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Abstract
An approximate analytic solution of the Navier–Stokes equations for laminar flow in a circular open channel is presented. 
The solution is valid for the case of incompressible steady uniform flow in a low-filled channel. (The depth ratio, which is 
flow depth divided by channel radius, is smaller than one.) The solution is compared with a recently reported exact theoretical 
solution and found to be in reasonably good agreement. Expressions for variation of the correction factors for momentum 
and kinetic energy fluxes with flow depth are presented. A correlation between the momentum and kinetic energy flux cor-
rection factors is proposed and compared with data reported in the literature.

Keywords  Free-surface flow · Navier–Stokes equations · Velocity distribution · Momentum flux correction factor · Kinetic 
energy flux correction factor

List of symbols
C1 , C2	� Integration constants
Fr	� Froude number
g	� Gravitational acceleration
h	� Flow depth
P	� Pressure
r	� Radial coordinate
rs	� Distance from the pipe center to a point on the 

free surface
R	� Pipe radius
Re	� Reynolds number
T0	� Normalized wall shear stress
U	� Normalized streamwise velocity
Ub	� Normalized bulk velocity
Uo	� Dimensionless centerline surface velocity
Vb	� Bulk velocity
Vx , Vr , V�	� Velocity components in cylindrical coordinate 

system
x, y, z	� Spatial coordinates in the Cartesian system
ys	� Vertical distance from a point on the pipe wall 

to the free surface

�	� Kinetic energy flux correction factor
�	� Momentum flux correction factor
�	� Dynamic viscosity
�	� Maximum value of the azimuthal coordinate 

corresponding to a particular flow depth
∅	� Pipe inclination angle
�	� Density
�	� Azimuthal coordinate

1  Introduction

Analytical solutions of the Navier–Stokes equations are rare 
due to their nonlinearity. An extensive review of exact solu-
tions was presented by Berker [1]. A more recent review 
of unsteady flow solutions is reported by Wang [2]. Berker 
[3] and Rajagopal [4] report existence of an infinite set of 
exact solutions for a certain flow occurring in an orthogonal 
rheometer. Terrill and Colgan [5] present some axisymmet-
ric solutions for permeable boundaries with a circular cross 
section that vary in the axial direction.

An exact solution for pressure driven fully developed 
laminar pipe flow exists, that is, the well-known Hagen-
Poiseuille solution [6]. However, finding exact solutions 
to flows with more complex geometries, including those 
in ducts of arbitrary cross section and in partially full con-
duits involving a free surface, are challenging. Therefore, 
numerical or semi-analytical approaches were proposed 
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previously. O’Brien [7] adopted a finite-difference approx-
imation to solve the momentum equation numerically and 
obtained velocity profiles for flow in ducts of arbitrary 
cross section, whereas McKerrell [8] conducted numerical 
calculations to solve the same problem using the global 
element method. For the same purpose, Duck [9] used con-
formal mapping and Fourier series expansion. Mazumdar 
and Dubey [10] obtained an approximate analytical solu-
tion to the same problem by assuming a function for iso-
velocity contours and then solving the momentum equa-
tion. Recent analytical solutions for Jeffery-Hamel flow are 
reported by Sari et al. [11] and Kezzar and Sari [12] by 
application of the Adomian and generalized decomposi-
tion methods.

None of the studies discussed above consider flow prob-
lems with a free surface, in which case flow depth is intro-
duced as an additional variable determining the velocity pro-
file. Free-surface flows (also known as open-channel flows) 
are encountered in natural systems, such as rivers, as well 
as in artificial channels, i.e., dams, culverts, and subsurface 
water drains. There are also industrial applications involving 
free-surface flows, such as solid transport, waste removal 
and metal casting. In the present study, we are interested 
in obtaining approximate solutions to partially filled lami-
nar flow in circular pipes, for which Guo and Meroney [13] 
report a lack of theoretical and experimental studies and pre-
sent a survey of previous work on the subject. Using bipolar 
coordinates and the Fourier transform, Guo and Meroney 
[13] solve the laminar incompressible flow Navier–Stokes 
equations for an arbitrary flow depth smaller or larger than 
the channel radius. Fullard and Wake [14] use the solution of 
Guo and Meroney [13] (whose integrals must be evaluated 
numerically) to obtain an analytical series solution (which 
also requires numerical evaluation).

The primary aim of the present study is to describe an 
approximate solution of the laminar velocity field for the 

case of low-filled circular channels (the depth ratio, i.e., flow 
depth divided by channel radius, is smaller than one), which 
has a simple analytic form suitable for easy evaluation, in 
contrast to the solutions presented previously in the litera-
ture. For this purpose, some approximations are employed 
to obtain a pure analytical solution of the steady incompress-
ible Navier–Stokes equations in cylindrical coordinates. The 
accuracy of the assumptions made in the derivation of the 
approximate solution is assessed by comparing the approxi-
mate solution results with those of the exact solution of Guo 
and Meroney [13]. A secondary aim is to calculate some 
integral flow parameters (correction factors for momentum 
and kinetic energy fluxes) which are not reported in the 
literature for this flow. Variation of these parameters with 
depth ratio is currently unknown. Such analytic solutions for 
open-channel flows, which do not require rigorous calcula-
tions, have not been reported in the literature.

In the next section, the approximate solution proce-
dure is described, and in the results section, the solution is 
compared with that of Guo and Meroney [13] in terms of 
cross-sectional velocity distribution, friction coefficient and 
some integral parameters (bulk velocity, correction factors 
for momentum and kinetic energy fluxes). Curve fitting is 
applied to the exact solution of Guo and Meroney [13] to 
obtain variation of the parameters mentioned above, with 
the depth ratio, which is not presented in their original work.

2 � Solution

Side and sectional views of the flow geometry are shown in 
Fig. 1 where R is the pipe radius, h is the uniform flow depth 
and ∅ is the inclination angle of the channel. Direction of the 
gravitational acceleration g is also shown. The (x, y, z) Carte-
sian and (x, r, � ) cylindrical coordinate systems have origins on 
the x symmetry axis of the circular channel. Guo and Meroney 

Fig. 1   Flow geometry and coordinate system: a side view and b cross-sectional view
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[13] employ a bipolar coordinate system whose origin is 
located on the free surface and the plane of flow symmetry 
(z = 0). It is assumed that Bond number of the flow considered 
is high enough, so that surface tension effects are negligible 
allowing a planar free surface, as it was also the case in [13].

The general momentum equation in the streamwise direc-
tion x for steady, laminar, incompressible flow can be written 
in cylindrical coordinates as follows [6]:

where Vx , V� and Vr are the velocity components in the axial, 
azimuthal and radial directions, respectively; � is the density, 
and � is the viscosity coefficient. The non-dimensional form 
of Eq. (1) is given by

where non-dimensional variables are shown with an asterisk. 
In Eq. (2), velocities and spatial coordinate variables are 
nondimensionalized by the bulk (mean sectional) velocity 
Vb and channel radius R, respectively, whereas non-dimen-
sional pressure P∗ = P∕�V2

b
 is introduced as well. Re and 

Fr are the Reynolds and Froude numbers based on R and Vb 
( Re = �VbR∕� , Fr = Vb∕

√

gR ). The following simplifica-
tions can be made for uniform flow: (1) Flow is parallel to 
the wall everywhere and the only nonzero component of 
velocity is the axial velocity V∗

x
 , i.e., V∗

r
= V∗

�
= 0 ; (2) axial 

derivative of the streamwise velocity is zero and thus the 
inertia term on the left-hand side and the last viscous term 
in the square bracket on the right-hand side of Eq. (2) van-
ish; (3) pressure is constant in the streamwise direction, i.e., 
dP∗∕dx∗ = 0 ; (4) derivatives in the azimuthal coordinate ( �) 
direction are much smaller than those in the radial (r) direc-
tion and it is a reasonable approximation to neglect the sec-
ond viscous term in Eq. (2). Validity of the last assumption 
is implicitly supported by the exact solution results given in 
Guo and Meroney [13] which show that constant velocity 
contours are almost parallel to each other and to the bound-
ary of the circular channel wall for low-filled cases. The 
simplified form of Eq. (2) is then integrated twice in the 
radial direction between the wall (r* = 1) and the free surface 
(r∗

s
= rs∕R = (1 −

h

R
)∕cos� ) to yield:

where the integration constants C1(�) and C2(�) are evaluated 
by using the boundary conditions of (1) no-slip on the wall 
V∗
x
(1, �) = 0 and (2) zero velocity gradient in the r∗ direction 
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)

r∗=r∗
s

= 0 . The proper boundary 
condition used in the exact solution of Guo and Meroney 
[13] is �Vx∕�y = 0 on the free surface. This zero shear stress 
boundary condition assumes that the gas above the liquid 
has negligibly small viscosity. The continuity equation is 
satisfied by our approximate solution since the only nonzero 
velocity component V∗

x
 does not depend on the streamwise 

coordinate in uniform flow. Solution of the dimensionless 

momentum equation (i.e., Eq. 3) is given by:

Guo and Meroney [13] define a new dimensionless velocity 
U , given by U = V∗

x

Fr2

Re sin∅
= �Vx∕

(

R2�gsin∅
)

 which is writ-
ten explicitly as

Equations (4) and (5) are valid only for low-filled case 
where the  depth ratio h/R is smaller than one. The nor-
malized wall shear stress (friction factor) is defined as 
T0 = −�

(

�Vx∕�r
)

∕�gRsin∅ and for the approximate solu-
tion is given by

The dimensionless centerline surface velocity Uo (at 
r = R − h and � = 0) is given by

The bulk (mean sectional) velocity Vb is defined by

where integration is carried out from −� to � for � and 
from rs to R for r. � is the maximum value of � given by 
� = cos−1(1 − h∕R) (See Fig. 1) and A is the cross-sectional 
flow area given by A = R2(� − sin� cos�) . The integral in 
Eq. (8) is evaluated analytically producing the following 
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expression for the approximate normalized bulk velocity 
( Ub = �Vb∕

(

R2�gsin∅
)

):

The momentum flux and kinetic energy flux correction 
factors ( � and � ) are defined, respectively, by:

� and � are the correction factors used in calculating momen-
tum and kinetic energy fluxes, respectively, in engineering 
applications. The correction factors are the ratio of real 
fluxes to the idealized fluxes calculated by assuming uni-
form velocity in cross section of flow. The integrals in Eqs. 
(10) and (11) are evaluated numerically (from −� to � for 
� and from rs to R for r) and variations of � and � with h/R 
(including some algebraic expressions) are presented in the 
next section. A relationship between the correction factors 
for momentum and energy fluxes is established and com-
pared with data reported in the literature.

3 � Results

3.1 � Velocity contours and profiles

Figure 2a, b give a comparison of the normalized stream-
wise velocity U contour plots predicted by the approximate 
(present study) and exact [13] solutions, respectively, for the 
depth ratio (h/R) of 0.5. The channel wall is indicated by a 
thick circular line. Contours of both solutions are normal to 
the z∕R = 0 centerline due to flow symmetry. The overall 
agreement between the solutions is rather good, especially 
near the channel wall. Disagreement between the contours 
is readily observable near the free surface where contours 
are inclined with respect to the free surface for the approxi-
mate solution (Fig. 2a), while they are normal to the surface 
for the exact solution (Fig. 2b). The boundary condition 
employed in the approximate solution forces the contours 
to turn inwards such that tangents to the contours on the free 
surface pass through the origin of the coordinate system. 
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Thus, for the exact solution, the free surface is a virtual 
plane of symmetry, whereas for the approximate solution 
the virtual plane of symmetry rotates slightly. Experimen-
tally obtained velocity contour plots reported in [15–17] also 
show an inclination of contours like that in Fig. 2a. This 
behavior of velocity contours is due to secondary flows gen-
erated by turbulence [17] or nonuniformity of flow (nonzero 
inertia terms in the axial momentum equation).

Figure 3 presents variation of the normalized streamwise 
velocity (U) with the normalized vertical distance measured 
from the channel surface ( ys∕R ), on the centerline ( z∕R = 0 ) 
for h/R = 0.3, 0.6 and 0.9. The filled symbols connected by 
a curve denote the exact solution of Guo and Meroney [13]. 
It can be observed from Fig. 1 that ys and y are related by 
ys = yw − y where yw is the y coordinate of the circular chan-
nel wall. The maximum value of ys∕R is located on the free 
surface. The side-view velocity profiles given by Fig. 3 show 
that on the symmetry plane ( z∕R = 0 ), the velocity predicted 
by the approximate solution (and hence the centerline veloc-
ity on the free surface, U0 ) is always higher than that of the 
exact equation.

Figure 4a, b present variations of the normalized stream-
wise velocity (U) with the normalized vertical distance 
measured from the channel surface ( ys∕R ) along three ver-
tical lines ( z∕R = 0.20, 0.40 and 0.60) and with the normal-
ized spanwise distance ( z∕R ) along three horizontal lines 
( y∕R = 0.6, 0.75 and 0.90) for h/R = 0.5, respectively. The 
filled symbols connected by a curve denote the exact solu-
tion of Guo and Meroney [13]. Figure 4a shows that velocity 
predicted by the approximate solution is smaller and larger 
than those of the exact solution near the centerline ( z∕R = 
0.2) and near the channel edge ( z∕R = 0.6), respectively. In 
all profiles, agreement between the two solutions is good 
near the channel wall (small ys/R) where both solutions use 
the same (no-slip) boundary condition. The top-view veloc-
ity profiles in Fig. 4b show that velocity is overpredicted by 
the approximate solution near the channel wall ( y∕R = 0.75 
and 0.90). Near the free surface ( y∕R = 0.6), approximate 
solution has high bias near the centerline and low bias near 
the channel edge. Differences between the approximate and 
exact solutions remain smaller than 15% of the centerline 
velocity.

Figure 5a, b present variations with the depth ratio (h/R) 
of a) normalized bulk velocity ( Ub) , b) ratio of bulk veloc-
ity to the centerline surface velocity ( Ub∕Uo ), respectively, 
for the approximate and exact solutions. Equations (7) and 
(9) are used to plot the data of the approximate solution. 
Figure 5a shows that Ub normalized bulk velocity values 
predicted by the approximate solution are slightly larger 
than those of the exact solution. On the other hand, as 
shown in Fig. 5b, Ub∕Uo values of the approximate solution 
are smaller than those of the exact solution. This is due to 
the over-prediction of the centerline surface velocity Uo by 
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the approximate solution. As noted by Fullard and Wake 
[14] for laminar flow, Uo remains the maximum velocity 
in the flow field up to the h/R value of 0.86 above which 
location of the velocity maximum moves below the surface 
(velocity dip phenomena). A third-order polynomial curve 
fit to the exact solution of Guo and Meroney [13] gives 
the following expression for the variation of Ub with h/R:

(12)Ub = 0.003
(

h

R

)

+ 0.211
(

h

R

)2

− 0.089
(

h

R

)3

which is also plotted in Fig. 5a. A second-order polynomial 
curve fit to the exact solution of Guo and Meroney [13] pro-
duces the following expression for Ub∕Uo:

which is plotted in Fig. 5b and represents the exact solution 
with a relative error of 0.5%.

(13)
Ub

U0

= 0.461 + 0.098
(

h

R

)

− 0.062
(

h

R

)2

Fig. 2   Normalized streamwise 
velocity (U) contour plots for 
h/R value of 0.5 a approximate 
solution and b exact solution 
[13]
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3.2 � Surface shear stress

Figure 6 presents variation of the normalized wall shear 
stress To with the azimuthal coordinate � for h/R = 0.3, 0.6 
and 0.9; calculated using Eq. (6). To variations predicted by 
the exact solution of Guo and Meroney [13] are also pre-
sented (filled symbols connected by a curve). Comparison of 
the approximate and exact variations shows reasonably good 
agreement. Good agreement of wall shear stress is expected 
because of the small magnitude of velocity errors near the 
channel wall.

3.3 � Correction factors for momentum and kinetic 
energy flux

Figure 7a, b present variations of the correction factors for 
momentum flux ( �) and kinetic energy flux (α), respectively. 
Variations predicted by the exact solution of Guo and Mer-
oney [13] and linear curve fits to the exact solution are also 
presented in Fig. 7. Comparison of the approximate and 
exact variations shows reasonably good agreement. Both 
solutions give the same values of �=1.33 and α = 2.0 for 
h/R = 1 (which are identical to the correction factor values 
for laminar pressurized pipe flow). Figure 7a, b show that � 
and α values predicted by the approximate solution are con-
sistently higher than those of the exact solution. Discrepan-
cies between the approximate and exact values of � and α are 
largest around h/R values of 0.5. This is expected because 
Ub∕Uo ratio also has a similar trend as shown in Fig. 5b. 
Discrepancies between the approximate and exact solutions 
are less than 5% for � and 10% for � . A larger discrepancy 
for � is expected because of the third power of Vx∕Vb in 
the definition of α (Eq. 11), instead of the second power in 
the definition of � (Eq. 10), and subsequent propagation of 
errors. The second-order polynomial curve fits to the exact 
solution of Guo and Meroney [13] produce:

which are also shown in Fig. 7 and represent the exact solu-
tion within relative uncertainty levels of 1%.

(14)� = 1.40 − 0.17
(

h

R

)

+ 0.10
(

h

R

)2

(15)� = 2.23 − 0.58
(

h

R

)

+ 0.36
(

h

R

)2

Fig. 3   Variation of streamwise velocity (U) with y
s
/R on the center-

line (z/R = 0) for h/R = 0.3, 0.6 and 0.9

Fig. 4   Variation of streamwise 
velocity (U) for h/R = 0.5 a with 
y
s
/R at z/R = 0.20, 0.40 and 0.60, 

b with z/R at y/R = 0.6, 0.75 
and 0.90
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Figure 8 shows the relationship between the correction 
factors for kinetic energy flux (α) and momentum flux (�) for 
all values of h/R considered in the previous figures. The data 
of Guo and Meroney [13] can be represented by a linear fit 
given below (Eq. (16)) with an accuracy better than 99.9%.

Equation  (16) is valid for laminar flow in a smooth 
circular channel. For turbulent flow, large scale mixing 
provides better flow uniformity compared to laminar flow 

(16)𝛼 = 3.48𝛽 − 2.64 for 1.33 < 𝛽 < 1.40

and produces lower values of the correction factors. For 
example, Chow [15] reports that the average approxi-
mate values of � and � are 1.15 and 1.05, respectively, for 
regular channels. For turbulent flow in compound chan-
nels, much larger values of � and � are revealed by the 
experimentally obtained correlations of Mohanty et al. 
[18] which are plotted in Fig. 8 for comparison. Chiu 
and Tung [19] propose algebraic relations for variations 
of � and � in terms of a probability distribution param-
eter. Figure 8 also shows the data of Chiu and Tung [19] 
which is in very good agreement with Eq. (16). The cor-
relations of Mohanty et al. [18] and Chiu and Tung [19] 
extend to lower values of the coefficients and originate 
from α = β = 1

4 � Concluding remarks

Solutions to the laminar free-surface flow reported previ-
ously in the literature mostly require numerical evaluation of 
integral terms, which are not suitable for daily engineering 
practice. In the present study, an approximate analytic solu-
tion of laminar flow in a circular open channel is presented 
by employing some simplifications. Neglect of the second-
order velocity derivatives in the azimuthal direction, and 
velocity gradient in the radial direction at the free surface 
allows a pure analytical solution of the steady incompress-
ible Navier–Stokes equations in cylindrical coordinates. 
Accuracy of the approximate solution is assessed by com-
parison with the exact theoretical solution of Guo and Mer-
oney [13]. In contrast to the solutions of Guo and Meroney 
[13] and Fullard and Wake [14] that require numerical evalu-
ation, the approximate solution has a quite simple form and 

Fig. 5   Variation of a normal-
ized bulk velocity ( U

b
) and b 

ratio of bulk velocity to center-
line surface velocity ( U

b
∕U

o
 ) 

with the depth ratio (h/R)

Fig. 6   Variation of the normalized wall shear stress T
o
 with the azi-

muthal coordinate � for h/R = 0.3, 0.6 and 0.9
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agrees reasonably well with the exact solution. The good 
agreement between the approximate and exact solutions 
verifies that the assumptions employed in the derivation of 
the approximate solution are realistic from an engineering 
point of view. Based on the approximate solution, algebraic 
expressions for the cross-sectional distribution of velocity 
and wall shear stress, as well as variation of momentum and 
kinetic energy correction factors with flow depth, are pre-
sented. A relationship between the momentum and energy 

correction factors is established and compared with data 
reported in the literature.
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