
Eur. Phys. J. Plus         (2022) 137:908 
https://doi.org/10.1140/epjp/s13360-022-03124-5

Regular Art icle

Electromagnetic properties of the DD̄∗K molecular hexaquark state
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Abstract We systematically study the electromagnetic properties of multiquark states. In this study, inspired by the recent series
of studies that showed the likely existence of a DD̄∗K state, we examine the magnetic moment of DD̄∗K hexaquark state in
three-meson molecular structure, as well as having isospin and spin-parity quantum numbers I (J P ) � 3/2(1−) via light-cone sum
rules. The magnetic moment obtained for the DD̄∗K molecular hexaquark state is quite large due to the double electric charge, and
its magnitude indicates that it is accessible in future experiments. As a byproduct, the quadrupole moment of the DD̄∗K molecular
hexaquark state is also extracted. This value indicates a non-spherical charge distribution. The magnetic moments of hadrons
contains valuable knowledge on the distributions of charge and magnetization their inside, which can be used to better understand
their geometric shape and quark-gluon organizations. The results given in this study constitute an estimate of the magnetic moment
of this DD̄∗K state and should serve as an inspiration to conduct experimental examinations of this state.

1 Introduction

Since the discovery of the X(3872) by Belle in 2003 [1], there have been numerous candidates of multiquark states observed in
particle experiments, which cannot be well explained in the conventional quark model. A lot of experimental and theoretical research
has been done in the last few decades, but their nature is still elusive. We refer to the reviews [2–14] and references therein for
detailed discussions.

Theoretically, the attraction in the DK and DD̄∗ subsystems constitutes an argument in favor of the existence of DD̄∗K state.
The observation of such DD̄∗K state might be possible in the current experimental facilities and it would constitute an exciting
improvement in the multiquark states. This state, if found experimentally, definitely cannot be accommodated in a conventional
meson picture and hence presents a clear case of an multiquark state. In Ref. [15], based on the attractive force of the isosinglet
D∗K system the mass of the DD̄∗K system has been studied using Born–Oppenheimer approximation via delocalized π bond with
isospin and spin-parity quantum numbers I (J P ) � 1/2(1−). In Ref. [16], the authors solved the Faddev equation to obtain the mass
and decay width of DD̄∗K state. The obtained mass and decay width are given as: m � (4307 ± 2) MeV and � � (9 ± 2) MeV
with I (J P ) � 1/2(1−), respectively. In Ref. [17], the possible two-body decay channels of DD̄∗K state have been investigated via
triangle diagrams with I (J P ) � 1/2(1−). In Ref. [18], the spectroscopic parameters of DD̄∗K system have been obtained in the
framework of the QCD sum rules with quantum numbers I (J P ) � 3/2(1−). In Ref. [19], the mass of the DD̄∗K state have been
investigated by solving the Schrödinger equation with quantum numbers I (J P ) � 1/2(1−).

There are different approaches in investigation of the structure of multiquark states, especially, the most promising one in this
direction is the study of the electromagnetic properties of the multiquark states. Electromagnetic properties of the multiquark states
play a vital role in understanding their internal structure and shape deformations. Besides, examining the magnetic dipole and higher
multipole moments of multiquark states is a crucial element of understanding the heavy quark dynamics; however, the studies on the
magnetic moments of multiquark states are scarce. Motivated by these facts, the magnetic moment of the DD̄∗K vector hexaquark
state has been obtained by using the light-cone sum rules [20–22]. While obtaining this magnetic moment, it is taken into account
that these state is in the three-meson molecular structure, as well as having I (J P ) � 3/2(1−) quantum numbers. Light-cone sum
rules have been proven to be a powerful and successful nonperturbative method over the past few decades. Its starting point is to
construct the corresponding interpolating currents appropriate to the hadron of concern, which have the prominent knowledge about
the related hadron, like quantum numbers and the constituent particles. With these interpolating currents, the correlation function
in the presence of the external electromagnetic field, which has two representations, the QCD representation and the hadronic
representation, can be constructed. Matching these two representations via quark-hadron duality, the light-cone sum rules will be
established, from which the magnetic moments, form factors, etc., may be deduced.
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The rest of article is arranged as follows: After the introduction, in Sect. 2 we derive the light-cone sum rules for the magnetic
moment of the DD̄∗K hexaquark molecular state. In Sect. 3, we present the numerical results and discussions. The summary of the
paper is given in the Sect. 4.

2 Formalism

The starting point of the light-cone sum rules is the correlation function constructed from two hadronic currents in the presence of
the external electromagnetic field with the following form:

�μν(p, q) � i
∫

d4xeip·x 〈0|T {Jμ(x)J †
ν (0)}|0〉γ , (1)

where T , Jμ(x) and γ represent the time-ordered product of two currents, the interpolating current of DD̄∗K state and the external
electromagnetic field, respectively. We need explicit expressions for Jμ(x) to make progress in the calculations. In the three-meson
state, Jμ(x) with quantum numbers I (J P ) � 3/2(1−) can be written in the following form

Jμ(x) �
{[

ūa(x)iγ5c
a(x)

][
c̄b(x)γμd

b(x)
][
ūc(x)iγ5s

c(x)
]}

, (2)

where the a, b, c denote color indices and the C is the charge conjugation matrix.
As the hadronic representation of the correlation function is concerned, we insert a complete set of intermediate hadronic state

with same quantum numbers as the interpolating currents into the correlation function and we acquire

�Had
μν (p, q) � 〈0 | Jμ(x) | DD̄∗K (p, εθ )〉

p2 − m2
DD̄∗K

〈DD̄∗K (p, εθ ) | DD̄∗K (p + q, εδ)〉γ 〈DD̄∗K (p + q, εδ) | J †
ν (0) | 0〉

(p + q)2 − m2
DD̄∗K

+ higher states . (3)

The amplitude 〈0 | Jμ(x) | DD̄∗K (p, εθ )〉 can be parameterized in terms of residue λDD̄∗K and polarization vector εθ
μ of DD̄∗K

state as

〈0 | Jμ(x) | DD̄∗K (p, εθ )〉 � λDD̄∗K εθ
μ , (4)

while the matrix element 〈DD̄∗K (p, εθ ) | DD̄∗K (p + q, εδ)〉γ is given by

〈DD̄∗K (p, εθ ) | DD̄∗K (p + q, εδ)〉γ � −ετ (εθ )α(εδ)β
{
G1(Q2) (2p + q)τ gαβ + G2(Q2) (gτβ qα − gτα qβ )

− 1

2m2
DD̄∗K

G3(Q2) (2p + q)τ qαqβ

}
, (5)

where ετ is polarization of the photon and Gi (Q2)’s are electromagnetic form factors, with Q2 � −q2.
Using Eqs. (3)–(5) and after doing some necessary calculations the final form of the correlation function is obtained as

�Had
μν (p, q) � ερ λ2

DD̄∗K
[m2

DD̄∗K − (p + q)2][m2
DD̄∗K − p2]

{
G1(Q2)(2p + q)ρ

(
gμν − pμ pν

m2
DD̄∗K

− (p + q)μ(p + q)ν
m2

DD̄∗K

+
(p + q)μ pν

2m4
DD̄∗K

(Q2 + 2m2
DD̄∗K )

)
+ G2(Q2)

(
qμgρν − qνgρμ − pν

m2
DD̄∗K

(qμ pρ − 1

2
Q2gμρ)

+
(p + q)μ
m2

DD̄∗K
(qν(p + q)ρ +

1

2
Q2gνρ) − (p + q)μ pν pρ

m4
DD̄∗K

Q2
)

− G3(Q2)

m2
DD̄∗K

(2p + q)ρ

(
qμqν − pμqν

2m2
DD̄∗K

Q2 +
(p + q)μqν

2m2
DD̄∗K

Q2 − (p + q)μqν

4m4
DD̄∗K

Q4
)}

. (6)

To calculate the magnetic moment, we need only G2(Q2) of the form factors described above. The magnetic form factor, FM (Q2),
is written as follows

FM (Q2) � G2(Q2) . (7)

The FM (Q2 � 0) is proportional to the magnetic moment μDD̄∗K :

μDD̄∗K � e

2mDD̄∗K
FM (0). (8)
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To evaluate the QCD representation of the light-cone sum rules, we insert the interpolating currents to the correlation function,
contract relevant quark fields and obtain QCD representation of the correlation function in terms of the light and heavy quark
propagators

�QCD
μν (p, q) � −i

∫
d4xeip·x 〈0|

{
Tr[γμS

bb′
d (x)γν S

b′b
c (−x)]Tr[γ5S

aa′
c (x)γ5S

a′a
u (−x)]

× Tr[γ5S
cc′
s (x)γ5S

c′c
u (−x)] − Tr[γμS

bb′
d (x)γνS

b′b
c (−x)]Tr[γ5S

aa′
c (x)iγ5

×Sa′c
u (−x)γ5S

cc′
s (x)iγ5S

c′a
u (−x)]

}|0〉γ , (9)

where Sq (x) and Sc(x) are represent the full light and massive quark propagators. Throughout our calculations, we use the x-space
expressions for the Sq (x) and Sc(x) [23, 24]:

Sq (x) � i
x/

2π2x4 − 〈q̄q〉
12

(
1 − i

mq x/

4

)
− 〈q̄q〉

192
m2

0x
2
(

1 − i
mq x/

6

)
− igs

32π2x2 Gμν(x)
[
/xσμν + σμν/x

]
, (10)

Sc(x) � m2
c

4π2

⎡
⎣K1

(
mc

√−x2
)

√−x2
+ i

x K2

(
mc

√−x2
)

(
√−x2)2

⎤
⎦ − gsmc

16π2

∫ 1

0
dv Gμν(vx)

[(
σμνx + xσμν

)

×
K1

(
mc

√−x2
)

√−x2
+ 2σμνK0

(
mc

√
−x2

)⎤
⎦. (11)

where 〈q̄q〉 is quark condensate, m0 is defined through the quark-gluon mixed condensate 〈0 | q̄ gs σαβ Gαβ q | 0〉 � m2
0 〈q̄q〉, v is

line variable, Gμν is the gluon field strength tensor, σμν � i
2 [γμ, γν] and Ki ’s are modified Bessel functions of the second kind.

The first term of the light and heavy quark propagators correspond to perturbative or free part and the rest belong to the interacting
parts.

A few remarks should be made here regarding the calculation of the QCD representation of the correlation function. The correlation
function in Eq. (9) includes two different contributions as perturbative and nonperturbative. In practice, perturbative contributions,
the photon interacts with one of the quarks, can be computed by the replacing the one of the light or heavy-quark propagators by

Sfree →
∫

d4z Sfree(x − z) /A(z) Sfree(z) . (12)

The remaining five propagators are considered as full propagators. Nonperturbative contributions, the photon is radiated at long
distances, can be computed by replacing one of the light quark propagators by

Sabαβ → −1

4
(q̄a�i q

b)(�i )αβ, (13)

where �i are full set of the Dirac matrices and surviving propagators are considered as full quark propagators. It is seen that matrix
elements such as 〈γ (q)|q̄(x)�i q(0)|0〉 and 〈γ (q)

∣∣q̄(x)�i Gμνq(0)
∣∣0〉 emerge after the calculations given in Eq. (13) are made. These

matrix elements are parameterized with respect to the photon distribution amplitudes (DAs), which are the key nonperturbative
parameters in light-cone sum rules, whose explicit expressions are given in Ref. [25]. Besides these matrix elements, in principle,
nonlocal operators such as q̄G2q and q̄qq̄q are expected to show up. However, it is known that the contributions of such operators
are small, which is supported by the conformal spin expansion [26, 27], and hence we will omit them. When the above-mentioned
calculations are made, the QCD representation of the correlation function is obtained.

Finally, the structure qμεν is chosen from both representations and the coefficients of the structure are matched in both hadronic
and QCD representations. Then, Borel transformation and continuum subtraction are used to suppress the effects of the continuum
and higher states. As a result, the light-cone sum rule for DD̄∗K state is as follows:

μDD̄∗K λ2
DD̄∗K � e

m2
DD̄∗K
M2 �QCD(M2, s0), (14)

where M2 and s0 are free parameters originating from the applications of the Borel transformation and continuum subtraction
procedures. The �QCD(M2, s0) function is rather lengthy, explicit expression of which is not given in the text. In obtaining the final
result, we employ 1

M2 � 1
M2

1
+ 1

M2
2

with M2
1 and M2

2 being the Borel parameters in the initial and final states, respectively. We set

M2
1 � M2

2 � 2M2 as the initial and final states are the same. We will fix M2 and continuum threshold (s0) based on the standard
prescription of the light-cone sum rule method in next section.

At the end of this section, we would like to note that the magnetic moment of the DD̄∗K state has been computed from the
light-cone sum rules employing for its hadronic side a single-pole approach [see, Eq. (3)]. In the case of the multiquark hadrons
such approach should be verified by additional arguments, because a hadronic side of relevant sum rules receives contributions
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Fig. 1 Variations of the magnetic moment of DD̄∗K state with M2 and s0

from two-hadron reducible terms as well. Two-hadron contaminating terms have to be considered when extracting parameters of
multiquark hadrons [28, 29]. In the case of the multiquark hadrons they lead to modification in the quark propagator

1

m2 − p2 → 1

m2 − p2 − i
√
p2�(p)

, (15)

where �(p) is the finite width of the multiquark hadrons generated by two-hadron scattering states. When these contributions are
properly taken into account in the sum rules, they rescale the residue of the multiquark hadrons under investigations leaving its
mass unchanged. Detailed investigations show that two-hadron scattering contributions are small for multiquark hadrons (see Refs.
[30–38]). Therefore, one can safely exclude the contributions of two-hadron scattering effects in the hadronic side of the correlation
function.

3 Numerical analysis and conclusions

We assume the following parameters to perform the numerical calculations for the magnetic moment of the DD̄∗K state. The masses
of the light quarks aremu � md � 0,ms � 96+8−4 MeV , the mass of the c-quark ismc � (1.275±0.025) GeV, the condensates of the
light quarks are 〈s̄s〉 � 0.8 〈ūu〉 with 〈ūu〉 �〈d̄d〉=(−0.24 ± 0.01)3 GeV3 [39], the gluon condensate is 〈g2

s G
2〉 � 0.88 GeV4 [40]

and the quark-gluon condensate is m2
0 � 0.8±0.1 GeV2 [39]. To proceed the numerical calculations of the magnetic moment of the

DD̄∗K state , numerical values of the mass and residue parameters of this state are also needed. These values have been computed in
Ref. [18]. The obtained results for mass and residue are given asmDD̄∗K � 4.71+0.19−0.11 GeV and λDD̄∗K � (4.60+1.15−0.69)×10−4 GeV8.
All necessary terms regarding the DAs of the photon are borrowed from Ref. [25].

The light-cone sum rules in Eq. (14) is a function of the Borel mass parameter M2 and continuum threshold s0. To acquire a reliable
light-cone sum rules result, one should determine proper working intervals for these two free parameters. The OPE convergence
and pole dominance (PC) constraints are widely used to determine the working intervals of these two parameters. Considering these
limitations, the following working intervals are obtained for these two free parameters as a result of the numerical analysis,

5.0 GeV2 ≤M2 ≤ 7.0 GeV2

25.2 GeV2 ≤s0 ≤ 27.2 GeV2. (16)

Using the above working intervals for the M2 and s0, the PC varies in the intervals 53% ≥ PC ≥ 15%. At M2
max � 7.0 GeV2, the PC

is equal to 15%, while at M2
min � 5.0 GeV2, it is equal to 53%. In the standard analysis of QCD sum rules, the PC should be larger

than 50% for baryons and mesons. In the case of tetra- and pentaquark states, it turns out to be as PC > 20%. In Refs. [41–44], it
is indicated that hexaquark spectral densities led to small PC. When we investigate the OPE convergence, we have acquired that
the contribution of the higher dimensional terms in OPE is less than ∼ 2%, thus the convergence of the sum rules is ensured. In
Fig. 1, the M2 and s0 dependencies of the magnetic moment of the DD̄∗K hexaquark state is shown. As is seen, the variation of
the results with respect to the continuum threshold is substantial; however, there is much less dependence of the magnetic moment
on the Borel parameters in its working interval.

After all the above procedures are completed, the results we obtained for the magnetic moment are given as follows

μDD̄∗K � −3.52 ± 1.28 μN . (17)
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The error in Eq. (17) is due to all input parameters, extra parameters such as s0 and M2, as well as numerical parameters used in
expressions in photon DAs. We see from this result that the value of the magnetic moment of DD̄∗K state are quite large because
of the double electric charge.

As a byproduct, we have also acquired quadrupole moment (D) of the DD̄∗K state as follows

DDD̄∗K � −0.030 ± 0.008 f m2. (18)

This result indicates that the charge distribution of the DD̄∗K state is non-spherical.
A comparison of our predictions on the magnetic and quadrupole moments of the DD̄∗K state with the estimations of other

methods, such as lattice QCD, quark model, and chiral perturbation theory would be interesting. As we mentioned above DD̄∗K
state belong to a class of doubly charged multiquark states that the measurements of their electromagnetic parameters, like those of
the �++ baryon, are relatively easy compared to other multiquark states. These kind of multiquark states have not been explored so
far. We hope our estimations on the electromagnetic properties of these states together with the results of other theoretical studies
on the spectroscopic parameters of these states will be useful for their searches in future experiments and will help us define exact
inner structures of these multiquark states.

Let us briefly discuss how the magnetic moment of this state can be measured experimentally. The possible short lifetime
of DD̄∗K state does not allow the employ of spin procession technique to measure the magnetic and quadrupole moments. An
alternative technique based on photon emission off hadrons [45] can be used in the later case, since the photon carries data on higher
multipole moments of emitting hadrons. The basic scheme of this idea is that the amplitude for radiative process can be expressed
as a power expansion in the photon energy ωγ as follows

M ∼ A (ωγ )−1 + B (ωγ )0 + · · · , (19)

where (ωγ )−1, (ωγ )0 and dots represent the electric charge, magnetic moment and higher multipole moments, respectively. By
measuring the cross section or decay width of the radiative process and excluding from the small contributions of terms linear/higher
order in ωγ , one can define the magnetic moment of related hadron.

4 Summary

We systematically study the electromagnetic properties of multiquark states. In this study, inspired by the recent series of studies that
showed the likely existence of a DD̄∗K state, we examine the magnetic moment of DD̄∗K hexaquark state in three-meson molecular
structure, as well as having isospin and spin-parity quantum numbers I (J P ) � 3/2(1−) via light-cone sum rules. The magnetic
moment obtained for the DD̄∗K molecular hexaquark state is quite large due to the double electric charge, and its magnitude
indicates that it is accessible in future experiments. As a byproduct, the quadrupole moment of the DD̄∗K molecular hexaquark
state are also extracted. This value indicates a non-spherical charge distribution. The magnetic moments of hadrons contain valuable
knowledge on the distributions of charge and magnetization their inside, which can be used to better understand their geometric
shape and quark-gluon organizations. The results given in this study constitute an estimate of the magnetic moment of this DD̄∗K
state and should serve as an inspiration to conduct experimental examinations of this state.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research
work, so no additional data are associated with this work.]
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