brain
diseases that do not have visual data sets and have not been
studied in deep learning algorithms, detection of abnormal
brain pattern is more applicable than diagnosing the disease.
For instance, U-Transformer-based anomaly detection
framework (UTRAD) algorithm is proposed [9] for ab-
normality detection of medical images such as head-CT,
brain MRI, and retinal-OCT. In addition, the UTRAD al-
gorithm consists of reconstruction-based methods and pre-
trained feature-based methods. Another similar study, the
attention-based deep ensemble model is proposed in [10] for
brain age estimation and anomaly detection. In this study,
the ensemble of the attention-based residual network with
uncertainty estimation is employed for fetal brain anomaly
detection from MRI images. In the same manner, our
proposed approach relies on brain anomaly detection from
MRI images.

According to our studies, the main challenge of deep
learning methods in case of brain abnormally detection for
classification can be categorized into number of groups. Due
to lack of training dataset and overfitting problems, litera-
ture studies try to utilize transfer learning, extraction robots
feature sets, and image data generation tools to improve
accuracy of classification algorithms.

Based on our category, the first group of studies is fo-
cused on the transfer learning methods as a primary solution
for these problems. For instance, CNN-based approach [11]
based on ResNet-50 model by employing transfer learning
with crop normalization preprocessing steps is proposed. In
the same paper, the inception V3 and VGG 16 pre-trained
models are compared with ResNet-50-based approach in
case of accuracy of detection of brain abnormalities. Another
similar study for brain abnormality detection proposed [12]
based on a mobile net pre-trained model as a deep feature
extraction tools and for classification employed feedforward
networks with the chaotic bat optimization algorithm. In
case of deep feature extraction with pre-trained well-known
models, another study [13] proposed a deep learning
framework includes attention and hypercolumn techniques
with residual block. -e paper presented the BrainMRNet
model which includes attention modules and hyper column
technique. -e attention modules employed for an image
augmentation method for select important areas of each
image. In addition, the convolutional layers are utilized as a
feature extractor technique as hypercolumn techniques for
brain tumor [14] detection. Furthermore, in another study

[15], pre-trained well known models such as Inception-v3
and DensNet201 are utilized as feature extraction for clas-
sification task. In addition, transfer learning methods in-
cluding Alex Net and Google Net are utilized in this study to
enhance approach accuracy performance. Disease classifi-
cation methods, like research to diagnose brain abnormal-
ities, suffer from a lack of training data sets. For example, in
case of Alzheimer’s disease due to lack of training data sets,
different research are focused on the transfer learning and
deep feature extraction. For instance, in [16], the Alex Net
framework is proposed to extract significant features ef-
fectively from MRI images. In another similar study [17], A
temporal convolutional network is designed with multiple
deep sequence-based architecture. In case of decreasing
processing cost, the depth wise separable convolution (DSC)
is proposed in [18]. For transfer learning, two well-known
models are employed, and significant classification accu-
racies are obtained, demonstrating the efficacy of the pro-
posed depth wise separable convolutional neural network.

In addition, to achieve high accuracy of classification
results with less training data set, another solution using
efficient and robust feature set has been proposed. For in-
stance, in [19], radial basis function neural network is
proposed with utilized 2D discrete wavelet transform
(DWT), and entropy-based feature sets. In another research
[20], the naive Bayes method is employed for feature ex-
traction and classification. In the case extraction robust and
efficient features some of research employed segmentation
and classification algorithms in a pipeline manner. For
instance, the study in [21] a proposed deep learning
framework which contains segmentation deep learning
based model and classification of these segmented features.
Another similar study [22] presented based on Gabor-like
multiscale texture for segmentation and modification of
AdaBoost for classification.

According to our category for articles on the diagnosis of
brain abnormalities, another solution is unsupervised brain
outliers’ detection. For instance, the authors of [23] pro-
posed the MADGAN model includes a different two-step
method for brain MRI scans for distinguishing AD. -is
unsupervised medical anomaly detection utilized generative
adversarial network (GAN) model with multiple adjacent
brain MRI slice reconstruction technique. In addition, in
similar study [24], unsupervised anomaly detection (Ano-
GAN) was examined in the administration of value of 1H-
MRS a person’s brain spectra.

Based on aforementioned studies, it can be concluded
that the main problem of deep learning methods in case of
brain abnormally detection is the lack of training dataset,
extraction efficient and robots feature sets to improve ac-
curacy of classification algorithms. Literature studies are
focused on the transfer learning methods as a first solution
for these problems. However, transfer learning is an efficient
method when fine-tune dataset is similar to main train
dataset (ImageNet dataset). In case of brain abnormality
detection, the MRI images are gray color image datasets, but
ImageNet dataset is RGB color space datasets. -e other
solution proposed by related studies is utilizing extension
dataset functions. -ese kinds of functions increase the
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processing cost. -us, our proposed approach is based on
deep and robust extraction capabilities and improvement of
local feature sets. -is research proposed three end-to-end
deep learning frameworks, namely, directional bite-planes
(DBP) [25] with a deep autoencoder model (DAE) [26, 27],
dilated separable residual convolution network (DSRCN),
and multibranch approach for brain MRI anomaly detec-
tion. In the proposed DBP-DAE, we analyze the directional
and robust features set affection in accuracy of classification.
By decomposition of local binary pattern (LBP) into eight
bite-planes, the local and direction feature sets are extracted.
For achieving more robust and compact datasets, we utilized
DAE. In this approach not only DAE decreases the di-
mension of feature sets but also it helps to extract more
robust feature sets for classification purposes. In the second
approach, we proposed DSRCN. -e separable residual
convolution network is inspired by idea [28] for face rec-
ognition. Furthermore, because of extraction more enhance
feature set in this type of shallow deep learning approach, we
utilized convolutional kernel with different dilated rates
instead of standard one. -is proposed approach achieved
significant results in terms of accuracy because of extraction
low- and high-level deep features during the training phase
from a MRI image. To explore affection of concatenation of
low- and high-level deep features with local direction feature
sets, we fusion these features as an end to end model with a
name of the multi-branch model.

-e main contribution of this study is as follows:

(1) We designed three CNN models to detect anomalies
in brain MRI images to discuss their advantages and
disadvantages and to offer possible solutions to
problems of excessive computational complexity and
lack of training samples.

(2) Numerous experiments are performed on diverse
datasets of different types of brain abnormalities,
such as tumors and Alzheimer’s.

(3) We compared our proposed three architectures with
existing methods and showed that the proposed
methods are competitive with state-of-art methods.

-e structure of this paper is as follows: Section 2 in-
troduces proposed system; Section 3 describes public dataset
and experimental results and analysis; and Section 4 and 5
give conclusion and discussion.

2. Proposed Method

In this part, the proposed three approaches describe in detail
as follows: directional bite-planes (DBP) with a deep
autoencoder model (DAE), dilated separable residual con-
volution network (DSRCN), and multibranch approach.

2.1. DBP- DAE. -e proposed approach in the local feature
descriptor part contains directional bite-planes (DBP) [25]
with a deep autoencoder model which we named as DBP-
DAE. DAE has been used to prevent duplication and re-
dundancy of the DBP feature to achieve robust classification
accuracy. -e DBP-DAE approach is summarized as below:

2.1.1. Directional Feature Extraction. For each input MRI
image f (x, y), the LBP feature descriptor [29] processed is
achieved by equation (1).

LBP Xc, Yc(  � 
6

n�0
s in − ic( 2n

, (1)

where ic represents the intensity values and in represent 8
neighboring pixels (n� 0, . . ., 7) at center of windows
(xc, yc). -erefore, fLBP(x, y) can be computed as follows:

fLBP(x, y) � 
7

n�0
bn(x, y)2n

, (2)

where bn(x, y) implies the nth bit-plane (n� 0, . . ., 7) and
called DBP. -e DBP feature descriptor model contains
directional information of each MRI input image as pre-
sented in Figure 1 [25, 29].-e location information of each
center pixel from the surrounding pixels is presented as
follows:

xn, yn(  � xc + cos θn, yc + sin θn( . (3)

2.1.2. Deep Autoencoder. To reduce feature redundancy and
decrease processing cost, we have used four among eight bit-
plans in the DBP-DAE approach. To reduce the dimensions
of DBP, we utilized deep autoencoder (DAE). As presented
in Figure 2, the autoencoder is a type of the neural network
with a symmetric structure with the equal number of units in
the input and output layers.

-e main advantage of this structure extracts and learns
abstract features from input images. -e DAE extracts and
learns abstract features from input images than by feeding
these features to logistic regression on the top of this deep
model. To use DAE as a dimensional reduction and part of
the deep learning method for detecting brain abnormalities,
the DAE training is employed. In this phase, the DAE model
by training based on the input DBP learns the deep feature in
a hierarchical mode. To present a nonlinear mapping of
input images the activation function f(.) is applied on the
basis equation (4).

f(x) �
1

1 + e
− x. (4)

For estimating the error rate to update the weights, a
cross-entropy cost function is applied for reconstruction. A
cross-entropy cost function is applied for reconstruction and
utilized based on mini-batch size input images, as presented
in equation (5).

c � −
1
m



m

i�1


d

k�1
xiklog zik(  + 1 + xik( log 1 − zik( , (5)

where D declare as the input feature vector andM defined as
mini-batch size regarding input features and reconstruction
images (xik, zik) [30].

Consequently, partial differentials equations regard to
W, bz, by factors can be determined as follows:
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where netyir signifies the input of the i for the Rth nods to the
hidden layer and (netzik) implies the kth features of the
hidden layer for reconstructing. Furthermore, f

�

is declared
as the sigmoid activation function. To implement classifi-
cation task with DAE, the output layer of the deep model
(reconstruction layer) is replaced with the logistic regis-
tration classifier and fine-tuning based upon back-
propagation method with SoftMax activation function. -e
probability estimation of input image with I classification is
calculated from the following:

P(Y � i|R, W, b) � s(WR + b) �
e

wiR+bi

ie
wjR+bj

, (7)

b0 b1 b2 b3 b4 b5 b6 b7

Figure 1: Directional bite-planes of a brain MRI image.
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Figure 2: Structure of deep autoencoder.
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where R is the last layer (output feature vector) for each the
input vector. Additionally, W and b are the weights and
biases of SoftMax classifier, and the pseudocode of DBP-
DAE is presented in Algorithm 1.

2.2. Dilated Separable Residual Convolutional Network
(DSRCN). For extraction of deep and low-level features of

MRI brain images, we proposed a dilated depth wise sep-
arable residual convolution network (DSRCN). -is model
to develop depth wise separable residual convolution
module was employed the depth wise separable module with
the residual network model. Assume the classification
method based on the CNN model with k number of labels,
the input feature and labels are xi and yi, respectively, so cost
function of training set calculated are as follows:

Initialize mini-batch size, epochs number (EP), pretraining learning rate (PLR), number of layers (NL), dimension (D), total
number of classes (C), and neurons in each hidden layer n[L]

(1) Input DBP as a input feature Vector with D dimensions
(2) For each layer (NL):
(3) 1< L<D
(4) D-input and D-hidden
(5) If (L� 1)
(6) n [1]�D-hidden
(7) D�D-input
(8) Else
(9) Dimension of visible layer n[L − 1]
(10) Dimension of hidden layer n[L]
(11) End
(12) Initialize W, bz, by

(13) For each pretraining epoch
(14) For each mini batch
(15) Compute reconstruction
(16) z � f(wf(wx + by) + bz)

(17) Compute Cost
(18) c � − 1/bX log(z) − (1 − x)log(1 − z)

(19) Update W, bz, by

(20) End
(21) Freeze reconstruction layer
(22) End
(23) Initial parameters of logistic regression layer
(24) Input of classifier layer� n[D]
(25) Output of classifier layer�C
(26) For each fine-tuning
(27) For each mini batch
(28) Compute probability function of each class regarding to equation (6)
(29) Update weights with backpropagation
(30) End
(31) End
(32) End

ALGORITHM 1:Pseudocode of DBP-DAE.
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Figure 3: Block diagram of the DSRCN.
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(8)

In this equation, θ is the model parameter and
1/

k
j�1 eθt/Jxi is normalization in terms of probability dis-

tribution. In case of improving accuracy, the dilated con-
volution [31] is utilized. -is factor describes the stride of
dilated convolution kernel during training phase. Assume
f: z2⟶ R as a discrete function, also φr � [− r, r]2 ∩  z2

and k: φr⟶ R as a discrete filter with size of (2n + 1)2.-e
discrete convolution operative of ∗ can be described as
(f∗tk)(p) � s+t�pf(s)k(t). Let l represents the dilation
factor. In this manner, the discrete convolution oper-
ator ∗ has the following definition:

f∗tk( (p) � 
s+lt�p

f(s)k(t).
(9)

In this case, l refers as a dilated convolution (l -dilated
convolution). In this approach, each block of this model
contains three SeparableConv2D, one Conv2D, and Max
pooling layer. After each layer batch normalization, ReLU
activation function is applied. For the blocks of DSRCN, as
presented in in Figure 3, two layers of separable Conv 2D
and Conv2D with dilation rate (1,1) are connected to the
input layers. Separable Conv 2D contains 64 (1× 1) filters

with batch normalization and ReLU function. In the same
manner continuously, two separable Conv 2D with filter size
64 (3× 3) with dilation rate (2, 2) and 64 (1× 1) with batch
normalization and ReLU function are employed. -e last
separable Conv 2D layer connected to Max pooling 2d
(3× 3) layer. In the end of each block Max pooling 2D
concatenated to normalized output of Conv 2D. -e second
and third block architecture is same as the first block ar-
chitecture with 128 and 256 filter size, respectively.-emain
advantage of this architecture is the extraction of low-level
features along with deep features as presented in Figure 4.
Depending on the scenario, the number of blocks and filters
changes. Builds on the experimental results in this study, we
utilized three blocks of DSRCN for abnormality detection of
brain images. -e architecture of the proposed approach is
shown in Table 1.

2.3. Multibranch Approach. In the last phase of our pro-
posed approach, a multi-input module is designed with two
inputs to simultaneously estimate global features and local
texture features.-ese models have numerous layers that are
used to extract features. -ese layers are consisting of
convolutional, pooling, batch normalization, rectified linear
unit (ReLU), SoftMax, and fully connected layers. To extract
local and deep features from the input xl, the convolutional
layer relies on several kernels with weights wl for each layer l

is as represented in the following equation:
Cl � wltxl− 1 + bl. (10)

Cl denotes the output feature map obtained by processing
the dot products of the kernels and the input with bias bl.
Two key types of the pooling layer are maximum and average
pooling. -e output of the pooling method Pl is the
downsampled version of the complete feature map of Cl

which is depending upon (m, n) as the window filter size:

Pl � max(m,n)Cl. (11)

Figure 4: Deep and low-level features extracted from the DSRCN.
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-e last and most important layer is the fully connected
layer. Assume that layer l is fully connected, this layer ex-
pects ml− 1

1 feature set produce a size of ml− 1
1 × ml− 1

1 as input.
-e output feature sets of a fully connected layer:

y
(l)
i � f z

(l)
i ,

z
(l)
i � 

ml− 1
1

j�1


ml− 1
2

r�1


ml− 1
3

s�1
w

(l)
i,j Y

(l− 1)
j ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where w
(l)
i,j denotes the weights connect in layer l and the jth

feature sets of layers l − 1. As shown in Figure 5, after
finetuning the DBP-DAE and networks with the MRI brain
image, the classification layer (SoftMax) is removed. For the
DSRCN, global average pooling 2D is added on top of the
model for dimensional reduction purposes and in the
concatenate with a compressed fully connected layer of the
DBP-DAE model which contains 200 nods. After a con-
catenate layer, a fully connected layer with 4096 is applied. In
this case, the extracted features of the two deep models are
fused together. In the end, the last fully connected layer
attaches to SoftMax classification layer for brain anomaly
detection describes as [32]

extraction features of Local and deepmodels

� F
(DSRCN)⋃


F

(DBP− DAE)
.

(13)

3. Experimental Results

Several experiments with different databases and types of
anomalies were conducted to evaluate and present the
performance of the proposed method.-e experiments were
carried out using an 8400 core i5 CPU, 16 gigabytes of RAM,
and a NVidia GTX-1050 TI with 4GB of memory. In this
study, all images resized to (256,256) to achieve standard
comparation among different datasets.

3.1. Dataset. In this study, two types of data sets are used to
detect Alzheimer’s and tumor-based abnormalities. To
recognize tumor-based abnormalities [33], we used public
access databases by specialists, such as physicians and ra-
diologists, obtained from volunteer patients. -e database
contains 253 images, separated into 98 normal images and
155 tumor images. -e quality and resolution of the images
is low, and it has been converted to the JPEG format. For
anomaly detection in case of Alzheimer’s disease, we utilized
public access dataset, namely, Alzheimer’s classification
dataset (KACD) [34]. -e KACD dataset includes 6400 MRI
2D images separate into four different groups: non-
demented, very mild demented, mildly demented, and
moderately demented which, respectively, contains 3200,
2240, 896, and 64 data. -is dataset is separated into train,
validation, and test folders. Some samples of these databases
are presented in Figure 6.

3.2. Configuration of Proposed Approach. In this test, with
the help of grid search, we analyze different architectures in
terms of the number of layers and the size of DAE nodes
according to accuracy of classification. -e final parameters
set for DAE are given in Table 2.

In case of the DSRCN, we utilized different number of
blocks with different size of kernels to find optimal archi-
tecture for brain anomaly detection. -e parameter con-
figuration of model is presented in Table 3 and the structure
of the model is as described in Table 3.
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Figure 5: Deep learning framework of the proposed multibranch model.
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Figure 6: Samples of KACD and brain tumor dataset.
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3.3. Experiments on Two Public Datasets. For the first ex-
periment, we plotted the obtained accuracy of KACD and
brain tumor datasets using the DBP-DAE, DSRCN, the
multibranch approach in Figure 7. As seen in this figure, the
DSRCN model stays on the best validation in KACD and
brain tumor. In addition, the DBP-DAE model achieves the
least accuracy that may cause overfitting. In the same

manner for the brain tumor DSRCN model remains on the
best accuracy of classification. Experiments results in Fig-
ure 7 and Table 4 concern that DBP-DAE may not be able to
perform with significant accuracy in diagnosing Alzheimer’s
disease. On the contrary, in the field of diagnosis of brain
tumor anomalies, acceptable results have been obtained by
this algorithm. -e DSRCN model achieved the best

Table 1: Architecture of the DSRCN.

Layer (type) Output shape Param Connected to
Input layer (256, 256, 3) 0
Separable conv2d (256, 256, 64) 259 Input
Batch normalization (256, 256, 64) 256 Separable conv2d
Separable conv2d (256, 256, 64) 4736 Batch normalization
Batch normalization (256, 256, 64) 256 Separable conv2d
Separable conv2d (256, 256, 64) 4224 Batch normalization
Batch normalization (256, 256, 64) 256 Separable conv2d
Conv2d (256, 256, 64) 256 Input
Batch normalization (256, 256, 64) 256 Conv2d
Max pooling 2d (256, 256, 64) 0 Batch normalization
Concatenate_1 (256, 256, 128) 0 Max pooling 2d & batch normalization
Separable conv2d (256, 256, 128) 16640 Concatenate_1
Batch normalization (256, 256, 128) 512 Separable conv2d
Separable conv2d (256, 256, 128) 17664 Batch normalization
Batch normalization (256, 256, 128) 512 Separable conv2d
Separable conv2d (256, 256, 128) 16640 Batch normalization
Batch normalization (256, 256, 128) 512 Separable conv2d
Conv 2d (256, 256, 128) 16512 Concatenate_1
Batch normalization (256, 256, 128) 512 Conv 2d
Max pooling 2d (256, 256, 128) 0 Batch normalization
Concatenate_2 (256, 256, 256) 0 Max pooling 2d & batch normalization
Separable conv2d (256, 256, 256) 66048 Concatenate_2
Batch normalization (256, 256, 256) 1024 Separable conv2d
Separable conv2d (256, 256, 256) 68096 Batch normalization
Batch normalization (256, 256, 256) 1024 Separable conv2d
Separable conv2d (256, 256, 256) 66048 Batch normalization
Batch normalization (256, 256, 256) 1024 Separable conv2d
Conv2d (256, 256, 256) 65792 Concatenate_2
Batch normalization (256, 256, 256) 1024 Conv2d
Max pooling 2d (256, 256, 256) 0 Batch normalization
Concatenate_3 (256, 256, 512) 0 Max pooling 2d & batch normalization
Total params: 350,083 Trainable params: 346,499 Nontrainable params: 3,584

Table 2: Parameters of DAE for brain anomalies.

Parameters Values
Size of nods [1200, 800, 400,200]
Number of layers 4
Pretraining learning rate 0.1
Pretraining epochs 10000
Minibatch size pretraining 32
Finetuning learning rate 0.001
Finetuning epochs 1000
Minibatch size finetuning 32
Loss function Binary cross-entropy
Optimization Adam
Number of epochs for training 1000
Number of epochs for finetunning 500
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accuracy in detection brain anomaly based on tumor and
Alzheimer’s disease with 0.95 and 0.96, respectively. -e
lowest accuracy rates are achieved by a multibranch ap-
proach with 0.88 in brain tumor and DBP-DAE in Alz-
heimer anomaly detection.

To provide clear results for both public access datasets,
we employed the ROC curve for the proposed approaches in
Figure 8. Following the results, it is appeared that the best
AUC results in tumor anomaly is for DSRCN with 0.998 and
the lowest one is for DBP-DAE with 0.92. However, in
Alzheimer’s anomaly detection the lowest result is for Multi-
branch approach which can be the cause of overfitting.
Depending on the result, it can be concluded that the
proposed DSRCN methods because of extraction deep and
local features during training phase can achieve stable and
significant results. In addition, the proposed DBP-DAE due
to the inability to diagnose Alzheimer’s disease indicates that
this approach is not able to extract low-level features; in this
case, it also affects the accuracy of anomaly detection of the
multibranch approach.

3.4. Comparison with State-of-the-Arts. To evaluate the
performance of the proposed approaches with existing
systems, the accuracy of our proposed and the state-of-the-
art methods on the KACD and brain tumor databases is
listed in Table 5. -e stat-of-art methods listed in the table
are implemented in MATLAB and KERAS platforms with
the same configurations mentioned in the research. Based
upon the experimental results, it seems that the diagnosis of
Alzheimer’s anomaly is more difficult than the diagnosis of a
brain tumor.-e highest accuracy for this type of anomaly is

for BrainMRNet, ResNet-50 (augmentation), and Mobile
Net-ELM-CBA, which are 0.94.0.93 and 0.88 accuracy rates,
respectively. Based on these findings, the DSRCN algorithm
stayed on the best results with 0.95 accuracy rates. In case of
brain tumor detection, the highest accuracy rate is for
BrainMRNet which is equal to our proposed approach
(DSRCN) with 0.96 accuracy rates. In this data set, the least
accuracy is achieved with the multibranch approach, which
can be due to the overfitting problem. Considering the
accuracy results of KACD and brain tumor MRI images, it
can be concluded that the proposed DSRCN approach,
considering the extraction of image features by the end-to-
end method, obtains stable results in different conditions. In
addition, the proposed DBP-DAE approach, despite better
classification accuracy than other methods such as the Naive
Bayes with ELM, Mobile Net-SNN-CBA and CNN, failed to
achieve consistent results in different scenarios using local
extraction features. In the case of the multibranch deep
learning approach achieved the lowest accuracy in small size
of database (Brain tumor) after the naive Bayes method with
ELM. One of the reasons for the inefficiency of this approach
is the overfitting problem.
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Figure 7: Confusion matrix of proposed three CNN approaches in two public dataset. (a) KACD dataset. (b) Tumor dataset.

Table 3: Parameter configuration of the DSRCN.

Parameters Values
Optimizer SGD
Learning rate 1e-3
Momentum 0.9
Batch size 32
Learning decaying factor 1e − 6
Number of epochs for training 1000
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4. Discussion and Conclusion

Most importantly, our CNN approaches achieved out-
standing performance without the use of additional data or
training functions, comprehensive data enhancement, or
segmentation algorithms. It is predictable that in the future,
these approaches will succeed in processing large databases
(big data). Experimental results showed that the DSRCN
method significantly improves the performance of detecting
brain abnormalities in different database sizes. In addition,
by extracting deep and large features from the input image,
this model solves two main problems such as lack of
training data and overfitting. In the DBP-DAE approach,

due to the use of robust local features, the performance of
the method in the brain tumor image dataset is consider-
able. -is is due to the inability to extract deep features
which includes more details features from images. In case of
fusion local and deep features the proposed approach
achieve remarkable results in KACD dataset. It is appeared
that this model by extracting deep and local features
achieved outstanding accuracy results in high size of
datasets. However, in the small data set, insufficient results
were obtained due to overfitting.
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